On positive duality gaps in semidefinite programming

Gábor Pataki
UNC Chapel Hill

Talk at SIAG, Bern, 2019

A pair of Semidefinite Programs (SDP)

$$
\begin{align*}
& \sup _{x} c^{T} x \quad \inf _{Y} B \bullet Y \\
& \text { (P) s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B \quad Y \succeq 0 \tag{D}\\
& A_{i} \bullet Y=c_{i} \forall i \text {. }
\end{align*}
$$

Here

- A_{i}, B are symmetric matrices, $c, x \in \mathbb{R}^{m}$.
- $A \preceq B$ means that $B-A$ is symmetric positive semidefinite (psd).
- $A \bullet B=\sum_{i, j} a_{i j} b_{i j}$.

SDP duality

$$
\begin{align*}
& \sup _{x} c^{T} x \quad \inf _{Y} B \bullet Y \\
& \text { (P) s.t. } \sum_{i=1}^{m} x_{i} \boldsymbol{A}_{i} \preceq B \quad \boldsymbol{B} \succeq 0 \tag{D}\\
& A_{i} \bullet Y=c_{i} \forall i .
\end{align*}
$$

SDP duality

$$
\begin{array}{ccc}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { (P) } & \text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & \tag{D}\\
& & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i} \forall i .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.

SDP duality

$$
\begin{array}{ccc}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { (P) } & \text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & \tag{D}\\
& & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i} \forall i .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.
Ideally: $\exists x^{*}, \exists Y^{*}: c^{T} x^{*}=B \bullet Y^{*}$.

SDP duality

$$
\begin{align*}
& \sup _{x} c^{T} x \quad \inf _{Y} B \bullet Y \\
& (P) \quad \text { s.t. } \sum_{i=1}^{m} x_{i} \boldsymbol{A}_{i} \preceq B \quad Y \succeq 0 \tag{D}\\
& A_{i} \bullet Y=c_{i} \forall i .
\end{align*}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.
Ideally: $\exists x^{*}, \exists Y^{*}: c^{T} x^{*}=B \bullet Y^{*}$.
But: pathologies occur, as nonattainment, positive gaps.

SDP duality

$$
\begin{array}{ccc}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { (P) } & \text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & \tag{D}\\
& & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i} \forall i .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.
Ideally: $\exists x^{*}, \exists Y^{*}: c^{T} x^{*}=B \bullet Y^{*}$.
But: pathologies occur, as nonattainment, positive gaps.
\rightarrow in such cases we cannot certify optimality.

Example: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$x_{2}=0$ identically.

Example: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$x_{2}=0$ identically \Rightarrow primal $=0$.

Example: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Dual matrix $Y \succeq 0$

Example: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Dual matrix $Y \succeq 0$
1st dual constraint $\Rightarrow y_{11}=0 \Rightarrow \boldsymbol{Y}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & y_{22} & y_{23} \\ 0 & y_{23} & y_{33}\end{array}\right)$

Example: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Dual matrix $Y \succeq 0$
1st dual constraint $\Rightarrow y_{11}=0 \Rightarrow \boldsymbol{Y}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & y_{22} & y_{23} \\ 0 & y_{23} & y_{33}\end{array}\right)$

Example: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Dual matrix $Y \succeq 0$
1st dual constraint $\Rightarrow y_{11}=0 \Rightarrow \boldsymbol{Y}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & y_{22} & y_{23} \\ 0 & y_{23} & y_{33}\end{array}\right)$
2nd dual constraint $\Rightarrow y_{22}=1 \Rightarrow$ dual opt $=1$

Example: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Looks quite odd: x_{1} "only exists" to create a zero block in the dual matrix.

Positive gaps

- Maybe the "worst/most interesting" pathology.
- Solvers fail, or report a wrong solution.
- Good model of positive gaps in more general convex programs

Literature

- Pathological semidefinite systems P, 2011 -
"Bad semidefinite programs: they all look the same"
- It does not distinguish among bad objective functions.

