Noncommutative polynomial optimization and quantum graph parameters

Sander Gribling, CWI

Joint work with David de Laat (TU Delft)

& Monique Laurent (CWI & Tilburg University)

 $\chi(G) = \min \text{ number of colors needed for proper coloring of } V$

 $\chi(G) = \min \text{ number of colors needed for proper coloring of } V$

$$\chi(G) = \min k \in \mathbb{N} \quad \text{s.t.} \quad \exists x_u^i \in \{0, 1\} \\ \sum_{i \in [k]} x_u^i = 1 \qquad \qquad \text{for } u \in V, i \in [k] \\ x_u^i x_u^j = 0 \qquad \qquad \text{for } u \in V, i \neq j \in [k] \\ x_u^i x_v^i = 0 \qquad \qquad \text{for } uv \in E, i \in [k]$$

 $\chi(G) = \min \text{ number of colors needed for proper coloring of } V$

$$\chi(G) = \min k \in \mathbb{N} \quad \text{s.t.} \quad \exists x_u^i \in \{0, 1\} \\ \sum_{i \in [k]} x_u^i = 1 \qquad \qquad \text{for } u \in V, i \in [k] \\ x_u^i x_u^j = 0 \qquad \qquad \text{for } u \in V, i \neq j \in [k] \\ x_u^i x_v^i = 0 \qquad \qquad \text{for } uv \in E, i \in [k]$$

$$ightharpoonup P(i,j|u,u) = 0 \text{ if } i \neq j$$

- $P(i,j|u,u) = 0 \text{ if } i \neq j$
- $ightharpoonup P(i,i|u,v) = 0 \text{ if } uv \in E$

P is synchronous \iff

- $ightharpoonup P(i,j|u,u) = 0 \text{ if } i \neq j$
- $ightharpoonup P(i,i|u,v) = 0 \text{ if } uv \in E$

P is synchronous \iff

- $ightharpoonup P(i,j|u,u) = 0 \text{ if } i \neq j$
- $ightharpoonup P(i,i|u,v) = 0 \text{ if } uv \in E$

$$\chi_q(G) = \min k \text{ s.t. } \exists P$$
 quantum, with

- $P(i,j|u,u) = 0 \text{ if } i \neq j$
- $ightharpoonup P(i,i|u,v) = 0 \text{ if } uv \in E$

 $A \in \mathbb{R}^{\ell \times \ell}$ is CPSD if there are Hermitian $d \times d$ psd matrices X_1, \ldots, X_ℓ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ for $i, j \in [\ell]$.

 $A \in \mathbb{R}^{\ell \times \ell}$ is CPSD if there are Hermitian $d \times d$ psd matrices X_1, \ldots, X_ℓ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ for $i, j \in [\ell]$.

Quantum correlation $P \rightsquigarrow \text{matrix } A_p = (P(i,j|u,v))_{iu,jv}$

 $A \in \mathbb{R}^{\ell \times \ell}$ is CPSD if there are Hermitian $d \times d$ psd matrices X_1, \ldots, X_ℓ with $A_{ii} = \operatorname{Tr}(X_i X_i)$ for $i, j \in [\ell]$.

Quantum correlation $P \leadsto \text{matrix } A_p = (P(i,j|u,v))_{iu,jv}$

Theorem [Paulsen et al.'16]

For synchronous correlations P:

P is a quantum correlation $\iff A_p \in \mathsf{CPSD}$

 $A \in \mathbb{R}^{\ell \times \ell}$ is CPSD if there are Hermitian $d \times d$ psd matrices X_1, \ldots, X_ℓ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ for $i, j \in [\ell]$.

Quantum correlation $P \rightsquigarrow \text{matrix } A_p = (P(i,j|u,v))_{iu,jv}$

Theorem [Paulsen et al.'16]

For synchronous correlations P:

P is a quantum correlation \iff $A_p \in CPSD$

$$\chi(G) = \min k \in \mathbb{N} \quad \text{s.t.} \quad \exists x_u^i \in \{0, 1\} \qquad \qquad \text{for } u \in V, i \in [k]$$

$$\sum_{i \in [k]} x_u^i = 1 \qquad \qquad \text{for } u \in V$$

$$x_u^i x_u^j = 0 \qquad \qquad \text{for } u \in V, i \neq j \in [k]$$

$$x_u^i x_v^i = 0 \qquad \qquad \text{for } uv \in E, i \in [k]$$

 $A \in \mathbb{R}^{\ell \times \ell}$ is CPSD if there are Hermitian $d \times d$ psd matrices X_1, \ldots, X_ℓ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ for $i, j \in [\ell]$.

