Two-player games between polynomial optimizers and semidefinite solvers

Victor Magron, CNRS-LAAS

Joint work with
Jean-Bernard Lasserre (CNRS-LAAS)
Mohab Safey El Din (Sorbonne Université)
SIAM AG, Bern, 11 July 2019

SDP for Polynomial Optimization

NP-hard NON CONVEX Problem $f^{\star}=\inf f(\mathbf{x})$

Theory

$$
\begin{aligned}
& \text { (Primal) } \\
& \inf \int f d \mu \\
& \text { with } \mu \text { proba } \Rightarrow \quad \text { INFINITE LP }
\end{aligned} \stackrel{\text { with } \quad p-\lambda \geqslant 0}{ }
$$

SDP for Polynomial Optimization

NP-hard NON CONVEX Problem $f^{\star}=\inf f(\mathbf{x})$

Practice
(Primal Relaxation)
moments $\int \mathbf{x}^{\alpha} d \mu$
finite number \Rightarrow SDP
(Dual Strengthening)
$f-\lambda=$ sum of squares
\Leftarrow fixed degree

Lasserre's Hierarchy of CONVEX Problems $f_{d}^{\star} \uparrow f^{*}$ [Lasserre/Parrilo 01]
degree d
n vars
$\Longrightarrow\binom{n+d}{n}$ SDP VARIABLES
Numeric
Solvers
\Longrightarrow Approx Certificate

Success Stories: Lasserre's Hierarchy

Modeling Power: Cast as ∞-dimensional LP over measures

- Static Polynomial Optimization

Optimal Powerflow $n \simeq 10^{3}$ [Josz et al 16]

Roundoff Error $n \simeq 10^{2}$ [Magron et al 17]

\quad Dynamical Polynomial Optimization Regions of attraction [Henrion et al 14]

Reachable sets [Magron et al 19]
APPROXIMATE OptIMIZATION BOUNDS!

Two-player Games: Optimizers vs Solvers

Motzkin polynomial sums of squares $=\Sigma$

$$
\begin{gathered}
f=\frac{1}{27}+x^{2} y^{4}+x^{4} y^{2}-x^{2} y^{2} \\
f \geqslant 0 \text { but } f \notin \Sigma
\end{gathered}
$$

Two-player Games: Optimizers vs Solvers

Motzkin polynomial

$$
\begin{aligned}
& \text { sums of squares }=\Sigma \\
& f=\frac{1}{27}+x^{2} y^{4}+x^{4} y^{2}-x^{2} y^{2} \\
& f \geqslant 0 \text { but } f \notin \Sigma \\
& \quad f^{\star}=\min _{(x, y) \in \mathbb{R}^{2}} f(x, y)=0 \text { for }\left|x^{\star}\right|=\left|y^{\star}\right|=\frac{\sqrt{3}}{3}
\end{aligned}
$$

Lasserre's hierarchy:

- order $3 \rightsquigarrow f_{3}^{\star}=-\infty$ unbounded SDP $\Longrightarrow f \notin \Sigma$

Two-player Games: Optimizers vs Solvers

Motzkin polynomial

$$
\begin{aligned}
& \text { sums of squares }=\Sigma \\
& f=\frac{1}{27}+x^{2} y^{4}+x^{4} y^{2}-x^{2} y^{2} \\
& f \geqslant 0 \text { but } f \notin \Sigma \\
& \quad f^{\star}=\min _{(x, y) \in \mathbb{R}^{2}} f(x, y)=0 \text { for }\left|x^{\star}\right|=\left|y^{\star}\right|=\frac{\sqrt{3}}{3}
\end{aligned}
$$

Lasserre's hierarchy:

- order $3 \rightsquigarrow f_{3}^{\star}=-\infty$ unbounded SDP $\Longrightarrow f \notin \Sigma$
- order $4 \rightsquigarrow f_{4}^{\star}=-\infty$

