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Nonnegativity and optimization

Given a function f : Rn → R and a set X ⊂ Rn, we have

f?X = inf{f(x) : x in X}

= sup{γ : f(x) ≥ γ for all x in X}

= sup{γ : f − γ is nonnegative over X}.

How do we test if f (or f − γ) is nonnegative over X?

This is usually NP-Hard, even for X = Rn.

Desire sufficient conditions that f is nonnegative over X.

Different sufficient conditions for different function classes.

arXiv:1907.00814 Riley Murray 2



Background X-SAGE signomials X-SAGE polynomials Discussion

Signomials and polynomials

Parameters αi in Rn, ci in R.

x 7→
m∑
i=1

ci exp(αi · x)

Uncountable basis.

Complexity measured by
number of terms m.

Nonnegativity certificates

SAGE

Parameters αi in Nn, ci in R.

x 7→
m∑
i=1

ci

n∏
j=1

x
αij

j

Countable basis.

Complexity measured by degree
maxij αij .

Select nonnegativity certificates

SOS

SONC

SAGE
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The signomial nonnegativity cones

Write f = Sig(α, c) to mean f(x) =
∑m

i=1 ci exp(αi · x).

Define the nonnegativity cone for signomials over exponents α:

CNNS(α)
.
= { c : Sig(α, c)(x) ≥ 0 for all x in Rn}.

These nonnegativity cones exhibit affine-invariance:

CNNS(α) = CNNS(α− 1u) = CNNS(αV )

for all row vectors u in Rn and all invertible V in Rn×n.
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SAGE certificates for signomials

Definition. A nonnegative signomial with at most one negative
coefficient is an “AM/GM Exponential,” or an “AGE function.”

For each k, have cone of coefficients for AM/GM Exponentials

CAGE(α, k)
.
= {c : c\k ≥ 0 and c in CNNS(α)}.

We take sums of AGE cones to obtain the SAGE cone

CSAGE(α) =
m∑
k=1

CAGE(α, k).

Crucial question: How to represent the AGE cones?
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The convex duality behind AGE cones

Fix α in Rm×n, and c in Rm satisfying c\k ≥ 0.

Does c belong to CNNS(α)?

Appeal to affine invariance of CNNS(α), and rearrange terms:

Sig(α, c)(x) ≥ 0 ⇔ Sig(α− 1αk, c)(x) ≥ 0

Sig(α\k − 1αk, c\k)(x) ≥ −ck.

Appeal to convex duality. The nonnegativity condition

inf
x∈Rn

Sig(α\k − 1αk, c\k)(x) ≥ −ck

holds if and only if there exists ν in Rm−1 satisfying

D(ν, c\k)− νᵀ1 ≤ ck and [α\k − 1αk]ν = 0.
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SAGE certificates for signomials

The preceding slides established that

CAGE(α, k) = {c : c\k ≥ 0, and there exists ν in Rm−1 satisfying

D(ν, c\k)− νᵀ1 ≤ ck and [α\k − 1αk]
ᵀν = 0}.

This allows us to optimize over

CSAGE(α) =

m∑
k=1

CAGE(α, k)

with a convex program of size O(m2).
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Handling conditional nonnegativity

Want sufficient conditions that f is nonnegative over X.

Typical approach: search for a function L for which we can prove

0 ≤ L(x) for all x in Rn and L(x) ≤ f(x) for all x in X

Concretely, we fix a representation X = {x : g(x) ≥ 0}, and use

L = f −
∑

i λigi

with dual variables λi : Rn → R+. Apply your favorite (tractable!)
proof system to ensure that λi and L are nonnegative functions.

We will be taking a different route.

arXiv:1907.00814 Riley Murray 8
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X-SAGE Signomials

arXiv:1907.00814 Riley Murray 9



Background X-SAGE signomials X-SAGE polynomials Discussion

The signomial X-nonnegativity cones

Define the X-nonnegativity cone for signomials over exponents α:

CNNS(α, X)
.
= { c : Sig(α, c)(x) ≥ 0 for all x in X}.

