A Generalization of SAGE Certificates for Constrained Optimization

Riley Murray

California Institute of Technology

July 11, 2019

Joint work with Venkat Chandrasekaran and Adam Wierman (Caltech).

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set $X \subset \mathbb{R}^n$, we have

$$\begin{split} f_X^\star &= \inf\{f(\boldsymbol{x}): \boldsymbol{x} \text{ in } X\} \\ &= \sup\{\gamma: f(\boldsymbol{x}) \geq \gamma \text{ for all } \boldsymbol{x} \text{ in } X\} \\ &= \sup\{\gamma: f - \gamma \text{ is nonnegative over } X\}. \end{split}$$

How do we test if f (or $f - \gamma$) is nonnegative over X?

- This is usually NP-Hard, even for $X = \mathbb{R}^n$.
- lacktriangle Desire sufficient conditions that f is nonnegative over X.
- Different sufficient conditions for different function classes.

Signomials and polynomials

Caltech

Parameters α_i in \mathbb{R}^n , c_i in \mathbb{R} .

$$oldsymbol{x} \mapsto \sum_{i=1}^m c_i \exp(oldsymbol{lpha}_i \cdot oldsymbol{x})$$

Uncountable basis.

Complexity measured by number of terms m.

Nonnegativity certificates

SAGE

Parameters α_i in \mathbb{N}^n , c_i in \mathbb{R} .

$$x \mapsto \sum_{i=1}^m c_i \prod_{j=1}^n x_j^{\alpha_{ij}}$$

Countable basis.

Complexity measured by degree $\max_{ij} \alpha_{ij}$.

Select nonnegativity certificates

- SOS
- SONC
- SAGE

The signomial nonnegativity cones

Write $f = \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$ to mean $f(\boldsymbol{x}) = \sum_{i=1}^{m} c_i \exp(\boldsymbol{\alpha}_i \cdot \boldsymbol{x})$.

The signomial nonnegativity cones

Caltech

Write
$$f = \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$$
 to mean $f(\boldsymbol{x}) = \sum_{i=1}^m c_i \exp(\boldsymbol{\alpha}_i \cdot \boldsymbol{x})$.

Define the nonnegativity cone for signomials over exponents α :

$$C_{\text{NNS}}(\boldsymbol{\alpha}) \doteq \{ \boldsymbol{c} : \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text{ for all } \boldsymbol{x} \text{ in } \mathbb{R}^n \}.$$

The signomial nonnegativity cones

Write $f = \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$ to mean $f(\boldsymbol{x}) = \sum_{i=1}^{m} c_i \exp(\boldsymbol{\alpha}_i \cdot \boldsymbol{x})$.

Define the nonnegativity cone for signomials over exponents α :

$$C_{\text{NNS}}(\boldsymbol{\alpha}) \doteq \{ \boldsymbol{c} : \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text{ for all } \boldsymbol{x} \text{ in } \mathbb{R}^n \}.$$

These nonnegativity cones exhibit affine-invariance:

$$C_{\text{NNS}}(\boldsymbol{\alpha}) = C_{\text{NNS}}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{u}) = C_{\text{NNS}}(\boldsymbol{\alpha}\boldsymbol{V})$$

for all row vectors u in \mathbb{R}^n and all invertible V in $\mathbb{R}^{n\times n}$.

Background X-SAGE signomials X-SAGE polynomials Discussion

SAGE certificates for signomials

Caltech

Definition. A nonnegative signomial with at most one negative coefficient is an "AM/GM Exponential," or an "AGE function."

SAGE certificates for signomials

Caltech

Definition. A nonnegative signomial with at most one negative coefficient is an "AM/GM Exponential," or an "AGE function."

For each k, have cone of coefficients for AM/GM Exponentials

$$C_{\text{AGE}}(\boldsymbol{\alpha}, k) \doteq \{ \boldsymbol{c} : \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0} \text{ and } \boldsymbol{c} \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}) \}.$$

SAGE certificates for signomials

Caltech

Definition. A nonnegative signomial with at most one negative coefficient is an "AM/GM Exponential," or an "AGE function."

For each k, have cone of coefficients for AM/GM Exponentials

$$C_{\text{AGE}}(\boldsymbol{\alpha},k) \doteq \{\boldsymbol{c} : \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0} \text{ and } \boldsymbol{c} \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha})\}.$$

We take sums of AGE cones to obtain the SAGE cone

$$C_{\mathrm{SAGE}}(\boldsymbol{\alpha}) = \sum_{k=1}^{m} C_{\mathrm{AGE}}(\boldsymbol{\alpha}, k).$$

SAGE certificates for signomials

Caltech

Definition. A nonnegative signomial with at most one negative coefficient is an "AM/GM Exponential," or an "AGE function."

For each k, have cone of coefficients for AM/GM Exponentials

$$C_{\text{AGE}}(\boldsymbol{\alpha}, k) \doteq \{ \boldsymbol{c} : \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0} \text{ and } \boldsymbol{c} \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}) \}.$$

We take sums of AGE cones to obtain the SAGE cone

$$C_{\mathrm{SAGE}}(\boldsymbol{\alpha}) = \sum_{k=1}^{m} C_{\mathrm{AGE}}(\boldsymbol{\alpha}, k).$$

Crucial question: How to represent the AGE cones?