Two-player Games: Optimizers vs Solvers

Motzkin polynomial
sums of squares $=\Sigma$

$$
\begin{gathered}
f=\frac{1}{27}+x^{2} y^{4}+x^{4} y^{2}-x^{2} y^{2} \\
f \geqslant 0 \text { but } f \notin \Sigma
\end{gathered}
$$

$$
f^{\star}=\min _{(x, y) \in \mathbb{R}^{2}} f(x, y)=0 \text { for }\left|x^{\star}\right|=\left|y^{\star}\right|=\frac{\sqrt{3}}{3}
$$

Lasserre's hierarchy:

- order $3 \rightsquigarrow f_{3}^{\star}=-\infty$ unbounded SDP $\Longrightarrow f \notin \Sigma$
- order $4 \rightsquigarrow f_{4}^{\star}=-\infty$
- order $5 \rightsquigarrow f_{5}^{\star} \simeq-0.4$

Two-player Games: Optimizers vs Solvers

Motzkin polynomial
sums of squares $=\Sigma$

$$
\begin{gathered}
f=\frac{1}{27}+x^{2} y^{4}+x^{4} y^{2}-x^{2} y^{2} \\
f \geqslant 0 \text { but } f \notin \Sigma
\end{gathered}
$$

$$
f^{\star}=\min _{(x, y) \in \mathbb{R}^{2}} f(x, y)=0 \text { for }\left|x^{\star}\right|=\left|y^{\star}\right|=\frac{\sqrt{3}}{3}
$$

Lasserre's hierarchy:
■ order $3 \rightsquigarrow f_{3}^{\star}=-\infty$ unbounded SDP $\Longrightarrow f \notin \Sigma$

- order $4 \rightsquigarrow f_{4}^{\star}=-\infty$

■ order $5 \rightsquigarrow f_{5}^{\star} \simeq-0.4$
■ order $8 \rightsquigarrow f_{8}^{\star} \simeq-10^{-8} \oplus$ extraction of x^{\star}, y^{\star} Paradox?!

Two-player Games: Optimizers vs Solvers

Approximate solutions

$(1.00001 a-0.99998 b)^{2}!$

$a^{2}-2 a b+b^{2} \simeq(1.00001 a-0.99998 b)^{2}$
$a^{2}-2 a b+b^{2} \neq 1.0000200001 a^{2}-1.9999799996 a b+0.9999600004 b^{2}$

$$
\simeq \quad \rightarrow \quad=?
$$

SDP for Polynomial Optimization

Optimization Game

Certification Game

Inaccurate SDP do Robust Optimization

$$
f^{\star}=\inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}
$$

Moment matrix $\quad \mathbf{M}_{d}(\mathbf{y})_{\alpha, \beta}=y_{\alpha+\beta}$

Accurate SDP Relaxations

(Primal Relaxation)
(Dual Strengthening)

$$
\begin{array}{rl}
\inf _{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} & \sup \lambda \\
\text { s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 & f-\lambda=\sigma \\
y_{0}=1 & \sigma \in \Sigma_{d}
\end{array}
$$

Inaccurate SDP do Robust Optimization

$$
f^{\star}=\inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}
$$

Moment matrix $\quad \mathbf{M}_{d}(\mathbf{y})_{\alpha, \beta}=y_{\alpha+\beta}$

$$
\mathbf{M}_{d}(\mathbf{y})=\sum_{\alpha} \mathbf{B}_{\alpha} y_{\alpha}
$$

Accurate SDP Relaxations

(Primal Relaxation)

$$
\inf _{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha}
$$

$$
\text { s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0
$$

$$
y_{0}=1
$$

(Dual Strengthening)

$$
\sup \lambda
$$

$f_{\alpha}-\lambda 1_{\alpha=0}=\left\langle\mathbf{B}_{\alpha}, \mathbf{Q}\right\rangle$

$$
\mathrm{Q} \succcurlyeq 0
$$

$\mathrm{Q} \succcurlyeq 0$

Inaccurate SDP do Robust Optimization

$$
f^{\star}=\inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}
$$

Moment matrix $\quad \mathbf{M}_{d}(\mathbf{y})_{\alpha, \beta}=y_{\alpha+\beta}$