These nonnegativity cones exhibit affine-invariance:

CNNS(α, X) = CNNS(α− 1u, X) = CNNS(αV ,V
−1X)

for all row vectors u in Rn, and all invertible V in Rn×n.
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X-SAGE certificates for signomials

Definition. A signomial which is nonnegative over X and which has
at most one negative coefficient is called an “X-AGE function.”

For each k, have cone of coefficients for X-AGE functions

CAGE(α, k,X)
.
= {c : c\k ≥ 0 and c in CNNS(α, X)}.

We take sums of X-AGE cones to obtain the X-SAGE cone

CSAGE(α, X) =

m∑
k=1

CAGE(α, k,X).

This definition assumes nothing of the set X!
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Basic properties

Conditional SAGE cones ...

are order-reversing in the set-argument.

If X2 ⊂ X1, then CSAGE(α, X1) ⊂ CSAGE(α, X2).

preserve sparsity.

c ∈ CSAGE(α, X)⇔ c ∈
∑

i:ci<0CAGE(α, i,X).

respect boundedness of the set-argument.

sup{γ : f − γ is X-SAGE} > −∞ for all bounded X.

are tractable whenever X is a tractable convex set.

arXiv:1907.00814 Riley Murray 12
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Representing X-AGE cones

Fix α in Rm×n, and c in Rm satisfying c\k ≥ 0. Convex X ⊂ Rn.

Appeal to affine invariance of CNNS(α, X), and rearrange terms:

Sig(α, c)(x) ≥ 0 ⇔ Sig(α− 1αk, c)(x) ≥ 0

Sig(α\k − 1αk, c\k)(x) ≥ −ck.

Appeal to convex duality. The nonnegativity condition

inf
{
Sig(α\k − 1αk, c\k)(x) : x in X

}
≥ −ck

holds if and only if there exists ν in Rm−1, λ in Rn satisfying

σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck, and

[α\k − 1αk]
ᵀν + λ = 0.

arXiv:1907.00814 Riley Murray 13
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Representing X-AGE cones

The preceding slides established that when X is convex,

CAGE(α, k,X) = {c : c\k ≥ 0, and there exist ν in Rm−1, λ in Rn

satisfying [α\k − 1αk]
ᵀν + λ = 0,

and σX(λ) +D(ν, c\k)− νᵀ1 ≤ ck}.

For implementations, suppose X = {x : Ax+ b ∈ K}. Then

σX(λ)
.
= sup
x∈X

λᵀx ≤ inf{ bᵀη : Aᵀη + λ = 0, η ∈ K†},

and equality holds generically.

arXiv:1907.00814 Riley Murray 14
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Dual SAGE relaxations

Let f = Sig(α, c) have α1 = 0.

The primal and dual SAGE relaxations for f?X are

fSAGE
X = sup{ γ : c− γ(1, 0, . . . , 0) in CSAGE(α, X)}

= inf{cᵀv : v1 = 1 and v in CSAGE(α, X)†}.

When X is convex, the dual X-SAGE cone can be expressed as

CSAGE(α, X)† = cl{v : some z1, . . . ,zm in Rn satisfy

vk log(v/vk) ≥ [α− 1αk]zk

and zk/vk ∈ X for all k in [m]}.

Solution recovery? Consider vectors xk = zk/vk for k in [m].

arXiv:1907.00814 Riley Murray 15
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A Signomial Example

inf
x∈R3

f(x)
.
= 0.5 exp(x1 − x2)− expx1 − 5 exp(−x2)

s.t. 100− exp(x2 − x3)− expx2 − 0.05 exp(x1 + x3) ≥ 0

expx− (70, 1, 0.5) ≥ 0

(150, 30, 21)− expx ≥ 0

Compute fSAGE
X = −147.85713 ≤ f?X , recover feasible

x? = (5.01063529, 3.40119660,−0.48450710)

satisfying f(x?) = −147.66666. This is actually optimal!

arXiv:1907.00814 Riley Murray 16
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X-SAGE polynomials
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Geometric-form signomials

If x > 0, then
x 7→

∑m
i=1 cix

αi

is defined for any real αi.

