# Two-player games between polynomial optimizers and semidefinite solvers

### Victor Magron, CNRS-LAAS

Joint work with

Jean-Bernard Lasserre (CNRS-LAAS) Mohab Safey El Din (Sorbonne Université)

SIAM AG, Bern, 11 July 2019









# SDP for Polynomial Optimization

### NP-hard NON CONVEX Problem $f^* = \inf f(x)$

### Theory

(Primal) (Dual) 
$$\inf \int f \, d\mu \qquad \sup \quad \lambda$$
 with  $\mu$  proba  $\Rightarrow$  INFINITE LP  $\Leftarrow$  with  $p-\lambda\geqslant 0$ 

# SDP for Polynomial Optimization

### NP-hard NON CONVEX Problem $f^* = \inf f(x)$

#### **Practice**

(Primal Relaxation)

moments  $\int x^{\alpha} d\mu$ 

**finite** number  $\Rightarrow$ 



(Dual **Strengthening**)

 $f - \lambda =$ sum of squares

**SDP** ← **fixed** degree

Lasserre's Hierarchy of **CONVEX Problems**  $f_d^* \uparrow f^*$  [Lasserre/Parrilo 01]

degree d
n vars

 $\Longrightarrow \binom{n+d}{n}$  **SDP** VARIABLES

Numeric Solvers

→ Approx Certificate



# Success Stories: Lasserre's Hierarchy

MODELING POWER: Cast as ∞-dimensional LP over measures

**Y** STATIC Polynomial Optimization Optimal Powerflow  $n \simeq 10^3$  [Josz et al 16]

**Roundoff Error**  $n \simeq 10^2$  [Magron et al 17]

**♥ DYNAMICAL Polynomial Optimization Regions of attraction** [Henrion et al 14]





Reachable sets [Magron et al 19]



**APPROXIMATE** OPTIMIZATION BOUNDS!

#### MOTZKIN POLYNOMIAL

sums of squares  $= \Sigma$ 

$$f = \frac{1}{27} + x^2y^4 + x^4y^2 - x^2y^2$$
$$f \geqslant 0 \text{ but } f \notin \Sigma$$



#### MOTZKIN POLYNOMIAL

sums of squares  $= \Sigma$ 

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \geqslant 0 \text{ but } f \notin \Sigma$$



$$f^* = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0 \text{ for } |x^*| = |y^*| = \frac{\sqrt{3}}{3}$$

### Lasserre's hierarchy:

• order  $3 \rightsquigarrow f_3^{\star} = -\infty$  unbounded SDP  $\implies f \notin \Sigma$ 

#### MOTZKIN POLYNOMIAL

sums of squares  $= \Sigma$ 

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \geqslant 0 \text{ but } f \notin \Sigma$$





$$f^* = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0 \text{ for } |x^*| = |y^*| = \frac{\sqrt{3}}{3}$$

### Lasserre's hierarchy:

- order  $3 \rightsquigarrow f_3^{\star} = -\infty$  unbounded SDP  $\implies f \notin \Sigma$
- order 4  $\rightsquigarrow f_4^{\star} = -\infty$

#### MOTZKIN POLYNOMIAL

sums of squares  $= \Sigma$ 

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \geqslant 0 \text{ but } f \notin \Sigma$$





$$f^* = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0 \text{ for } |x^*| = |y^*| = \frac{\sqrt{3}}{3}$$

### Lasserre's hierarchy:

- order  $3 \rightsquigarrow f_3^* = -\infty$  unbounded SDP  $\implies f \notin \Sigma$
- order 4  $\rightsquigarrow f_4^{\star} = -\infty$
- order 5  $\rightsquigarrow f_5^{\star} \simeq -0.4$

#### MOTZKIN POLYNOMIAL

sums of squares  $= \Sigma$ 

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \geqslant 0 \text{ but } f \notin \Sigma$$



$$f^* = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0 \text{ for } |x^*| = |y^*| = \frac{\sqrt{3}}{3}$$

### Lasserre's hierarchy:

- order  $3 \rightsquigarrow f_3^{\star} = -\infty$  unbounded SDP  $\implies f \notin \Sigma$
- order 4  $\rightsquigarrow f_4^{\star} = -\infty$
- order 5  $\rightsquigarrow f_5^{\star} \simeq -0.4$
- order 8  $\leadsto f_8^{\star} \simeq -10^{-8} \oplus$  extraction of  $x^{\star}, y^{\star}$  Paradox ?!