$$
\mathbf{M}_{d}(\mathbf{y})=\sum_{\alpha} \mathbf{B}_{\alpha} y_{\alpha}
$$

Inaccurate SDP Relaxations

(Primal Relaxation)
(Dual Strengthening)
$\sup \lambda$

$$
\begin{aligned}
& \left|f_{\alpha}-\lambda 1_{\alpha=0}-\left\langle\mathbf{B}_{\alpha}, \mathbf{Q}\right\rangle\right| \leqslant \varepsilon \\
& \mathbf{Q} \succcurlyeq-\eta \mathbf{I}
\end{aligned}
$$

Inaccurate SDP do Robust Optimization

$$
f^{\star}=\inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}
$$

Moment matrix $\quad \mathbf{M}_{d}(\mathbf{y})_{\alpha, \beta}=y_{\alpha+\beta}$

$$
\mathbf{M}_{d}(\mathbf{y})=\sum_{\alpha} \mathbf{B}_{\alpha} y_{\alpha}
$$

Inaccurate SDP Relaxations

(Primal Relaxation)

$$
\inf _{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha}+\eta\left\langle\mathbf{M}_{d}(\mathbf{y}), \mathbf{I}\right\rangle+\varepsilon\|\mathbf{y}\|_{1}
$$

$$
\text { s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 \quad\left|f_{\alpha}-\lambda 1_{\alpha=0}-\left\langle\mathbf{B}_{\alpha}, \mathbf{Q}\right\rangle\right| \leqslant \varepsilon
$$

$$
y_{0}=1
$$

$$
\mathbf{Q} \succcurlyeq-\eta \mathbf{I}
$$

Priority to Trace Equalities: $\varepsilon=0$

$$
\tilde{f}=f+\eta \sum_{\beta} \mathbf{x}^{2 \beta}
$$

Inaccurate SDP Relaxations

(Primal Relaxation)

$$
\inf _{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha}+\eta\left\langle\mathbf{M}_{d}(\mathbf{y}), \mathbf{I}\right\rangle \quad \sup \lambda
$$

$$
\begin{aligned}
\text { s.t. } \mathbf{M}_{d}(\mathbf{y}) & \succcurlyeq 0 & & f_{\alpha}-\lambda 1_{\alpha=0}-\left\langle\mathbf{B}_{\alpha}, \mathbf{Q}\right\rangle=0 \\
y_{0} & =1 & & \mathbf{Q} \succcurlyeq-\eta \mathbf{I}
\end{aligned}
$$

Priority to Trace Equalities: $\varepsilon=0$

$$
\tilde{f}=f+\eta \sum_{\beta} \mathbf{x}^{2 \beta}
$$

Inaccurate SDP Relaxations

(Primal Relaxation)

$$
\inf _{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha}+\eta\left\langle\mathbf{M}_{d}(\mathbf{y}), \mathbf{I}\right\rangle \quad \sup \lambda
$$

$$
\begin{array}{rlrl}
\text { s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 & & f_{\alpha}-\lambda 1_{\alpha=0}-\left\langle\mathbf{B}_{\alpha}, \mathbf{Q}-\eta \mathbf{I}\right\rangle=0 \\
y_{0} & =1 & \mathbf{Q} \succcurlyeq 0
\end{array}
$$

Priority to Trace Equalities: $\varepsilon=0$

$$
\tilde{f}=f+\eta \sum_{\beta} \mathbf{x}^{2 \beta}
$$

Inaccurate SDP Relaxations

(Primal Relaxation)

$$
\begin{aligned}
\inf _{\mathbf{y}} \sum_{\alpha} \tilde{f}_{\alpha} y_{\alpha} & \sup \lambda \\
\text { s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 & \tilde{f}-\lambda=\sigma \\
y_{0}=1 & \sigma \in \Sigma_{d}
\end{aligned}
$$

(Dual Strengthening)