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$.

Does c belong to $C_{\mathrm{NNS}}(\alpha)$?

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$.

Does c belong to $C_{\rm NNS}(\alpha)$?

Appeal to affine invariance of $C_{\rm NNS}(\alpha)$, and rearrange terms:

$$\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \ge 0 \Leftrightarrow \operatorname{Sig}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c})(\boldsymbol{x}) \ge 0$$

 $\operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \ge -c_k.$

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$.

Does c belong to $C_{\text{NNS}}(\alpha)$?

Appeal to affine invariance of $C_{\text{NNS}}(\alpha)$, and rearrange terms:

$$\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \iff \operatorname{Sig}(\boldsymbol{\alpha} - 1\boldsymbol{\alpha}_k, \boldsymbol{c})(\boldsymbol{x}) \geq 0$$

 $\operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - 1\boldsymbol{\alpha}_k, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \geq -c_k.$

Appeal to convex duality. The nonnegativity condition

$$\inf_{\boldsymbol{x} \in \mathbb{R}^n} \operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \ge -c_k$$

holds if and only if

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$.

Does c belong to $C_{\text{NNS}}(\alpha)$?

Appeal to affine invariance of $C_{\text{NNS}}(\alpha)$, and rearrange terms:

$$\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \ge 0 \Leftrightarrow \operatorname{Sig}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c})(\boldsymbol{x}) \ge 0$$

 $\operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \ge -c_k.$

Appeal to convex duality. The nonnegativity condition

$$\inf_{\boldsymbol{x} \in \mathbb{R}^n} \operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \boldsymbol{1}\boldsymbol{\alpha}_k, \, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \ge -c_k$$

holds if and only if there exists u in \mathbb{R}^{m-1} satisfying

Caltech

6

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$.

Does
$$c$$
 belong to $C_{\text{NNS}}(\alpha)$?

Appeal to affine invariance of $C_{\rm NNS}(\alpha)$, and rearrange terms:

$$\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \ge 0 \Leftrightarrow \operatorname{Sig}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c})(\boldsymbol{x}) \ge 0$$

 $\operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \ge -c_k.$

Appeal to convex duality. The nonnegativity condition

$$\inf_{\boldsymbol{x} \in \mathbb{R}^n} \operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \boldsymbol{1}\boldsymbol{\alpha}_k, \, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \ge -c_k$$

holds **if and only if** there exists $oldsymbol{
u}$ in \mathbb{R}^{m-1} satisfying

$$D(\boldsymbol{\nu}, \boldsymbol{c}_{\backslash k}) - \boldsymbol{\nu}^{\intercal} \mathbf{1} \leq c_k \text{ and } [\boldsymbol{\alpha}_{\backslash k} - \mathbf{1} \boldsymbol{\alpha}_k] \boldsymbol{\nu} = \mathbf{0}.$$

Background X-SAGE signomials X-SAGE polynomials Discussion

SAGE certificates for signomials

Caltech

The preceding slides established that

$$\begin{split} C_{\mathrm{AGE}}(\boldsymbol{\alpha},k) = \{ \boldsymbol{c} : & \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0}, \text{ and there exists } \boldsymbol{\nu} \text{ in } \mathbb{R}^{m-1} \text{ satisfying} \\ & D(\boldsymbol{\nu},\boldsymbol{c}_{\backslash k}) - \boldsymbol{\nu}^{\mathsf{T}} \boldsymbol{1} \leq c_k \text{ and } [\boldsymbol{\alpha}_{\backslash k} - \boldsymbol{1}\boldsymbol{\alpha}_k]^{\mathsf{T}} \boldsymbol{\nu} = \boldsymbol{0} \}. \end{split}$$

This allows us to optimize over

$$C_{\mathrm{SAGE}}(\boldsymbol{\alpha}) = \sum_{k=1}^{m} C_{\mathrm{AGE}}(\boldsymbol{\alpha}, k)$$

with a convex program of size $O(m^2)$.

Handling conditional nonnegativity

Caltech

Want sufficient conditions that f is nonnegative over X.

Typical approach: search for a function $\mathcal L$ for which we can prove

$$0 \le \mathcal{L}(\boldsymbol{x})$$
 for all \boldsymbol{x} in \mathbb{R}^n and $\mathcal{L}(\boldsymbol{x}) \le f(\boldsymbol{x})$ for all \boldsymbol{x} in X

Background X-SAGE signomials X-SAGE polynomials Discussion

Handling conditional nonnegativity

Caltech

Want sufficient conditions that f is nonnegative over X.

Typical approach: search for a function \mathcal{L} for which we can prove

$$0 \le \mathcal{L}(\boldsymbol{x})$$
 for all \boldsymbol{x} in \mathbb{R}^n and $\mathcal{L}(\boldsymbol{x}) \le f(\boldsymbol{x})$ for all \boldsymbol{x} in X

Concretely, we fix a representation $X = \{x : g(x) \ge 0\}$, and use

$$\mathcal{L} = f - \sum_{i} \lambda_{i} g_{i}$$

with dual variables $\lambda_i : \mathbb{R}^n \to \mathbb{R}_+$. Apply your favorite (tractable!) proof system to ensure that λ_i and \mathcal{L} are nonnegative functions.