#### **APPROXIMATE SOLUTIONS**

sum of squares of  $a^2 - 2ab + b^2$ ?







$$a^2 - 2ab + b^2 \simeq (1.00001a - 0.99998b)^2$$
  
 $a^2 - 2ab + b^2 \neq 1.0000200001a^2 - 1.9999799996ab + 0.9999600004b^2$ 



### SDP for Polynomial Optimization

**Optimization Game** 

**Certification Game** 

$$f^\star = \inf \ \sum_\alpha f_\alpha \ \mathbf{x}^\alpha$$
 Moment matrix  $\ \mathbf{M}_d(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$ 

### **Accurate SDP Relaxations**

 $\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} \qquad \sup \lambda$ 

$$\mathbf{s.t.} \ \mathbf{M}_d(\mathbf{y}) \succcurlyeq 0 \qquad \qquad f - \lambda = \sigma$$

$$y_0 = 1$$
  $\sigma \in \Sigma_d$ 

(Dual **Strengthening**)

$$f^{\star} = \inf \; \sum_{\alpha} f_{\alpha} \, \mathbf{x}^{\alpha}$$
 Moment matrix  $\; \mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$  
$$\mathbf{M}_{d}(\mathbf{y}) = \sum_{\alpha} \mathbf{B}_{\alpha} \, y_{\alpha}$$

#### **Accurate SDP Relaxations**

(Primal **Relaxation**) (Dual **Strengthening**)  $\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} \qquad \text{sup } \lambda$  $\text{s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 \qquad \qquad f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} = \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle$  $y_{0} = 1 \qquad \mathbf{O} \succcurlyeq 0$ 

$$f^{\star}=\inf\sum_{lpha}f_{lpha}\,\mathbf{x}^{lpha}$$
 Moment matrix  $\mathbf{M}_{d}(\mathbf{y})_{lpha,eta}=y_{lpha+eta}$   $\mathbf{M}_{d}(\mathbf{y})=\sum_{lpha}\mathbf{B}_{lpha}\,y_{lpha}$ 

#### **Inaccurate SDP Relaxations**

(Primal **Relaxation**)

(Dual **Strengthening**)

sup 
$$\lambda$$

$$|f_{\alpha} - \lambda 1_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle| \leq \varepsilon$$

$$\mathbf{Q} \succcurlyeq -\eta \mathbf{I}$$

$$f^{\star} = \inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$

 $\mathbf{M}_d(\mathbf{v})_{\alpha,\beta} = \mathbf{v}_{\alpha+\beta}$ Moment matrix

$$\mathbf{M}_d(\mathbf{y}) = \sum_{\alpha} \mathbf{B}_{\alpha} y_{\alpha}$$

#### **Inaccurate SDP Relaxations**

(Primal **Relaxation**)

(Dual **Strengthening**)

$$\inf_{\mathbf{v}} \sum_{\mathbf{f}_{\alpha}} f_{\alpha} y_{\alpha} + \eta \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle + \varepsilon ||\mathbf{y}||_{1}$$

$$\sup \lambda$$

s.t. 
$$\mathbf{M}_d(\mathbf{y}) \succcurlyeq 0$$

$$|f_{\alpha} - \lambda 1_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle| \leqslant \varepsilon$$

$$y_0 = 1$$
  $\mathbf{Q} \succcurlyeq -\eta \mathbf{I}$ 

$$\mathbf{Q} \succcurlyeq -\mathbf{1}$$

$$\tilde{f} = f + \eta \sum_{\beta} \mathbf{x}^{2\beta}$$

### **Inaccurate SDP Relaxations**

(Primal **Relaxation**) (Dual **Strengthening**) 
$$\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} + \eta \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle \qquad \sup_{\alpha} \lambda$$
s.t.  $\mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 \qquad f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle = 0$ 
$$y_{0} = 1 \qquad \mathbf{Q} \succcurlyeq -\eta \mathbf{I}$$

$$\tilde{f} = f + \eta \sum_{\beta} \mathbf{x}^{2\beta}$$

### **Inaccurate SDP Relaxations**

(Primal **Relaxation**) (Dual **Strengthening**) 
$$\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} + \eta \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle \qquad \sup_{\alpha} \lambda$$
 s.t.  $\mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 \qquad f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} - \eta \mathbf{I} \rangle = 0$  
$$y_{0} = 1 \qquad \mathbf{O} \succcurlyeq 0$$

$$\tilde{f} = f + \eta \sum_{\beta} \mathbf{x}^{2\beta}$$

#### **Inaccurate SDP Relaxations**

(Primal **Relaxation**)