Priority to Trace Equalities: $\varepsilon=0$

$$
\mathbf{B}_{\infty}(f, \eta):=\left\{f+\theta \sum_{\beta} \mathbf{x}^{2 \beta}:|\theta| \leqslant \eta\right\}
$$

Priority to Trace Equalities: $\varepsilon=0$

$$
\mathbf{B}_{\infty}(f, \eta):=\left\{f+\theta \sum_{\beta} \mathbf{x}^{2 \beta}:|\theta| \leqslant \eta\right\}
$$

Theorem [Lasserre-Magron 19]

Inaccurate SDP relaxations of the robust problem

$$
\max _{\tilde{f} \in \mathbf{B}_{\infty}(f, \eta)} \min _{\mathbf{x}} \tilde{f}(\mathbf{x})
$$

Priority to Trace Equalities: $\varepsilon=0$

Theorem [Lasserre 06]

For fixed n, any $f \geqslant 0$ can be approximated arbitrarily closely by SOS polynomials.

Priority to Trace Equalities: $\varepsilon=0$

Theorem [Lasserre 06]

For fixed n, any $f \geqslant 0$ can be approximated arbitrarily closely by SOS polynomials.

Priority to Trace Equalities: $\varepsilon=0$

Theorem [Lasserre 06]

For fixed n, any $f \geqslant 0$ can be approximated arbitrarily closely by SOS polynomials.

At fixed η, when $d \nearrow, \tilde{f} \in \Sigma!$

$$
f+10^{-7} \sum_{|\beta| \leqslant 4} \mathbf{x}^{2 \beta} \in \Sigma
$$

Paradox Explanation

Priority to SDP Inequalities: $\eta=0$

Inaccurate SDP Relaxations

(Primal Relaxation) $\inf _{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha}+\varepsilon\|y\|_{1}$
s.t. $\mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0$
$y_{0}=1$
(Dual Strengthening)
$\sup \lambda$
$\left|f_{\alpha}-\lambda 1_{\alpha=0}-\left\langle\mathbf{B}_{\alpha}, \mathbf{Q}\right\rangle\right| \leqslant \varepsilon$
$\mathrm{Q} \succcurlyeq 0$

Priority to SDP Inequalities: $\eta=0$

$$
\mathbf{B}_{\infty}(f, \varepsilon):=\left\{\tilde{f}:\|\tilde{f}-f\|_{\infty} \leqslant \varepsilon\right\}
$$

Inaccurate SDP Relaxations

(Primal Relaxation) $\inf _{y} \sum_{\alpha} f_{\alpha} y_{\alpha}+\varepsilon\|y\|_{1}$
s.t. $\mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0$
$y_{0}=1$
(Dual Strengthening)
$\sup \lambda$
λ, \tilde{f}
$\left|\tilde{f}_{\alpha}-f_{\alpha}\right| \leqslant \varepsilon$
$\tilde{f}-\lambda \in \Sigma_{d}$

Priority to SDP Inequalities: $\eta=0$

Theorem (Lasserre-Magron)

Inaccurate SDP relaxations of the robust problem

$$
\max _{\tilde{f} \in \mathbf{B}_{\infty}(f, \varepsilon)} \min _{\mathbf{x}} \tilde{f}(\mathbf{x})
$$

A Two-player Game Interpretation

max - min Robust Optimization

Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ SDP leads
Player 2 (optimizer) picks an SOS \rightsquigarrow User follows

A Two-player Game Interpretation

max - min Robust Optimization

Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ SDP leads
Player 2 (optimizer) picks an SOS \rightsquigarrow User follows

Convex SDP relaxations $\Longrightarrow \max -\min =\min -\max$

A Two-player Game Interpretation

max - min Robust Optimization

Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ SDP leads
Player 2 (optimizer) picks an SOS \rightsquigarrow User follows

Convex SDP relaxations $\Longrightarrow \max -\min =\min -\max$
min - max Robust Optimization
Player 1 (robust optimizer) picks an SOS \rightsquigarrow User leads
Player 2 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ SDP follows

SDP for Polynomial Optimization

Optimization Game

Certification Game

From Approximate to Exact Solutions

Win Two-Player Game

\simeq Output!