Background X-SAGE signomials X-SAGE polynomials Discussion

Handling conditional nonnegativity

Caltech

Want sufficient conditions that f is nonnegative over X.

Typical approach: search for a function \mathcal{L} for which we can prove

$$0 \le \mathcal{L}(\boldsymbol{x})$$
 for all \boldsymbol{x} in \mathbb{R}^n and $\mathcal{L}(\boldsymbol{x}) \le f(\boldsymbol{x})$ for all \boldsymbol{x} in X

Concretely, we fix a representation $X = \{x : g(x) \ge 0\}$, and use

$$\mathcal{L} = f - \sum_{i} \lambda_{i} g_{i}$$

with dual variables $\lambda_i : \mathbb{R}^n \to \mathbb{R}_+$. Apply your favorite (tractable!) proof system to ensure that λ_i and \mathcal{L} are nonnegative functions.

We will be taking a different route.

$X\operatorname{\mathsf{-SAGE}}$ Signomials

The signomial X-nonnegativity cones

Caltech

Define the X-nonnegativity cone for signomials over exponents α :

$$C_{\mathrm{NNS}}(\boldsymbol{\alpha}, X) \doteq \{ \boldsymbol{c} : \mathrm{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text{ for all } \boldsymbol{x} \text{ in } X \}.$$

The signomial X-nonnegativity cones

Caltech

Define the X-nonnegativity cone for signomials over exponents α :

$$C_{\text{NNS}}(\boldsymbol{\alpha}, X) \doteq \{ \boldsymbol{c} : \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text{ for all } \boldsymbol{x} \text{ in } X \}.$$

These nonnegativity cones exhibit affine-invariance:

$$C_{\text{NNS}}(\boldsymbol{\alpha}, X) = C_{\text{NNS}}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{u}, X) = C_{\text{NNS}}(\boldsymbol{\alpha}\boldsymbol{V}, \boldsymbol{V}^{-1}X)$$

for all row vectors u in \mathbb{R}^n , and all invertible V in $\mathbb{R}^{n\times n}$.

X-SAGE certificates for signomials

Caltech

Definition. A signomial which is nonnegative over X and which has at most one negative coefficient is called an "X-AGE function."

For each k, have cone of coefficients for X-AGE functions

$$C_{\text{AGE}}(\boldsymbol{\alpha}, k, X) \doteq \{ \boldsymbol{c} : \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0} \text{ and } \boldsymbol{c} \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}, X) \}.$$

X-SAGE certificates for signomials

Caltech

Definition. A signomial which is nonnegative over X and which has at most one negative coefficient is called an "X-AGE function."

For each k, have cone of coefficients for X-AGE functions

$$C_{\text{AGE}}(\boldsymbol{\alpha}, k, X) \doteq \{ \boldsymbol{c} : \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0} \text{ and } \boldsymbol{c} \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}, X) \}.$$

We take sums of X-AGE cones to obtain the X-SAGE cone

$$C_{\text{SAGE}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^{m} C_{\text{AGE}}(\boldsymbol{\alpha}, k, X).$$

Background X-SAGE signomials X-SAGE polynomials Discussion

X-SAGE certificates for signomials

Caltech

Definition. A signomial which is nonnegative over X and which has at most one negative coefficient is called an "X-AGE function."

For each k, have cone of coefficients for X-AGE functions

$$C_{\text{AGE}}(\boldsymbol{\alpha}, k, X) \doteq \{ \boldsymbol{c} : \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0} \text{ and } \boldsymbol{c} \text{ in } C_{\text{NNS}}(\boldsymbol{\alpha}, X) \}.$$

We take sums of X-AGE cones to obtain the X-SAGE cone

$$C_{\text{SAGE}}(\boldsymbol{\alpha}, X) = \sum_{k=1}^{m} C_{\text{AGE}}(\boldsymbol{\alpha}, k, X).$$

This definition assumes nothing of the set X!

Background X-SAGE signomials X-SAGE polynomials Discussion

Basic properties

Caltech

Conditional SAGE cones ...

are order-reversing in the set-argument.

If
$$X_2 \subset X_1$$
, then $C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, X_1) \subset C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, X_2)$.

Basic properties

Conditional SAGE cones

are order-reversing in the set-argument.

If
$$X_2 \subset X_1$$
, then $C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, X_1) \subset C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, X_2)$.

preserve sparsity.

$$c \in C_{\text{SAGE}}(\alpha, X) \Leftrightarrow c \in \sum_{i:c_i < 0} C_{\text{AGE}}(\alpha, i, X).$$

Basic properties

Conditional SAGE cones ...

are order-reversing in the set-argument.

If
$$X_2 \subset X_1$$
, then $C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, X_1) \subset C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, X_2)$.

preserve sparsity.

$$c \in C_{\text{SAGE}}(\alpha, X) \Leftrightarrow c \in \sum_{i:c_i < 0} C_{\text{AGE}}(\alpha, i, X).$$

respect boundedness of the set-argument.

$$\sup\{\gamma: f - \gamma \text{ is } X\text{-SAGE}\} > -\infty \text{ for all bounded } X.$$

Basic properties

Conditional SAGE cones

are order-reversing in the set-argument.