 $\inf_{\mathbf{y}} \sum_{\alpha} \tilde{f}_{\alpha} y_{\alpha}$ 

s.t.  $\mathbf{M}_d(\mathbf{y}) \succcurlyeq 0$ 

 $y_0 = 1$ 

(Dual Strengthening)

 $\sup \lambda$ 

 $\tilde{f} - \lambda = \sigma$ 

 $\sigma \in \Sigma_d$ 

$$\mathbf{B}_{\infty}(f,\eta) := \{ f + \theta \sum_{\beta} \mathbf{x}^{2\beta} : \mid \theta \mid \leqslant \eta \}$$

$$\mathbf{B}_{\infty}(f, \eta) := \{ f + \theta \sum_{\beta} \mathbf{x}^{2\beta} : \mid \theta \mid \leqslant \eta \}$$

### Theorem [Lasserre-Magron 19]

Inaccurate SDP relaxations of the **robust** problem

$$\max_{\tilde{f} \in \mathbf{B}_{\infty}(f,\eta)} \min_{\mathbf{x}} \ \tilde{f}(\mathbf{x})$$

### Theorem [Lasserre 06]

For fixed n, any  $f \geqslant 0$  can be approximated arbitrarily closely by SOS polynomials.

### Theorem [Lasserre 06]

For fixed n, any  $f\geqslant 0$  can be approximated arbitrarily closely by SOS polynomials.



$$ilde{f} = f + \eta \sum_{|eta| \leqslant d} \mathbf{x}^{2eta}$$



### Theorem [Lasserre 06]

For fixed n, any  $f \ge 0$  can be approximated arbitrarily closely by SOS polynomials.







At fixed  $\eta$ , when  $d \nearrow$ ,  $\tilde{f} \in \Sigma!$ 



$$f + 10^{-7} \sum_{|\beta| \leqslant 4} \mathbf{x}^{2\beta} \in \mathbf{\Sigma}$$

**Paradox Explanation** 

# **Priority to SDP Inequalities:** $\eta = 0$

#### **Inaccurate SDP Relaxations**

$$\begin{array}{ll} \text{(Primal Relaxation)} & \text{(Dual Strengthening)} \\ \inf\limits_{\mathbf{y}} \sum_{\alpha} f_{\alpha} \, y_{\alpha} + \varepsilon \|\mathbf{y}\|_{1} & \sup\limits_{\lambda} \lambda \\ \text{s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 & |f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle \mid \leqslant \varepsilon \\ y_{0} = 1 & \mathbf{Q} \succcurlyeq 0 \end{array}$$

# **Priority to SDP Inequalities:** $\eta = 0$

$$\mathbf{B}_{\infty}(f,\varepsilon) := \{ \tilde{f} : \|\tilde{f} - f\|_{\infty} \leqslant \varepsilon \}$$

### **Inaccurate SDP Relaxations**

| (Primal <b>Relaxation</b> )                                                              | (Dual <b>Strengthening</b> )                                 |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| $\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} + \varepsilon \ \mathbf{y}\ _{1}$ | $\sup_{\lambda,	ilde{f}} \ \lambda$                          |
| s.t. $\mathbf{M}_d(\mathbf{y}) \succcurlyeq 0$                                           | $\mid 	ilde{f}_{lpha} - f_{lpha} \mid \leqslant \varepsilon$ |
| $y_0 = 1$                                                                                | $\tilde{f} - \lambda \in \Sigma_d$                           |

# **Priority to SDP Inequalities:** $\eta = 0$

### Theorem (Lasserre-Magron)

Inaccurate SDP relaxations of the robust problem

$$\max_{\tilde{f} \in \mathbf{B}_{\infty}(f,\varepsilon)} \min_{\mathbf{x}} \ \tilde{f}(\mathbf{x})$$

### A Two-player Game Interpretation



#### max - min ROBUST OPTIMIZATION

Player 1 (solver) picks  $\tilde{f} \in \mathbf{B}_{\infty}(f) \leadsto \mathbf{SDP}$  leads Player 2 (optimizer) picks an SOS  $\leadsto \mathbf{User}$  follows

# A Two-player Game Interpretation



### max - min ROBUST OPTIMIZATION

Player 1 (solver) picks  $\tilde{f} \in \mathbf{B}_{\infty}(f) \leadsto \mathbf{SDP}$  leads Player 2 (optimizer) picks an SOS  $\leadsto \mathbf{User}$  follows