From Approximate to Exact Solutions

Win Two-Player Game

Hybrid Symbolic/Numeric Algorithms
sum of squares of $f-\varepsilon$?

Error Compensation

$$
\simeq \quad \rightarrow \quad=
$$

Rational SOS Decompositions

■ $f \in \mathbb{Q}[X] \cap \Sigma^{\circ}[X]$ (interior of the SOS cone)
Existence Question
Does there exist $f_{i} \in \mathbb{Q}[X], c_{i} \in \mathbb{Q}^{>0}$ s.t. $f=\sum_{i} c_{i} f_{i}^{2}$?

Rational SOS Decompositions

- $f \in \mathbb{Q}[X] \cap \Sigma^{\circ}[X]$ (interior of the SOS cone)

Existence Question

Does there exist $f_{i} \in \mathbb{Q}[X], c_{i} \in \mathbb{Q}^{>0}$ s.t. $f=\sum_{i} c_{i} f_{i}{ }^{2}$?

Examples

$$
\begin{aligned}
1+X+X^{2}= & \left(X+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}=1\left(X+\frac{1}{2}\right)^{2}+\frac{3}{4}(1)^{2} \\
1+X+X^{2}+X^{3}+X^{4}= & \left(X^{2}+\frac{1}{2} X+\frac{1+\sqrt{5}}{4}\right)^{2}+ \\
& \left(\frac{\sqrt{10+2 \sqrt{5}}+\sqrt{10-2 \sqrt{5}}}{4} X+\frac{\sqrt{10-2 \sqrt{5}}}{4}\right)^{2}=? ? ?
\end{aligned}
$$

Round \& Project Algorithm [Peyrl-Parrilo 08]

$$
f \in \Sigma \Sigma[X] \text { with } \operatorname{deg} f=2 D
$$

Round \& Project Algorithm [Peyrl-Parrilo 08]

$$
f \in \Sigma(X] \text { with } \operatorname{deg} f=2 D
$$

01 Find \tilde{Q} with SDP at tolerance $\tilde{\delta}$ satisfying
$f(X) \simeq \mathbf{v}_{D}{ }^{T}(X) \tilde{\mathbf{Q}} \mathbf{v}_{D}(X) \quad \tilde{\mathbf{Q}} \succ 0$
$\mathbf{v}_{D}(X)$: vector of monomials of $\operatorname{deg} \leqslant D$

Round \& Project Algorithm [Peyrl-Parrilo 08]

$$
f \in \Sigma^{\circ}[X] \text { with } \operatorname{deg} f=2 D
$$

0. Find \tilde{Q} with SDP at tolerance $\tilde{\delta}$ satisfying
$f(X) \simeq \mathbf{v}_{D}{ }^{T}(X) \tilde{\mathbf{Q}} \mathbf{v}_{D}(X) \quad \tilde{\mathbf{Q}} \succ 0$
$\mathbf{v}_{D}(X)$: vector of monomials of $\operatorname{deg} \leqslant D$

Exact $Q \Longrightarrow f_{\alpha+\beta}=\sum_{\alpha^{\prime}+\beta^{\prime}=\alpha+\beta} Q_{\alpha^{\prime}, \beta^{\prime}}$

Round \& Project Algorithm [Peyrl-Parrilo 08]

$$
f \in \Sigma \text { ¿ }[X] \text { with } \operatorname{deg} f=2 D
$$

01 Find ${ }^{\mathrm{Q}}$ with SDP at tolerance $\tilde{\delta}$ satisfying
$f(X) \simeq \mathbf{v}_{D}{ }^{T}(X) \tilde{\mathbf{Q}} \mathbf{v}_{D}(X) \quad \tilde{\mathbf{Q}} \succ 0$
$\mathbf{v}_{D}(X)$: vector of monomials of deg $\leqslant D$
Exact $Q \Longrightarrow f_{\alpha+\beta}=\sum_{\alpha^{\prime}+\beta^{\prime}=\alpha+\beta} Q_{\alpha^{\prime}, \beta^{\prime}}$
1 Rounding step $\hat{Q} \leftarrow \operatorname{round}(\tilde{Q}, \hat{\delta})$