If
$$X_2 \subset X_1$$
, then $C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, X_1) \subset C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, X_2)$.

preserve sparsity.

$$c \in C_{\text{SAGE}}(\alpha, X) \Leftrightarrow c \in \sum_{i:c_i < 0} C_{\text{AGE}}(\alpha, i, X).$$

respect boundedness of the set-argument.

$$\sup\{\gamma: f - \gamma \text{ is } X\text{-SAGE}\} > -\infty \text{ for all bounded } X.$$

are tractable whenever X is a tractable convex set.

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Appeal to affine invariance of $C_{\text{NNS}}(\alpha, X)$, and rearrange terms:

$$\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \ge 0 \Leftrightarrow \operatorname{Sig}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c})(\boldsymbol{x}) \ge 0$$

 $\operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \ge -c_k.$

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Appeal to affine invariance of $C_{\text{NNS}}(\alpha, X)$, and rearrange terms:

$$\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \Leftrightarrow \operatorname{Sig}(\boldsymbol{\alpha} - 1\boldsymbol{\alpha}_k, \boldsymbol{c})(\boldsymbol{x}) \geq 0$$

 $\operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - 1\boldsymbol{\alpha}_k, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \geq -c_k.$

Appeal to convex duality. The nonnegativity condition

$$\inf \left\{ \operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) : \boldsymbol{x} \text{ in } X \right\} \ge -c_k$$

holds if and only if

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Appeal to affine invariance of $C_{\text{NNS}}(\alpha, X)$, and rearrange terms:

$$\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \Leftrightarrow \operatorname{Sig}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c})(\boldsymbol{x}) \geq 0$$

 $\operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \geq -c_k.$

Appeal to convex duality. The nonnegativity condition

$$\inf \left\{ \operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) : \boldsymbol{x} \text{ in } X \right\} \geq -c_k$$

holds if and only if there exists ν in \mathbb{R}^{m-1} , λ in \mathbb{R}^n satisfying

Caltech

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq 0$. Convex $X \subset \mathbb{R}^n$.

Appeal to affine invariance of $C_{\text{NNS}}(\alpha, X)$, and rearrange terms:

$$\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \iff \operatorname{Sig}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k, \, \boldsymbol{c})(\boldsymbol{x}) \geq 0$$

 $\operatorname{Sig}(\boldsymbol{\alpha}_{\setminus k} - \mathbf{1}\boldsymbol{\alpha}_k, \, \boldsymbol{c}_{\setminus k})(\boldsymbol{x}) \geq -c_k.$

Appeal to convex duality. The nonnegativity condition

$$\inf \left\{ \operatorname{Sig}(\boldsymbol{\alpha}_{\backslash k} - \mathbf{1}\boldsymbol{\alpha}_k, \, \boldsymbol{c}_{\backslash k})(\boldsymbol{x}) \, : \, \boldsymbol{x} \, \operatorname{in} \, X \right\} \ge -c_k$$

holds if and only if there exists u in \mathbb{R}^{m-1} , λ in \mathbb{R}^n satisfying

$$\begin{split} &\sigma_X(\pmb{\lambda}) + D(\pmb{\nu}, \pmb{c}_{\backslash k}) - \pmb{\nu}^\intercal \mathbf{1} \leq c_k, \text{ and} \\ &[\pmb{\alpha}_{\backslash k} - \mathbf{1} \pmb{\alpha}_k]^\intercal \pmb{\nu} + \pmb{\lambda} = \mathbf{0}. \end{split}$$

Caltech

The preceding slides established that when X is convex,

The preceding slides established that when X is convex,

$$\begin{split} C_{\mathrm{AGE}}(\boldsymbol{\alpha},k,X) &= \{ \boldsymbol{c} : \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0}, \text{ and there exist } \boldsymbol{\nu} \text{ in } \mathbb{R}^{m-1}, \ \boldsymbol{\lambda} \text{ in } \mathbb{R}^n \\ & \text{satisfying } [\boldsymbol{\alpha}_{\backslash k} - \boldsymbol{1}\boldsymbol{\alpha}_k]^\mathsf{T}\boldsymbol{\nu} + \boldsymbol{\lambda} = \boldsymbol{0}, \\ & \text{and } \sigma_X(\boldsymbol{\lambda}) + D(\boldsymbol{\nu},\boldsymbol{c}_{\backslash k}) - \boldsymbol{\nu}^\mathsf{T}\boldsymbol{1} \leq c_k \}. \end{split}$$

For implementations, suppose $X = \{x : Ax + b \in K\}$.