**Convex** SDP relaxations  $\implies$  max - min = min - max

# A Two-player Game Interpretation



### max - min ROBUST OPTIMIZATION

Player 1 (solver) picks  $\tilde{f} \in \mathbf{B}_{\infty}(f) \leadsto \mathbf{SDP}$  leads Player 2 (optimizer) picks an SOS  $\leadsto \mathbf{User}$  follows

**Convex** SDP relaxations  $\implies$  max - min = min - max

min - max ROBUST OPTIMIZATION

Player 1 (robust optimizer) picks an SOS  $\leadsto$  User leads Player 2 (solver) picks  $\tilde{f} \in \mathbf{B}_{\infty}(f) \leadsto$  SDP follows SDP for Polynomial Optimization

**Optimization Game** 

Certification Game

# From Approximate to Exact Solutions

#### Win Two-Player Game



sum of squares of f?



 $\simeq \text{Output!}$ 



# From Approximate to Exact Solutions

#### Win Two-Player Game



\* Hybrid Symbolic/Numeric Algorithms

sum of squares of  $f - \varepsilon$ ?





**Error Compensation** 







# **Rational SOS Decompositions**

•  $f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$  (interior of the SOS cone)

#### **Existence Question**

Does there exist  $f_i \in \mathbb{Q}[X], c_i \in \mathbb{Q}^{>0}$  s.t.  $f = \sum_i c_i f_i^2$ ?

# **Rational SOS Decompositions**

•  $f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$  (interior of the SOS cone)

#### **Existence Question**

Does there exist  $f_i \in \mathbb{Q}[X], c_i \in \mathbb{Q}^{>0}$  s.t.  $f = \sum_i c_i f_i^2$ ?

### Examples

$$\begin{aligned} 1 + X + X^2 &= \left(X + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = 1\left(X + \frac{1}{2}\right)^2 + \frac{3}{4}(1)^2 \\ 1 + X + X^2 + X^3 + X^4 &= \left(X^2 + \frac{1}{2}X + \frac{1 + \sqrt{5}}{4}\right)^2 + \\ &\left(\frac{\sqrt{10 + 2\sqrt{5}} + \sqrt{10 - 2\sqrt{5}}}{4}X + \frac{\sqrt{10 - 2\sqrt{5}}}{4}\right)^2 = ???? \end{aligned}$$

# Round & Project Algorithm [Peyrl-Parrilo 08]



$$f \in \mathring{\Sigma}[X]$$
 with deg  $f = 2D$ 

# Round & Project Algorithm [Peyrl-Parrilo 08]



$$f \in \mathring{\Sigma}[X]$$
 with deg  $f = 2D$ 

Find  $\tilde{\mathbf{Q}}$  with SDP at tolerance  $\tilde{\delta}$  satisfying  $f(X) \simeq \mathbf{v}_D^T(X) \; \tilde{\mathbf{Q}} \; \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$   $\mathbf{v}_D(X)$ : vector of monomials of  $\deg \leqslant D$ 



$$f \in \mathring{\Sigma}[X]$$
 with deg  $f = 2D$ 

Find  $\tilde{\mathbf{Q}}$  with SDP at tolerance  $\tilde{\delta}$  satisfying  $f(X) \simeq \mathbf{v}_D^T(X) \; \tilde{\mathbf{Q}} \; \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$   $\mathbf{v}_D(X)$ : vector of monomials of  $\deg \leqslant D$ 

$$\bigvee$$
 Exact  $Q \implies f_{\alpha+\beta} = \sum_{\alpha'+\beta'=\alpha+\beta} Q_{\alpha',\beta'}$ 



$$f \in \mathring{\Sigma}[X]$$
 with deg  $f = 2D$ 

Find  $\tilde{\mathbf{Q}}$  with SDP at tolerance  $\tilde{\delta}$  satisfying  $f(X) \simeq \mathbf{v}_D^T(X) \, \tilde{\mathbf{Q}} \, \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$   $\mathbf{v}_D(X)$ : vector of monomials of  $\deg \leqslant D$ 

$$\bigvee$$
 Exact  $Q \implies f_{\alpha+\beta} = \sum_{\alpha'+\beta'=\alpha+\beta} Q_{\alpha',\beta'}$ 

**I** Rounding step  $\hat{Q} \leftarrow \text{round}(\tilde{Q}, \hat{\delta})$ 



$$f \in \mathring{\Sigma}[X]$$
 with deg  $f = 2D$ 

$$f(X) \simeq \mathbf{v}_D^T(X) \, \tilde{\mathbf{Q}} \, \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$$