Round \& Project Algorithm [Peyrl-Parrilo 08]

$$
f \in \Sigma \text { ¿ }[X] \text { with } \operatorname{deg} f=2 D
$$

01 Find ${ }^{\mathrm{Q}}$ with SDP at tolerance $\tilde{\delta}$ satisfying
$f(X) \simeq \mathbf{v}_{D}{ }^{T}(X) \tilde{\mathbf{Q}} \mathbf{v}_{D}(X) \quad \tilde{\mathbf{Q}} \succ 0$
$\mathbf{v}_{D}(X)$: vector of monomials of deg $\leqslant D$
Exact $Q \Longrightarrow f_{\alpha+\beta}=\sum_{\alpha^{\prime}+\beta^{\prime}=\alpha+\beta} Q_{\alpha^{\prime}, \beta^{\prime}}$
1 Rounding step $\hat{Q} \leftarrow \operatorname{round}(\tilde{Q}, \hat{\delta})$
12 Projection step
$Q_{\alpha, \beta} \leftarrow \hat{Q}_{\alpha, \beta}-\frac{1}{\eta(\alpha+\beta)}\left(\sum_{\alpha^{\prime}+\beta^{\prime}=\alpha+\beta} \hat{Q}_{\alpha^{\prime}, \beta^{\prime}}-f_{\alpha+\beta}\right)$

Round \& Project Algorithm [Peyrl-Parrilo 08]

$$
f \in \Sigma \text { }[X] \text { with } \operatorname{deg} f=2 D
$$

01 Find $\tilde{\text { Q }}$ with SDP at tolerance $\tilde{\delta}$ satisfying
$f(X) \simeq \mathbf{v}_{D}{ }^{T}(X) \tilde{\mathbf{Q}}_{\mathrm{D}}(X) \quad \tilde{\mathbf{Q}} \succ 0$
$\mathbf{v}_{D}(X)$: vector of monomials of deg $\leqslant D$
Exact $Q \Longrightarrow f_{\alpha+\beta}=\sum_{\alpha^{\prime}+\beta^{\prime}=\alpha+\beta} Q_{\alpha^{\prime}, \beta^{\prime}}$
1 Rounding step $\hat{Q} \leftarrow \operatorname{round}(\tilde{Q}, \hat{\delta})$
2 Projection step

$$
Q_{\alpha, \beta} \leftarrow \hat{Q}_{\alpha, \beta}-\frac{1}{\eta(\alpha+\beta)}\left(\sum_{\alpha^{\prime}+\beta^{\prime}=\alpha+\beta} \hat{Q}_{\alpha^{\prime}, \beta^{\prime}}-f_{\alpha+\beta}\right)
$$

学Small enough $\tilde{\delta}, \hat{\delta} \Longrightarrow f(X)=\mathbf{v}_{D}{ }^{T}(X) \mathbf{Q} \mathbf{v}_{D}(X)$ and $\mathbf{Q} \succcurlyeq 0$

Our Alternative Approach

Perturbation idea

Approximate SOS Decomposition

$$
f(X)-\varepsilon \sum_{\alpha \in \mathcal{P} / 2} X^{2 \alpha}=\tilde{\sigma}+u
$$

RealCertify with $n=1$ [Chevillard et. al 11]

$$
f \in \mathbb{Q}[\mathrm{X}], \operatorname{deg} f=d=2 k, f>0 \underbrace{p}_{f=1+X+X^{2}+X^{3}+X^{4}} x
$$

RealCertify with $n=1$ [Chevillard et. al 11]

$f \in \mathbb{Q}[X], \operatorname{deg} f=d=2 k, f>0$
Perturb: find $\varepsilon \in Q$ s.t.