The preceding slides established that when X is convex,

$$\begin{split} C_{\mathrm{AGE}}(\boldsymbol{\alpha},k,X) &= \{ \boldsymbol{c} : \boldsymbol{c}_{\backslash k} \geq \boldsymbol{0}, \text{ and there exist } \boldsymbol{\nu} \text{ in } \mathbb{R}^{m-1}, \ \boldsymbol{\lambda} \text{ in } \mathbb{R}^n \\ & \text{satisfying } [\boldsymbol{\alpha}_{\backslash k} - \mathbf{1}\boldsymbol{\alpha}_k]^\mathsf{T}\boldsymbol{\nu} + \boldsymbol{\lambda} = \mathbf{0}, \\ & \text{and } \sigma_X(\boldsymbol{\lambda}) + D(\boldsymbol{\nu},\boldsymbol{c}_{\backslash k}) - \boldsymbol{\nu}^\mathsf{T}\mathbf{1} \leq c_k \}. \end{split}$$

For implementations, suppose $X = \{x : Ax + b \in K\}$. Then

$$\sigma_X(\boldsymbol{\lambda}) \doteq \sup_{\boldsymbol{x} \in X} \boldsymbol{\lambda}^{\mathsf{T}} \boldsymbol{x} \leq \inf\{ \boldsymbol{b}^{\mathsf{T}} \boldsymbol{\eta} : \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\eta} + \boldsymbol{\lambda} = \boldsymbol{0}, \ \boldsymbol{\eta} \in K^{\dagger} \},$$

and equality holds generically.

Dual SAGE relaxations

Caltech

Let $f = \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$ have $\boldsymbol{\alpha}_1 = \boldsymbol{0}$.

The primal and dual SAGE relaxations for f_X^\star are

$$\begin{split} f_X^{\mathrm{SAGE}} &= \sup\{\, \gamma \,:\, \boldsymbol{c} - \gamma(1,0,\ldots,0) \text{ in } C_{\mathrm{SAGE}}(\boldsymbol{\alpha},X) \} \\ &= \inf\{\boldsymbol{c}^{\mathsf{T}}\boldsymbol{v} \,:\, v_1 = 1 \text{ and } \boldsymbol{v} \text{ in } C_{\mathrm{SAGE}}(\boldsymbol{\alpha},X)^{\dagger} \}. \end{split}$$

Let $f = \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$ have $\boldsymbol{\alpha}_1 = \boldsymbol{0}$.

The primal and dual SAGE relaxations for f_X^\star are

$$f_X^{\text{SAGE}} = \sup\{ \gamma : \boldsymbol{c} - \gamma(1, 0, \dots, 0) \text{ in } C_{\text{SAGE}}(\boldsymbol{\alpha}, X) \}$$
$$= \inf\{ \boldsymbol{c}^{\mathsf{T}} \boldsymbol{v} : v_1 = 1 \text{ and } \boldsymbol{v} \text{ in } C_{\text{SAGE}}(\boldsymbol{\alpha}, X)^{\dagger} \}.$$

When X is convex, the dual X-SAGE cone can be expressed as

$$C_{\mathrm{SAGE}}(oldsymbol{lpha},X)^\dagger = \mathrm{cl}\{oldsymbol{v}: \mathrm{some}~oldsymbol{z}_1,\ldots,oldsymbol{z}_m~\mathrm{in}~\mathbb{R}^n~\mathrm{satisfy} \ v_k\log(oldsymbol{v}/v_k) \geq [oldsymbol{lpha}-\mathbf{1}oldsymbol{lpha}_k]oldsymbol{z}_k \ \mathrm{and}~oldsymbol{z}_k/v_k \in X~\mathrm{for~all}~k~\mathrm{in}~[m]\}.$$

Dual SAGE relaxations

Caltech

Let $f = \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$ have $\boldsymbol{\alpha}_1 = \boldsymbol{0}$.

The primal and dual SAGE relaxations for f_X^\star are

$$f_X^{\text{SAGE}} = \sup\{ \gamma : \boldsymbol{c} - \gamma(1, 0, \dots, 0) \text{ in } C_{\text{SAGE}}(\boldsymbol{\alpha}, X) \}$$
$$= \inf\{ \boldsymbol{c}^{\mathsf{T}} \boldsymbol{v} : v_1 = 1 \text{ and } \boldsymbol{v} \text{ in } C_{\text{SAGE}}(\boldsymbol{\alpha}, X)^{\dagger} \}.$$

When X is convex, the dual X-SAGE cone can be expressed as

$$C_{\mathrm{SAGE}}(oldsymbol{lpha},X)^\dagger = \mathrm{cl}\{oldsymbol{v}: \mathrm{some} \ oldsymbol{z}_1,\dots,oldsymbol{z}_m \ \mathrm{in} \ \mathbb{R}^n \ \mathrm{satisfy}$$
 $v_k \log(oldsymbol{v}/v_k) \geq [oldsymbol{lpha} - \mathbf{1}oldsymbol{lpha}_k] oldsymbol{z}_k \ \mathrm{and} \ oldsymbol{z}_k/v_k \in X \ \mathrm{for \ all} \ k \ \mathrm{in} \ [m]\}.$

Solution recovery? Consider vectors $x_k = z_k/v_k$ for k in [m].