 $\mathbf{v}_D(X)$ : vector of monomials of  $\deg \leqslant D$ 

$$\bigvee$$
 Exact  $Q \implies f_{\alpha+\beta} = \sum_{\alpha'+\beta'=\alpha+\beta} Q_{\alpha',\beta'}$ 

- **1** Rounding step  $\hat{Q} \leftarrow \operatorname{round}\left(\tilde{Q},\hat{\delta}\right)$
- Projection step

$$Q_{\alpha,\beta} \leftarrow \hat{Q}_{\alpha,\beta} - \frac{1}{\eta(\alpha+\beta)} (\sum_{\alpha'+\beta'=\alpha+\beta} \hat{Q}_{\alpha',\beta'} - f_{\alpha+\beta})$$



$$f \in \mathring{\Sigma}[X]$$
 with deg  $f = 2D$ 

Find  $\tilde{\mathbf{Q}}$  with SDP at tolerance  $\tilde{\delta}$  satisfying  $f(X) \simeq \mathbf{v}_D^T(X) \tilde{\mathbf{O}} \mathbf{v}_D(X) \quad \tilde{\mathbf{O}} \succ 0$ 

 $\mathbf{v}_D(X)$ : vector of monomials of deg  $\leq D$ 

$$\bigvee$$
 Exact  $Q \implies f_{\alpha+\beta} = \sum_{\alpha'+\beta'=\alpha+\beta} Q_{\alpha',\beta'}$ 

- **I** Rounding step  $\hat{Q} \leftarrow \text{round}(\tilde{Q}, \hat{\delta})$
- Projection step

$$Q_{\alpha,\beta} \leftarrow \hat{Q}_{\alpha,\beta} - \frac{1}{n(\alpha+\beta)} (\sum_{\alpha'+\beta'=\alpha+\beta} \hat{Q}_{\alpha',\beta'} - f_{\alpha+\beta})$$

 $\forall$  Small enough  $\delta, \delta \implies f(X) = \mathbf{v}_D^T(X) \mathbf{Q} \mathbf{v}_D(X)$  and  $\mathbf{Q} \geq 0$ 

## Our Alternative Approach





#### **PERTURBATION** idea

$$f(X)$$
 -  $\varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$ 

### RealCertify with n = 1 [Chevillard et. al 11]





### RealCertify with n = 1 [Chevillard et. al 11]

$$f \in \mathbb{Q}[X]$$
, deg  $f = d = 2k$ ,  $f > 0$ 

 $\begin{cases} lackbox{$\widetilde{V}$} \end{cases}$  **PERTURB**: find  $\varepsilon \in \mathbb{Q}$  s.t.

$$f_{\varepsilon} := f - \varepsilon \sum_{i=0}^{k} X^{2i} > 0$$



$$f = 1 + X + X^2 + X^3 + X^4$$
 
$$\varepsilon = \frac{1}{4}$$
 
$$f > \frac{1}{4}(1 + X^2 + X^4)$$

## RealCertify with n=1 [Chevillard et. al 11]

$$f \in \mathbb{Q}[X]$$
, deg  $f = d = 2k$ ,  $f > 0$ 

**PERTURB**: find  $\varepsilon \in \mathbb{O}$  s.t.

$$f_{\varepsilon} := f - \varepsilon \sum_{i=0}^{k} X^{2i} > 0$$

SDP Approximation:

$$f - \varepsilon \sum_{i=0}^{k} X^{2i} = \tilde{\sigma} + u$$

 $\overrightarrow{V}$  **ABSORB**: small enough  $u_i$  $\implies \varepsilon \sum_{i=0}^k X^{2i} + u SOS$ 



$$f = 1 + X + X^{2} + X^{3} + X$$

$$\varepsilon = \frac{1}{4}$$

$$f > \frac{1}{4}(1 + X^{2} + X^{4})$$

### RealCertify with n = 1: SDP Approximation



$$X = \frac{1}{2} [(X+1)^2 - 1 - X^2]$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[ (X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$

$$X = \frac{1}{2} [(X+1)^2 - 1 - X^2]$$

$$X = \frac{1}{2} [(X-1)^2 - 1 - X^2]$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[ (X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$



$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[ (X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$



$$\varepsilon \geqslant \frac{|u_{2i+1}| + |u_{2i-1}|}{2} - u_{2i} \implies \varepsilon \sum_{i=0}^{k} X^{2i} + u \quad SOS$$