$$
f_{\varepsilon}:=f-\varepsilon \sum_{i=0}^{k} X^{2 i}>0
$$

$$
f=1+X+X^{2}+X^{3}+X^{4}
$$

$$
\varepsilon=\frac{1}{4}
$$

$$
f>\frac{1}{4}\left(1+X^{2}+X^{4}\right)
$$

RealCertify with $n=1$ [Chevillard et. al 11]

$f \in \mathbb{Q}[X], \operatorname{deg} f=d=2 k, f>0$
学 Perturb: find $\varepsilon \in \mathrm{Q}$ s.t.

$$
f_{\varepsilon}:=f-\varepsilon \sum_{i=0}^{k} X^{2 i}>0
$$

棠 SDP Approximation:

$$
f-\varepsilon \sum_{i=0}^{k} X^{2 i}=\tilde{\sigma}+u
$$

Absorb: small enough u_{i}

$\Longrightarrow \varepsilon \sum_{i=0}^{k} X^{2 i}+u$ SOS

$$
f>\frac{1}{4}\left(1+X^{2}+X^{4}\right)
$$

RealCertify with $n=1$: SDP Approximation

RealCertify with $n=1$: Absorbtion

$$
\begin{aligned}
X & =\frac{1}{2}\left[(X+1)^{2}-1-X^{2}\right] \\
\ddot{\theta}^{-}-X & =\frac{1}{2}\left[(X-1)^{2}-1-X^{2}\right]
\end{aligned}
$$

RealCertify with $n=1$: Absorbtion

$$
\begin{aligned}
& X=\frac{1}{2}\left[(X+1)^{2}-1-X^{2}\right] \\
& -X=\frac{1}{2}\left[(X-1)^{2}-1-X^{2}\right] \\
& u_{2 i+1} X^{2 i+1}=\frac{\left|u_{2 i+1}\right|}{2}\left[\left(X^{i+1}+\operatorname{sgn}\left(u_{2 i+1}\right) X^{i}\right)^{2}-X^{2 i}-X^{2 i+2}\right]
\end{aligned}
$$

RealCertify with $n=1$: Absorbtion

$$
\begin{align*}
& X=\frac{1}{2}\left[(X+1)^{2}-1-X^{2}\right] \\
& u_{2 i+1} X^{2 i+1}=\frac{\left|u_{2 i+1}\right|}{2}\left[\left(X^{i+1}+\operatorname{sgn}\left(u_{2 i+1}\right) X^{i}\right)^{2}-X^{2 i}-X^{2 i+2}\right] \\
& \cdots\left((X-1)^{2}-1-X^{2}\right]
\end{align*}
$$

RealCertify with $n=1$: Absorbtion

$$
\begin{aligned}
X & =\frac{1}{2}\left[(X+1)^{2}-1-X^{2}\right] \\
\ddot{\theta}-X & =\frac{1}{2}\left[(X-1)^{2}-1-X^{2}\right]
\end{aligned}
$$

$$
u_{2 i+1} X^{2 i+1}=\frac{\left|u_{2 i+1}\right|}{2}\left[\left(X^{i+1}+\operatorname{sgn}\left(u_{2 i+1}\right) X^{i}\right)^{2}-X^{2 i}-X^{2 i+2}\right]
$$

$$
\varepsilon \geqslant \frac{\left|u_{2 i+1}\right|+\left|u_{2 i-1}\right|}{2}-u_{2 i} \Longrightarrow \varepsilon \sum_{i=0}^{k} X^{2 i}+u \quad \text { SOS }
$$

RealCertify with $n \geqslant 1$: Absorbtion

$$
f(X)-\varepsilon \sum_{\alpha \in \mathcal{P} / 2} X^{2 \alpha}=\tilde{\sigma}+u
$$

Choice of \mathcal{P} ?

RealCertify with $n \geqslant 1$: Absorbtion

$$
f(X)-\varepsilon \sum_{\alpha \in \mathcal{P} / 2} X^{2 \alpha}=\tilde{\sigma}+u
$$

Choice of \mathcal{P} ?