Background

$$\inf_{\boldsymbol{x} \in \mathbb{R}^3} f(\boldsymbol{x}) \doteq 0.5 \exp(x_1 - x_2) - \exp x_1 - 5 \exp(-x_2)$$
s.t. $100 - \exp(x_2 - x_3) - \exp x_2 - 0.05 \exp(x_1 + x_3) \ge 0$
 $\exp \boldsymbol{x} - (70, 1, 0.5) \ge \boldsymbol{0}$
 $(150, 30, 21) - \exp \boldsymbol{x} > \boldsymbol{0}$

$$\inf_{\boldsymbol{x} \in \mathbb{R}^3} f(\boldsymbol{x}) \doteq 0.5 \exp(x_1 - x_2) - \exp x_1 - 5 \exp(-x_2)$$
s.t. $100 - \exp(x_2 - x_3) - \exp x_2 - 0.05 \exp(x_1 + x_3) \ge 0$
 $\exp \boldsymbol{x} - (70, 1, 0.5) \ge \boldsymbol{0}$
 $(150, 30, 21) - \exp \boldsymbol{x} > \boldsymbol{0}$

Compute
$$f_X^{\text{SAGE}} = -147.85713 \le f_X^{\star}$$
, recover feasible ${m x}^{\star} = (5.01063529, \ 3.40119660, -0.48450710)$ satisfying $f({m x}^{\star}) = -147.66666$. This is actually optimal!

$X\operatorname{\mathsf{-SAGE}}$ polynomials

Geometric-form signomials

Caltech

If x > 0, then

$$x \mapsto \sum_{i=1}^m c_i x^{\alpha_i}$$

is defined for any real α_i .

For $X \subset \mathbb{R}^n_{++}$ and α in $\mathbb{R}^{m \times n}$, define

$$\mathsf{C}_{\mathsf{NNS}}^{\mathsf{GEOM}}(\boldsymbol{\alpha},X) = \{ \boldsymbol{c} : \sum_{i=1}^m c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \text{ for all } \boldsymbol{x} \text{ in } X \}.$$

Geometric-form signomials

Caltech

If x > 0, then

$$x \mapsto \sum_{i=1}^m c_i x^{\alpha_i}$$

is defined for any real α_i .

For $X \subset \mathbb{R}^n_{++}$ and α in $\mathbb{R}^{m \times n}$, define

$$\mathsf{C}_{\mathsf{NNS}}^{\mathsf{GEOM}}(\boldsymbol{\alpha},X) = \{ \boldsymbol{c} : \sum_{i=1}^m c_i \boldsymbol{x}^{\boldsymbol{\alpha}_i} \geq 0 \text{ for all } \boldsymbol{x} \text{ in } X \}.$$

From a change of variables $x\mapsto \exp y$, we have

$$\mathsf{C}^{\mathsf{GEOM}}_{\mathsf{NNS}}(\boldsymbol{lpha},X) = C_{\mathsf{NNS}}(\boldsymbol{lpha},\log X).$$

Geometric-form signomials

Caltech

If x > 0, then

$$x \mapsto \sum_{i=1}^m c_i x^{\alpha_i}$$

is defined for any real α_i .

For $X \subset \mathbb{R}^n_{++}$ and α in $\mathbb{R}^{m \times n}$, define

$$\mathsf{C}^{\mathsf{GEOM}}_{\mathsf{NNS}}(\boldsymbol{lpha},X) = \{ \boldsymbol{c} \, : \, \sum_{i=1}^m c_i \boldsymbol{x}^{\boldsymbol{lpha}_i} \geq 0 \text{ for all } \boldsymbol{x} \text{ in } X \}.$$

From a change of variables $x\mapsto \exp y$, we have

$$\mathsf{C}_{\mathsf{NNS}}^{\mathsf{GEOM}}(\boldsymbol{\alpha},X) = C_{\mathsf{NNS}}(\boldsymbol{\alpha},\log X).$$

Thus we naturally define

$$\mathsf{C}_{\mathsf{SAGE}}^{\mathsf{GEOM}}(\boldsymbol{\alpha}, X) \doteq C_{\mathsf{SAGE}}(\boldsymbol{\alpha}, \log X).$$

Fix α in $\mathbb{N}^{m \times n}$. Write $f = \text{Poly}(\alpha, c)$ to mean

$$f(m{x}) = \sum_{i=1}^m c_i m{x}^{m{lpha}_i}, \quad ext{where} \quad m{x}^{m{lpha}_i} \doteq \prod_{j=1}^n x_j^{lpha_{ij}}.$$

The polynomial X-nonnegativity cones

Caltech

Fix α in $\mathbb{N}^{m \times n}$. Write $f = \text{Poly}(\alpha, c)$ to mean

$$f(m{x}) = \sum_{i=1}^m c_i m{x}^{m{lpha}_i}, \quad ext{ where } \quad m{x}^{m{lpha}_i} \doteq \prod_{j=1}^n x_j^{lpha_{ij}}.$$

The matrix lpha and the set X induce a nonnegativity cone

$$C_{\mathrm{NNP}}(\boldsymbol{\alpha}, X) = \{ \boldsymbol{c} : \mathrm{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text{ for all } \boldsymbol{x} \text{ in } X \}.$$

X-SAGE certificates for polynomials

Caltech

We call $f = \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ an X-AGE polynomial if

- $oldsymbol{1}$ $oldsymbol{c}$ belongs to $C_{\mathrm{NNP}}(oldsymbol{lpha},X)$, and
- 2 at most one "i" has $c_i x^{\alpha_i} < 0$ for some $x \in X$.