Quantum correlation $P \rightsquigarrow \text{matrix } A_p = (P(i, j|u, v))_{iu, jv}$

Theorem [Paulsen et al.'16]

For synchronous correlations P:

P is a quantum correlation \iff $A_p \in \mathsf{CPSD}$

$$\chi(G) = \min k \in \mathbb{N} \quad \text{s.t.} \quad \exists x_u^i \ge 0 \qquad \qquad \text{for } u \in V, i \in [k]$$

$$\sum_{i \in [k]} x_u^i = 1 \qquad \qquad \text{for } u \in V$$

$$x_u^i x_u^j = 0 \qquad \qquad \text{for } u \in V, i \ne j \in [k]$$

$$x_u^i x_v^i = 0 \qquad \qquad \text{for } uv \in E, i \in [k]$$

 $A \in \mathbb{R}^{\ell \times \ell}$ is CPSD if there are Hermitian $d \times d$ psd matrices X_1, \ldots, X_ℓ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ for $i, j \in [\ell]$.

Quantum correlation $P \rightsquigarrow \text{matrix } A_p = (P(i,j|u,v))_{iu,jv}$

Theorem [Paulsen et al.'16]

For synchronous correlations P:

P is a quantum correlation $\iff A_p \in \mathsf{CPSD}$

$$\chi_q(G) = \min k \in \mathbb{N}$$
 s.t. $\exists X_u^i \succeq 0$ for $u \in V, i \in [k]$
$$\sum_{i \in [k]} X_u^i = 1$$
 for $u \in V$
$$X_u^i X_u^j = 0$$
 for $u \in V, i \neq j \in [k]$
$$X_u^i X_v^i = 0$$
 for $u \in V, i \neq j \in [k]$

$$\chi_q(G) = \min k \in \mathbb{N}$$
 s.t. $\exists X_u^i \succeq 0$ for $u \in V, i \in [k]$
$$\sum_{i \in [k]} X_u^i = 1$$
 for $u \in V$
$$X_u^i X_u^j = 0$$
 for $u \in V, i \neq j \in [k]$
$$X_u^i X_v^i = 0$$
 for $uv \in E, i \in [k]$

$$\chi_q(G) = \min k \in \mathbb{N}$$
 s.t. $\exists X_u^i \succeq 0$ for $u \in V, i \in [k]$
$$\sum_{i \in [k]} X_u^i = 1$$
 for $u \in V$
$$X_u^i X_u^j = 0$$
 for $u \in V, i \neq j \in [k]$
$$X_u^i X_v^i = 0$$
 for $u \in E, i \in [k]$

Let $\mathbf{X} = (X_u^i)$ be a solution using k colors.

Let $L: \mathbb{R}\langle \mathbf{x} \rangle \to \mathbb{R}$ be its trace evaluation map, then

$$\chi_q(G) = \min k \in \mathbb{N}$$
 s.t. $\exists X_u^i \succeq 0$ for $u \in V, i \in [k]$
$$\sum_{i \in [k]} X_u^i = 1$$
 for $u \in V$
$$X_u^i X_u^j = 0$$
 for $u \in V, i \neq j \in [k]$
$$X_u^i X_v^i = 0$$
 for $u \in E, i \in [k]$

Let $\mathbf{X} = (X_u^i)$ be a solution using k colors.

Let $L: \mathbb{R}\langle \mathbf{x} \rangle \to \mathbb{R}$ be its trace evaluation map, then

(1) L(1) = 1, L is symmetric, tracial, positive

$$\chi_q(G) = \min k \in \mathbb{N}$$
 s.t. $\exists X_u^i \succeq 0$ for $u \in V, i \in [k]$
$$\sum_{i \in [k]} X_u^i = 1$$
 for $u \in V$
$$X_u^i X_u^j = 0$$
 for $u \in V, i \neq j \in [k]$
$$X_u^i X_v^i = 0$$
 for $u \in V, i \neq j \in [k]$

Let $\mathbf{X} = (X_u^i)$ be a solution using k colors.

Let $L: \mathbb{R}\langle \mathbf{x} \rangle \to \mathbb{R}$ be its trace evaluation map, then

- (1) L(1) = 1, L is symmetric, tracial, positive
- (2) L = 0 on the ideal generated by:

$$\sum_{i \in [k]} X_u^i - 1 \quad (u \in V), \qquad X_u^i X_v^j \quad ((u \in V, i \neq j) \text{ or } (uv \in E, i = j))$$

$$\chi_q(G) = \min k \in \mathbb{N}$$
 s.t. $\exists X_u^i \succeq 0$ for $u \in V, i \in [k]$
$$\sum_{i \in [k]} X_u^i = 1$$
 for $u \in V$
$$X_u^i X_u^j = 0$$
 for $u \in V, i \neq j \in [k]$
$$X_u^i X_v^i = 0$$
 for $u \in E, i \in [k]$

Let $\mathbf{X} = (X_u^i)$ be a solution using k colors.