RealCertify with $n \geqslant 1$: Absorbtion

$$
f(X)-\varepsilon \sum_{\alpha \in \mathcal{P} / 2} X^{2 \alpha}=\tilde{\sigma}+u
$$

Choice of \mathcal{P} ?

RealCertify with $n \geqslant 1$: Absorbtion

$$
f(X)-\varepsilon \sum_{\alpha \in \mathcal{P} / 2} X^{2 \alpha}=\tilde{\sigma}+u
$$

Choice of \mathcal{P} ?

$$
\begin{aligned}
& f=4 x^{4} y^{6}+x^{2}-x y^{2}+y^{2} \\
& \operatorname{spt}(f)=\{(4,6),(2,0),(1,2),(0,2)\}
\end{aligned}
$$

Newton Polytope $\mathcal{P}=\operatorname{conv}(\operatorname{spt}(f))$

Squares in SOS decomposition $\subseteq \frac{\mathcal{P}}{2} \cap \mathbb{N}^{n}$ [Reznick 78]

RealCertify: Benchmarks

■ RAGLib (critical points) [Safey El Din]

■ SamplePoints (CAD) [Moreno Maza-Alvandi et al.]

Id	n	d	RealCertify		RoundProject		RAGLib	CAD
			$t_{1}(\mathrm{~s})$	$\tau_{2}($ bits $)$	$t_{2}(\mathrm{~s})$	$t_{3}(\mathrm{~s})$	$t_{4}(\mathrm{~s})$	
f_{20}	2	20	745419	110.	78949497	141.	0.16	0.03
M	3	8	17232	0.35	18831	0.29	0.15	0.03
f_{2}	2	4	1866	0.03	1031	0.04	0.09	0.01
f_{6}	6	4	56890	0.34	475359	0.54	598.	-
f_{11}	10	4	344347	2.45	8374082	4.59	-	-

Two-player Games: Perspectives

Optimization Game

 Solvers OUTPUT inaccurate certificates \Rightarrow extract solutions

Two-player Games: Perspectives

Optimization Game

 Solvers OUTPUT inaccurate certificates \Rightarrow extract solutions

Certification Game
Optimizers INPUT inaccurate $\tilde{f}=f-\eta \sum_{|\beta| \leqslant d} \mathbf{x}^{2 \beta}$
\Longrightarrow exact certificates

Two-player Games: Perspectives

Optimization Game

 Solvers OUTPUT inaccurate certificates \Rightarrow extract solutions

Certification Game
Optimizers INPUT inaccurate $\tilde{f}=f-\eta \sum_{|\beta| \leqslant d} \mathbf{x}^{2 \beta}$
\Longrightarrow exact certificates

色 Better arbitrary-precision SDP solvers
沼 Extension to other relaxations, sums of hermitian squares

Two-player Games: Perspectives

Optimization Game Solvers OUTPUT inaccurate certificates \Rightarrow extract solutions

Certification Game
Optimizers INPUT inaccurate $\tilde{f}=f-\eta \sum_{|\beta| \leqslant d} \mathbf{x}^{2 \beta}$
\Longrightarrow exact certificates

色 Better arbitrary-precision SDP solvers
Extension to other relaxations, sums of hermitian squares
Crucial need for polynomial systems certification Available PhD/Postdoc Positions

End

Thank you for your attention!

$$
\begin{gathered}
\text { gricad-gitlab:RealCertify } \\
\text { https://homepages.laas.fr/vmagron }
\end{gathered}
$$

[Lasserre \& Magron. In SDP relaxations, inaccurate solvers do robust optimization, SIOPT. arxiv:1811.02879

围 Magron \& Safey El Din. On Exact Polya and Putinar's Representations, ISSAC'18. arxiv:1802.10339

囲 Magron \& Safey El Din. RealCertify: a Maple package for certifying non-negativity, ISSAC'18. arxiv:1805.02201