X-SAGE certificates for polynomials

Caltech

We call $f = Poly(\boldsymbol{\alpha}, \boldsymbol{c})$ an X-AGE polynomial if

- $oldsymbol{1}$ $oldsymbol{c}$ belongs to $C_{\mathrm{NNP}}(oldsymbol{lpha},X)$, and
- **2** at most one "i" has $c_i x^{\alpha_i} < 0$ for some $x \in X$.

In conic form, we can express $C_{\mathrm{AGE}}^{\mathrm{POLY}}(oldsymbol{lpha},i,X) =$

$$\begin{aligned} \{ \boldsymbol{c} : \ \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) &\geq 0 \ \text{for all } \boldsymbol{x} \ \text{in } X, \\ c_j &\geq 0 \ \text{if } \ j \neq i \ \text{and } \boldsymbol{x}^{\boldsymbol{\alpha}_j} > 0 \ \text{for some } \boldsymbol{x} \ \text{in } X, \\ c_i &\leq 0 \ \text{if } \ j \neq i \ \text{and } \boldsymbol{x}^{\boldsymbol{\alpha}_j} < 0 \ \text{for some } \boldsymbol{x} \ \text{in } X \ \}. \end{aligned}$$

X-SAGE certificates for polynomials

Caltech

We call $f = \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ an X-AGE polynomial if

- $oldsymbol{1}$ $oldsymbol{c}$ belongs to $C_{\mathrm{NNP}}(oldsymbol{lpha},X)$, and
- 2 at most one "i" has $c_i x^{\alpha_i} < 0$ for some $x \in X$.

In conic form, we can express $C_{\mathrm{AGE}}^{\mathrm{POLY}}(\pmb{lpha},i,X) =$

$$\begin{aligned} \{ \boldsymbol{c} : \ \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) &\geq 0 \ \text{for all } \boldsymbol{x} \ \text{in } X, \\ c_j &\geq 0 \ \text{if} \ \ j \neq i \ \text{and} \ \boldsymbol{x}^{\boldsymbol{\alpha}_j} > 0 \ \text{for some} \ \boldsymbol{x} \ \text{in } X, \\ c_j &\leq 0 \ \text{if} \ \ j \neq i \ \text{and} \ \boldsymbol{x}^{\boldsymbol{\alpha}_j} < 0 \ \text{for some} \ \boldsymbol{x} \ \text{in } X \ \}. \end{aligned}$$

Define the X-SAGE polynomial cone in the natural way:

$$C_{\text{SAGE}}(\boldsymbol{\alpha}, X) = \sum_{i=1}^{m} C_{\text{AGE}}^{\text{POLY}}(\boldsymbol{\alpha}, i, X).$$

Consider the case when X is contained within a single orthant.

W.I.o.g, take $X \subset \mathbb{R}^n_+$.

Representing $C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha},X)$

Caltech

Consider the case when X is contained within a single orthant.

W.l.o.g, take $X \subset \mathbb{R}^n_+$.

If $X \subset \mathbb{R}^n_+$ is representable as

$$X = \operatorname{cl}\{\boldsymbol{x}: \boldsymbol{0} < \boldsymbol{x}, H(\boldsymbol{x}) \leq \boldsymbol{1}\}$$

for a continuous map $H: \mathbb{R}^n_{++} \to \mathbb{R}^r$,

Representing $C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha},X)$

Caltech

Consider the case when X is contained within a single orthant.

W.I.o.g, take $X \subset \mathbb{R}^n_+$.

If $X \subset \mathbb{R}^n_+$ is representable as

$$X = cl\{x : 0 < x, H(x) \le 1\}$$

for a continuous map $H: \mathbb{R}^n_{++} \to \mathbb{R}^r$, then for

$$Y = \{ \boldsymbol{y} : H(\exp \boldsymbol{y}) \le \mathbf{1} \},$$

we have

$$C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha}, X) = C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, Y).$$

Representing $C_{\mathrm{SAGE}}^{\mathrm{POLY}}(oldsymbol{lpha},X)$

Caltech

Define the set of signomial-representative coefficient vectors

$$\mathrm{SR}(oldsymbol{lpha}, oldsymbol{c}) = \{ \hat{oldsymbol{c}} : \hat{c}_i = c_i \text{ whenever } oldsymbol{lpha}_i \text{ is in } 2\mathbb{N}^n, \text{ and}$$

$$\hat{c}_i \leq -|c_i| \text{ whenever } oldsymbol{lpha}_i \text{ is not in } 2\mathbb{N}^n \}.$$

Representing $C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha},X)$

Caltech

Define the set of signomial-representative coefficient vectors

$$\mathrm{SR}(\boldsymbol{\alpha}, \boldsymbol{c}) = \{ \hat{\boldsymbol{c}} : \hat{c}_i = c_i \text{ whenever } \boldsymbol{\alpha}_i \text{ is in } 2\mathbb{N}^n, \text{ and } \hat{c}_i \leq -|c_i| \text{ whenever } \boldsymbol{\alpha}_i \text{ is not in } 2\mathbb{N}^n \}.$$