Literature

- Pathological semidefinite systems P, 2011 -
"Bad semidefinite programs: they all look the same"
- It does not distinguish among bad objective functions.
- Positive gaps related to complementarity in homogeneous systems: Tuncel, Wolkowicz, 2012
- Weak infeasibility: Lourenco, Muramatsu, Tsuchiya, 2014
- Infeasibility, weak infeasibility: Liu, P 2015, 2017

Literature: how to solve some pathological SDPs

- Facial reduction of Borwein-Wolkowicz, Waki-Muramatsu, Pataki: implemented by Permenter, Parrilo 2014;
Permenter,Friberg,Andersen 2015
- Very simple facial reduction (just inspect the constraints): Zhu, P, Tran Dinh (Sieve-SDP) 2017
- SPECTRA, exact arithmetic SDP solver Henrion-Naldi-El Din 2016
- Douglas-Rachford splitting:

Liu, Ryu, Yin 2017

- Homotopy method

Hauenstein, Liddell, Zhang 2018

Main ideas

- Look at small instances.
- Proposition: positive gap $\Rightarrow m \geq 2$.
- Fully characterize the $m=2$ case.

Main ideas

- Look at small instances.

Proposition: positive gap $\Rightarrow m \geq 2$.

- Fully characterize the $m=2$ case.
- Show that the $m=2$ case sheds light on larger m.
- Precisely: the structure that causes positive gap when $m=2$ often does the same when $m>2$.

Main ideas

- Look at small instances.

Proposition: positive gap $\Rightarrow m \geq 2$.

- Fully characterize the $m=2$ case.
- Show that the $m=2$ case sheds light on larger m.
- Precisely: the structure that causes positive gap when $m=2$ does the same in many cases even if $m>2$.
- Reformulate
- Borrow ideas from linear system of equations:
to show $A x=b$ is infeasible, we create an equation $\langle 0, x\rangle=1$.

Recall: a pair of Semidefinite Programs (SDPs)

$$
\begin{array}{ccc}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { (P) } & \text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & \tag{D}\\
& & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i} \forall i .
\end{array}
$$

Reformulations of $(P)-(D)$ are obtained by

- Choose T invertible, and

$$
B \leftarrow T^{T} B T, A_{i} \leftarrow T^{T} A_{i} T \forall i .
$$

- Elementary row operations on (D) : e.g., exchange two constraints $A_{i} \bullet Y=c_{i}$ and $A_{j} \bullet Y=c_{j}$.
- Choose $\mu \in \mathbb{R}^{m}$ and

$$
\boldsymbol{B} \leftarrow \boldsymbol{B}+\sum_{i=1}^{m} \boldsymbol{\mu}_{i} \boldsymbol{A}_{i} .
$$

Reformulations preserve positive gaps (if any).

Suppose $m=2$.

Then positive gap $\Leftrightarrow \exists$ reformulation
$\sup c_{2}^{\prime} x_{2}$

where $\Lambda \succ 0, M \neq 0, c_{2}^{\prime}>0, s \geq 0$.

Suppose $m=2$.

Then positive gap $\Leftrightarrow \exists$ reformulation

where $\Lambda \succ 0, M \neq 0, c_{2}^{\prime}>0, s \geq 0$.
Proof of \Leftarrow
This is the easy direction.
Essentially reuse the argument from before.

Suppose $m=2$.

Then positive gap $\Leftrightarrow \exists$ reformulation

where $\Lambda \succ 0, M \neq 0, c_{2}^{\prime}>0, s \geq 0$.
Proof of $\Leftarrow M \neq 0 \Rightarrow x_{2}=0 \Rightarrow$ primal $=0$.

Suppose $m=2$.

Then positive gap $\Leftrightarrow \exists$ reformulation
$\sup c_{2}^{\prime} x_{2}$

where $\Lambda \succ 0, M \neq 0, c_{2}^{\prime}>0, s \geq 0$.
Proof of \Leftarrow Dual matrix $Y \succeq 0$
1st dual constraint $\Rightarrow \Lambda \bullet Y(1: p, 1: p)=0$

Suppose $m=2$.

Then positive gap $\Leftrightarrow \exists$ reformulation
$\sup c_{2}^{\prime} x_{2}$

where $\Lambda \succ 0, M \neq 0, c_{2}^{\prime}>0, s \geq 0$.
Proof of \Leftarrow Dual matrix $Y \succeq 0$
1st dual constraint $\Rightarrow \Lambda \bullet Y(1: p, 1: p)=0$

$$
\Rightarrow Y(1: p, 1: p)=0
$$

Suppose $m=2$.
Then positive gap $\Leftrightarrow \exists$ reformulation

$$
\sup c_{2}^{\prime} x_{2}
$$

where $\Lambda \succ 0, M \neq 0, c_{2}^{\prime}>0, s \geq 0$.
Proof of \Leftarrow Dual matrix $Y \succeq 0$
1 st dual constraint $\Rightarrow \Lambda \bullet Y(1: p, 1: p)=0$

$$
\Rightarrow Y(1: p, 1: p)=0
$$

\Rightarrow 1st p rows and columns of Y are zero.