Let $L: \mathbb{R}\langle \mathbf{x} \rangle \to \mathbb{R}$ be its trace evaluation map, then

- (1) L(1) = 1, L is symmetric, tracial, positive
- (2) L = 0 on the ideal generated by:

$$\sum_{i \in [k]} X_u^i - 1 \quad (u \in V), \qquad X_u^i X_v^j \quad ((u \in V, i \neq j) \text{ or } (uv \in E, i = j))$$

Restricting to polynomials of degree $\leq 2t$ gives the parameters:

$$\gamma_t(G) = \min k$$
 s.t. $\exists L \in \mathbb{R} \langle \mathbf{x} \rangle_{2t}^*$ satisfying (1)-(2)

$$\chi_q(G) = \min k \in \mathbb{N}$$
 s.t. $\exists X_u^i \succeq 0$ for $u \in V, i \in [k]$
$$\sum_{i \in [k]} X_u^i = 1$$
 for $u \in V$
$$X_u^i X_u^j = 0$$
 for $u \in V, i \neq j \in [k]$
$$X_u^i X_v^i = 0$$
 for $u \in E, i \in [k]$

Let $\mathbf{X} = (X_u^i)$ be a solution using k colors.

Let $L: \mathbb{R}\langle \mathbf{x} \rangle \to \mathbb{R}$ be its trace evaluation map, then

- (1) L(1) = 1, L is symmetric, tracial, positive
- (2) L = 0 on the ideal generated by:

$$\sum_{i \in [k]} X_u^i - 1 \quad (u \in V), \qquad X_u^i X_v^j \quad ((u \in V, i \neq j) \text{ or } (uv \in E, i = j))$$

Restricting to polynomials of degree $\leq 2t$ gives the parameters:

$$\gamma_t(G) = \min k$$
 s.t. $\exists L \in \mathbb{R} \langle \mathbf{x} \rangle_{2t}^*$ satisfying (1)-(2)

$$\gamma_t(G) \leq \chi_q(G)$$

$$\chi_q(G) = \min k \in \mathbb{N}$$
 s.t. $\exists X_u^i \succeq 0$ for $u \in V, i \in [k]$
$$\sum_{i \in [k]} X_u^i = 1$$
 for $u \in V$
$$X_u^i X_u^j = 0$$
 for $u \in V, i \neq j \in [k]$
$$X_u^i X_v^i = 0$$
 for $u \in E, i \in [k]$

Let $\mathbf{X} = (X_u^i)$ be a solution using k colors.

Let $L: \mathbb{R}\langle \mathbf{x} \rangle \to \mathbb{R}$ be its trace evaluation map, then

- (1) L(1) = 1, L is symmetric, tracial, positive
- (2) L = 0 on the ideal generated by:

$$\sum_{i\in [k]} X_u^i - 1 \quad (u\in V), \qquad X_u^i X_v^j \quad ((u\in V, i
eq j) ext{ or } (uv\in E, i=j))$$

Restricting to polynomials of degree $\leq 2t$ gives the parameters:

$$\gamma_t(G) = \min k$$
 s.t. $\exists L \in \mathbb{R} \langle \mathbf{x} \rangle_{2t}^*$ satisfying (1)-(2)

$$\gamma_t(G) \leq \chi_q(G)$$

 $\gamma_t(G) = \chi_q(G)$ if there exists a 'flat' optimal solution

Problem with $\gamma_t(G)$: too many variables!

Problem with $\gamma_t(G)$: too many variables! Solution: use variables x_u indexed by vertices u:

Problem with $\gamma_t(G)$: too many variables! Solution: use variables x_u indexed by vertices u:

$$\xi_t(G) = \inf L(1) \text{ s.t. } L \in \mathbb{R}\langle \mathbf{x} \rangle_{2t}^* \text{ symmetric, tracial, positive } \\ L(x_u) = 1 \\ L = 0 \text{ on ideal generated by } \\ x_u^2 - x_u \ (u \in V), \quad x_u x_v \ (uv \in E)$$

Write $\xi_*(G)$ for " $\xi_{\infty}(G)$ plus a finite rank constraint"

Problem with $\gamma_t(G)$: too many variables! Solution: use variables x_u indexed by vertices u:

 $\xi_t(G)=\inf L(1)$ s.t. $L\in \mathbb{R}\langle \mathbf{x}
angle_{2t}^*$ symmetric, tracial, positive $L(x_u)=1$ L=0 on ideal generated by $x_u^2-x_u\ (u\in V),\quad x_ux_v\ (uv\in E)$

Write $\xi_*(G)$ for " $\xi_\infty(G)$ plus a finite rank constraint"

$$\overline{\vartheta}(G) = \xi_1(G)$$

Problem with $\gamma_t(G)$: too many variables!