If X admits the representation

$$X = cl\{x : 0 < |x|, H(|x|) \le 1\}$$

for a continuous map $H: \mathbb{R}^n_{++} \to \mathbb{R}^r$,

Representing $C_{\mathrm{SAGE}}^{\mathrm{POLY}}(oldsymbol{lpha},X)$

Caltech

Define the set of signomial-representative coefficient vectors

$$\mathrm{SR}(\boldsymbol{\alpha}, \boldsymbol{c}) = \{ \hat{\boldsymbol{c}} : \hat{c}_i = c_i \text{ whenever } \boldsymbol{\alpha}_i \text{ is in } 2\mathbb{N}^n, \text{ and } \hat{c}_i \leq -|c_i| \text{ whenever } \boldsymbol{\alpha}_i \text{ is not in } 2\mathbb{N}^n \}.$$

If X admits the representation

$$X = cl\{x : 0 < |x|, H(|x|) \le 1\}$$

for a continuous map $H:\mathbb{R}^n_{++}\to\mathbb{R}^r$, then for

$$Y = \{ \boldsymbol{y} : H(\exp \boldsymbol{y}) \le \mathbf{1} \},$$

we have

$$C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha}, X) = \{ \boldsymbol{c} : \mathrm{SR}(\boldsymbol{\alpha}, \boldsymbol{c}) \cap C_{\mathrm{SAGE}}(\boldsymbol{\alpha}, Y) \text{ is nonempty } \}.$$

How can we formulate a problem to appeal to previous theorems?

Examples include

$$-a \le x_j \le a$$
, $\|\boldsymbol{x}\|_p \le a$, $|\boldsymbol{x}^{\alpha_i}| \ge a$, and $x_j^2 = a$

where a > 0 is a fixed constant.

A polynomial example

Caltech

Minimize

$$f(\boldsymbol{x}) = -64 \sum_{i=1}^{7} \prod_{j \in [7] \setminus \{i\}} x_j$$

over the box $X = [-1/2, 1/2]^7$.

A polynomial example

Caltech

Minimize

$$f(\boldsymbol{x}) = -64 \sum_{i=1}^{7} \prod_{j \in [7] \setminus \{i\}} x_j$$

over the box $X = [-1/2, 1/2]^7$.

Symbolically, we have

- $f_i(x) \doteq 1 64 \prod_{j \neq i} x_i$ are X-AGE, hence $f_X^{\text{SAGE}} \geq -7$,
- \bullet and f(1/2) = f(-1/2) = -7.

Minimize

$$f(\boldsymbol{x}) = -64 \sum_{i=1}^{7} \prod_{j \in [7] \setminus \{i\}} x_j$$

over the box $X = [-1/2, 1/2]^7$.

Symbolically, we have

- $f_i(\boldsymbol{x}) \doteq 1 64 \prod_{j \neq i} x_i$ are X-AGE, hence $f_X^{\mathrm{SAGE}} \geq -7$,
- \bullet and f(1/2) = f(-1/2) = -7.

For numeric computation (with MOSEK, on a large workstation)

- the X-SAGE relaxation takes 0.01 seconds to solve
- the earliest tight SOS relaxation takes 90 seconds to solve.

Discussion

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Discussion

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Refer to that article for ...

■ Mixed X-SAGE and Lagrangian relaxations.

Discussion

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Refer to that article for ...

- Mixed X-SAGE and Lagrangian relaxations.
- Hierarchies for signomial and polynomial optimization.

Discussion

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Refer to that article for ...

- Mixed X-SAGE and Lagrangian relaxations.
- Hierarchies for signomial and polynomial optimization.
- Twelve explicit examples, and 55+ problems in total.

Discussion

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Refer to that article for ...

- Mixed X-SAGE and Lagrangian relaxations.
- Hierarchies for signomial and polynomial optimization.
- Twelve explicit examples, and 55+ problems in total.
- Detailed solution recovery algorithms.

Discussion

Caltech

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Refer to that article for ...

- Mixed X-SAGE and Lagrangian relaxations.
- Hierarchies for signomial and polynomial optimization.
- Twelve explicit examples, and 55+ problems in total.
- Detailed solution recovery algorithms.

Check out sageopt, the "Gloptipoly3" of SAGE relaxations.

Discussion

Caltech

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Refer to that article for ...

- Mixed X-SAGE and Lagrangian relaxations.
- Hierarchies for signomial and polynomial optimization.
- Twelve explicit examples, and 55+ problems in total.
- Detailed solution recovery algorithms.

Check out sageopt, the "Gloptipoly3" of SAGE relaxations.

Source: https://github.com/rileyjmurray/sageopt/

Discussion

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

Refer to that article for ...

- Mixed X-SAGE and Lagrangian relaxations.
- Hierarchies for signomial and polynomial optimization.
- Twelve explicit examples, and 55+ problems in total.
- Detailed solution recovery algorithms.

Check out sageopt, the "Gloptipoly3" of SAGE relaxations.

- Source: https://github.com/rileyjmurray/sageopt/
- User site: https://rileyjmurray.github.io/sageopt/