Suppose $m=2$.

Then positive gap $\Leftrightarrow \exists$ reformulation
$\sup c_{2}^{\prime} x_{2}$

where $\Lambda \succ 0, M \neq 0, c_{2}^{\prime}>0, s \geq 0$.

$$
\begin{aligned}
& \inf \left(\begin{array}{cc}
I_{r-p} & 0 \\
0 & 0
\end{array}\right) \\
& \text { s.t. } \begin{array}{l}
\left(\begin{array}{cc}
\Sigma & 0 \\
0 & -I_{s}
\end{array}\right)
\end{array} \quad \bullet Y^{\prime}=c_{2}^{\prime}>0 \\
& \\
& Y^{\prime} \succeq 0,
\end{aligned}
$$

Suppose $m=2$.

Then positive gap $\Leftrightarrow \exists$ reformulation

where $\Lambda \succ 0, M \neq 0, c_{2}^{\prime}>0, s \geq 0$.

$$
\Rightarrow \text { dual optimal value }>0
$$

Simple certificate of the positive pap

When does the underlying system admit a gap?

Given

$$
\left(P_{S D}\right) \quad \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

is there $c \in \mathbb{R}^{m}$ such that there is a positive gap?

Suppose $m=2$. Then $\exists\left(c_{1}, c_{2}\right)$ with positive gap $\Leftrightarrow\left(P_{S D}\right)$ has reformulation

where $\Lambda \succ 0, M \neq 0, s \geq 0$.

How about $m>2$?

Similar example with $m=3$

$$
\begin{aligned}
& \sup x_{3}
\end{aligned}
$$

Similar example with $m=3$

Primal $=0$.

Similar example with $m=3$

$\sup x_{3}$
Primal $=0$.
Dual : Variable $Y=\left(y_{i j}\right) \succeq 0$

Similar example with $m=3$

Primal $=0$.
Dual : Variable $Y=\left(y_{i j}\right) \succeq 0$
1st two dual constraints \Rightarrow 1st two rows and columns of Y are zero.

Similar example with $m=3$

Primal $=0$.
\Rightarrow Dual is equivalent to:

$$
\begin{aligned}
& \inf \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \bullet Y^{\prime} \\
& \text { s.t. }\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \bullet Y^{\prime}=1 \\
& \\
& Y^{\prime} \succeq 0
\end{aligned}
$$

Same structure as in the 2 variable case

Similar example with $m=3$

Primal $=0$.
\Rightarrow Dual is equivalent to:

$$
\begin{aligned}
& \inf \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \bullet Y^{\prime} \\
& \text { s.t. }\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \bullet Y^{\prime}=1 \\
& \\
& Y^{\prime} \succeq 0
\end{aligned}
$$

Same structure as in the 2 variable case

We can create such an instance for any $m=2,3,4, \ldots$ with $n=m+1$

Sparsity structure when $m=2,3,4(n=m+1)$

How do we get these instances? Background: facial reduction

Given H affine subspace, K closed convex cone, a facial reduction algorithm (FRA) works as:
(1) If ri $K \cap H=\emptyset$, find $y \in H^{\perp} \cap\left(K^{*} \backslash K^{\perp}\right)$.
(2) Replace K by $K \cap y^{\perp}$. Goto (1).

How do we get these instances? Background: facial reduction

Given H affine subspace, K closed convex cone, a facial reduction algorithm (FRA) works as:
(1) If ri $K \cap H=\emptyset$, find $y \in H^{\perp} \cap\left(K^{*} \backslash K^{\perp}\right)$.
(2) Replace K by $K \cap y^{\perp}$. Goto (1).

Facial reduction sequence:
The sequence y_{1}, y_{2}, \ldots generated by the FRA.

How do we get these instances? Background: facial reduction

Given H affine subspace, K closed convex cone, a facial reduction algorithm (FRA) works as:
(1) If ri $K \cap H=\emptyset$, find $y \in H^{\perp} \cap\left(K^{*} \backslash K^{\perp}\right)$.
(2) Replace K by $K \cap y^{\perp}$. Goto (1).

Facial reduction sequence:
The sequence y_{1}, y_{2}, \ldots generated by the FRA.