For X ⊂ Rn++ and α in Rm×n, define

CGEOM
NNS (α, X) = {c :

∑m
i=1 cix

αi ≥ 0 for all x in X}.

From a change of variables x 7→ expy, we have

CGEOM
NNS (α, X) = CNNS(α, logX).

Thus we naturally define

CGEOM
SAGE (α, X)

.
= CSAGE(α, logX).
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The polynomial X-nonnegativity cones

Fix α in Nm×n. Write f = Poly(α, c) to mean

f(x) =

m∑
i=1

cix
αi , where xαi .=

n∏
j=1

x
αij

j .

The matrix α and the set X induce a nonnegativity cone

CNNP(α, X) = {c : Poly(α, c)(x) ≥ 0 for all x in X}.

arXiv:1907.00814 Riley Murray 19
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X-SAGE certificates for polynomials

We call f = Poly(α, c) an X-AGE polynomial if

1 c belongs to CNNP(α, X), and

2 at most one “i” has cix
αi < 0 for some x ∈ X.

In conic form, we can express CPOLY
AGE (α, i,X) =

{c : Poly(α, c)(x) ≥ 0 for all x in X,

cj ≥ 0 if j 6= i and xαj > 0 for some x in X,

cj ≤ 0 if j 6= i and xαj < 0 for some x in X }.

Define the X-SAGE polynomial cone in the natural way:

CSAGE(α, X) =
∑m

i=1C
POLY
AGE (α, i,X).

arXiv:1907.00814 Riley Murray 20
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Representing CPOLY
SAGE (α, X)

Consider the case when X is contained within a single orthant.

W.l.o.g, take X ⊂ Rn+.

If X ⊂ Rn+ is representable as

X = cl{x : 0 < x, H(x) ≤ 1}

for a continuous map H : Rn++ → Rr, then for

Y = {y : H(expy) ≤ 1},

we have
CPOLY
SAGE (α, X) = CSAGE(α, Y ).

arXiv:1907.00814 Riley Murray 21
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Representing CPOLY
SAGE (α, X)

Define the set of signomial-representative coefficient vectors

SR(α, c) = {ĉ : ĉi = ci whenever αi is in 2Nn, and

ĉi ≤ −|ci| whenever αi is not in 2Nn}.

If X admits the representation

X = cl{x : 0 < |x|, H(|x|) ≤ 1}

for a continuous map H : Rn++ → Rr, then for

Y = {y : H(expy) ≤ 1},

we have

CPOLY
SAGE (α, X) = {c : SR(α, c) ∩ CSAGE(α, Y ) is nonempty }.

arXiv:1907.00814 Riley Murray 22
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Working with CPOLY
SAGE (α, X)

How can we formulate a problem to appeal to previous theorems?

Examples include

−a ≤ xj ≤ a, ‖x‖p ≤ a, |xαi | ≥ a, and x2j = a

where a > 0 is a fixed constant.
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A polynomial example

Minimize

f(x) = −64
7∑
i=1

∏
j∈[7]\{i}

xj

over the box X = [−1/2, 1/2]7.

Symbolically, we have

fi(x)
.
= 1− 64

∏
j 6=i xi are X-AGE, hence fSAGE

X ≥ −7,

and f(1/2) = f(−1/2) = −7.

For numeric computation (with MOSEK, on a large workstation)

the X-SAGE relaxation takes 0.01 seconds to solve

the earliest tight SOS relaxation takes 90 seconds to solve.
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Discussion

The content of this presentation was a small fraction of

Signomial and Polynomial Optimization via Relative Entropy and
Partial Dualization

Refer to that article for ...

Mixed X-SAGE and Lagrangian relaxations.

Hierarchies for signomial and polynomial optimization.

Twelve explicit examples, and 55+ problems in total.

Detailed solution recovery algorithms.

Check out sageopt, the “Gloptipoly3” of SAGE relaxations.

Source: https://github.com/rileyjmurray/sageopt/

User site: https://rileyjmurray.github.io/sageopt/
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