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

### Choice of $\mathcal{P}$ ?



$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

### Choice of $\mathcal{P}$ ?



$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

### Choice of $\mathcal{P}$ ?



## RealCertify with $n \geqslant 1$ : Absorbtion

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

## Choice of $\mathcal{P}$ ?

$$\begin{split} f &= 4x^4y^6 + x^2 - xy^2 + y^2 \\ \mathrm{spt}(f) &= \{(4,6), (2,0), (1,2), (0,2)\} \end{split}$$

Newton Polytope  $\mathcal{P} = \operatorname{conv}\left(\operatorname{spt}(f)\right)$ 



Squares in SOS decomposition  $\subseteq \frac{\mathcal{P}}{2} \cap \mathbb{N}^n$  [Reznick 78]



## RealCertify: Benchmarks

- RAGLib (critical points) [Safey El Din]
- SamplePoints (CAD) [Moreno Maza-Alvandi et al.]

| ld       | п  | d  | RealCertify     |           | RoundProject    |           | RAGLib                    | CAD       |
|----------|----|----|-----------------|-----------|-----------------|-----------|---------------------------|-----------|
|          |    |    | $\tau_1$ (bits) | $t_1$ (s) | $\tau_2$ (bits) | $t_2$ (s) | <i>t</i> <sub>3</sub> (s) | $t_4$ (s) |
| $f_{20}$ | 2  | 20 | 745 419         | 110.      | 78 949 497      | 141.      | 0.16                      | 0.03      |
| M        | 3  | 8  | 17 232          | 0.35      | 18 831          | 0.29      | 0.15                      | 0.03      |
| $f_2$    | 2  | 4  | 1 866           | 0.03      | 1 031           | 0.04      | 0.09                      | 0.01      |
| $f_6$    | 6  | 4  | 56 890          | 0.34      | 475 359         | 0.54      | 598.                      | _         |
| $f_1$    | 10 | 4  | 344 347         | 2.45      | 8 374 082       | 4.59      | _                         | _         |

#### **OPTIMIZATION GAME**

#### Solvers **OUTPUT** inaccurate certificates ⇒ extract solutions





$$\tilde{f} = f + \eta \sum_{|\beta|}$$



#### **OPTIMIZATION GAME**

Solvers **OUTPUT** inaccurate certificates ⇒ extract solutions





$$\tilde{f} = f + \eta \sum_{|\beta| \leqslant d} \mathbf{x}^{2\beta}$$



#### **CERTIFICATION GAME**

Optimizers **INPUT** inaccurate  $\tilde{f} = f - \eta \sum_{|\beta| \leqslant d} \mathbf{x}^{2\beta}$ 

⇒ exact certificates

#### **OPTIMIZATION GAME**

Solvers **OUTPUT** inaccurate certificates ⇒ extract solutions





$$\tilde{f} = f + \eta \sum_{|\beta| \leqslant d} \mathbf{x}^{2\beta}$$



#### **CERTIFICATION GAME**

Optimizers **INPUT** inaccurate  $\tilde{f} = f - \eta \sum_{|eta| \leqslant d} \mathbf{x}^{2eta}$ 

- ⇒ exact certificates
- Fig. Better arbitrary-precision SDP solvers
- Fixtension to other relaxations, sums of hermitian squares

#### **OPTIMIZATION GAME**

Solvers **OUTPUT** inaccurate certificates ⇒ extract solutions





$$\tilde{f} = f + \eta \sum_{|\beta| \leqslant d} \mathbf{x}^{2\beta}$$



#### **CERTIFICATION GAME**

Optimizers **INPUT** inaccurate  $\tilde{f} = f - \eta \sum_{|\beta| \leqslant d} \mathbf{x}^{2\beta}$   $\implies$  exact certificates

- Fig. Better arbitrary-precision SDP solvers
- Extension to other relaxations, sums of hermitian squares

**Crucial need for polynomial systems certification Available PhD/Postdoc Positions** 



#### End

#### Thank you for your attention!

gricad-gitlab:RealCertify
https://homepages.laas.fr/vmagron

- Lasserre & Magron. In SDP relaxations, inaccurate solvers do robust optimization, *SIOPT*. arxiv:1811.02879
- Magron & Safey El Din. On Exact Polya and Putinar's Representations, *ISSAC'18*. arxiv:1802.10339
- Magron & Safey El Din. RealCertify: a Maple package for certifying non-negativity, ISSAC'18. arxiv:1805.02201