Singularity degree:
Is the smallest number of FRA steps, until the FRA stops.

Back to $m=2$ example:

$$
\text { s.t. } x_{1} \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)}_{A_{1}}+x_{2} x_{2}^{\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)} \preceq \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)}_{A_{2}}
$$

Here $\left(A_{1}\right)$ is a facial reduction sequence for (D).

Back to $m=2$ example:

$$
\text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad+x_{2} x_{A_{1}}^{\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)} \preceq \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)}_{A_{2}}
$$

Here $\left(A_{1}\right)$ is a facial reduction sequence for (D). $A_{1} \bullet Y=0$ proves that dual matrix must look like
$\boldsymbol{Y}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & y_{22} & y_{23} \\ 0 & y_{23} & y_{33}\end{array}\right)$

Back to larger example:

$\sup x_{3}$

Here $\left(A_{1}, A_{2}\right)$ is a facial reduction sequence for (D).

Back to larger example:

$\sup x_{3}$

Here $\left(A_{1}, A_{2}\right)$ is a facial reduction sequence for (D).
$A_{1} \bullet Y=A_{2} \bullet Y=0$ proves that dual matrix must look like
$\boldsymbol{Y}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & y_{33} & y_{34} \\ 0 & 0 & y_{43} & y_{44}\end{array}\right)$

Theorem:

- $\operatorname{sing}(\mathrm{D}) \leq m$.

Theorem:

- $\operatorname{sing}(\mathrm{D}) \leq m$.
$\bullet=m \Rightarrow$ no gap.

Theorem:

- $\operatorname{sing}(\mathrm{D}) \leq m$.
$\bullet=m \Rightarrow$ no gap.
- $\forall m \geq 2, \forall g>0 \exists$ instance s.t.

Theorem:

- $\operatorname{sing}(\mathrm{D}) \leq m$.
$\bullet=m \Rightarrow$ no gap. (Easy)
- $\forall m \geq 2, \forall g>0 \exists$ instance s.t.

$$
\operatorname{sing}(\mathrm{D})=m-1 \text { and gap is } g .(\text { See examples) }
$$

Analogous results for the homogeneous dual

$$
\begin{aligned}
A_{i} \bullet Y & =0 \forall i \\
B \bullet Y & =0 \quad(H D) \\
Y & \succeq 0
\end{aligned}
$$

See paper ...

Problem library and computational results

\bullet Instances with $m=2,3, \ldots, 11$; gap $=10$.

Problem library and computational results

\bullet Instances with $m=2,3, \ldots, 11$; gap $=10$.

Problem library and computational results

\bullet Instances with $m=2,3, \ldots, 11$; gap $=10$.

- Integral data. Gap can be verified by hand, in exact arithmetic.

Problem library and computational results

\bullet Instances with $m=2,3, \ldots, 11$; gap $=10$.

- Integral data. Gap can be verified by hand, in exact arithmetic.
- Four categories:
- gap_single_finite_clean_m
- gap_single_finite_messy_m
- gap_single_inf_clean_m,
$-g a p _s i n g l e _i n f _m e s s y _m$.

Problem library and computational results

\bullet Instances with $m=2,3, \ldots, 11$; gap $=10$.

- Integral data. Gap can be verified by hand, in exact arithmetic.
- Four categories:
- gap_single_finite_clean_m
- gap_single_finite_messy_m
$-g a p _s i n g l e _i n f _c l e a n _m$,
$-g a p _s i n g l e _i n f _m e s s y _m$.
- Messy means we applied a similarity transformation $T^{T}() T$.

Results

	GAP, SINGLE, FINITE		GAP, SINGLE, INFINITE	
	CLEAN	MESSY	CLEAN	MESSY
MOSEK	1	1	0	0
SDPA-GMP	1	1	0	0
PP+MOSEK	10	1	10	0
SIEVE-SDP + MOSEK	10	1	10	0

- PP: preprocessor of Permenter and Parrilo
- Sieve-SDP: preprocessor of Zhu, Pataki, Tran-Dinh Note: SPECTRA works when $m=2$.

Summary:

- Positive gaps: "worst/most interesting" pathology of SDPs.
- Complete characterization for $m=2$ by reformulation.
- Complete characterization of positive gap systems with $m=2$.
- Similarly structured positive gap SDPs in any dimension.
- Highest singularity degree that leads to a positive gap.
- Challenging problem library.

Thank you!