Solution: use variables x_u indexed by vertices u:

$$\xi_t(G) = \inf L(1) \text{ s.t. } L \in \mathbb{R}\langle \mathbf{x} \rangle_{2t}^* \text{ symmetric, tracial, positive} \\ L(x_u) = 1 \\ L = 0 \text{ on ideal generated by} \\ x_u^2 - x_u \ (u \in V), \quad x_u x_v \ (uv \in E)$$

Write $\xi_*(G)$ for " $\xi_\infty(G)$ plus a finite rank constraint"

- $\overline{\vartheta}(G) = \xi_1(G)$
- $\xi_{t-1}(G) \le \xi_t(G) \to \xi_{\infty}(G) \le \xi_*(G) \le \chi_q(G)$

Problem with $\gamma_t(G)$: too many variables!

Solution: use variables x_u indexed by vertices u:

$$\xi_t(G)=\inf L(1)$$
 s.t. $L\in \mathbb{R}\langle \mathbf{x}
angle_{2t}^*$ symmetric, tracial, positive $L(x_u)=1$ $L=0$ on ideal generated by $x_u^2-x_u\ (u\in V),\quad x_ux_v\ (uv\in E)$

Write $\xi_*(G)$ for " $\xi_\infty(G)$ plus a finite rank constraint"

- $\overline{\vartheta}(G) = \xi_1(G)$
- $\xi_{t-1}(G) \leq \xi_t(G) \to \xi_{\infty}(G) \leq \xi_*(G) \leq \chi_q(G)$
- lacksquare $\xi_t(G)$ is a tracial analogue of Lasserre-type bounds $\mathrm{las}_t(G)$

Problem with $\gamma_t(G)$: too many variables!

Solution: use variables x_u indexed by vertices u:

$$\xi_t(G)=\inf L(1)$$
 s.t. $L\in \mathbb{R}\langle \mathbf{x}
angle_{2t}^*$ symmetric, tracial, positive $L(x_u)=1$ $L=0$ on ideal generated by $x_u^2-x_u\ (u\in V),\quad x_ux_v\ (uv\in E)$

Write $\xi_*(G)$ for " $\xi_\infty(G)$ plus a finite rank constraint"

- $\overline{\vartheta}(G) = \xi_1(G)$
- \blacktriangleright $\xi_t(G)$ is a tracial analogue of Lasserre-type bounds $\operatorname{las}_t(G)$
- ▶ We know $\operatorname{las}_t^{\operatorname{col}}(G) = \chi_f(G)$ if $t \geq \alpha(G)$

[Gvozdenović-Laurent'08]

Problem with $\gamma_t(G)$: too many variables!

Solution: use variables x_u indexed by vertices u:

$$\xi_t(G)=\inf L(1)$$
 s.t. $L\in \mathbb{R}\langle \mathbf{x}
angle_{2t}^*$ symmetric, tracial, positive $L(x_u)=1$ $L=0$ on ideal generated by $x_u^2-x_u\ (u\in V),\quad x_ux_v\ (uv\in E)$

Write $\xi_*(G)$ for " $\xi_\infty(G)$ plus a finite rank constraint"

- $\blacktriangleright \ \overline{\vartheta}(G) = \xi_1(G)$
- $\xi_{t-1}(G) \le \xi_t(G) \to \xi_{\infty}(G) \le \xi_*(G) \le \chi_q(G)$
- $ightharpoonup \xi_t(G)$ is a tracial analogue of Lasserre-type bounds $\operatorname{las}_t(G)$
- We know $\operatorname{las}_t^{\operatorname{col}}(G) = \chi_f(G)$ if $t \geq \alpha(G)$

[Gvozdenović-Laurent'08]

We show $\xi_{\infty}(G) = \text{tracial rank of } G$ [Paulsen et al. '14] and $\xi_{*}(G) = \text{projective rank of } G$ [Mančinska-Roberson'12] $= \inf \frac{d}{dt} \text{ s.t. } \exists \text{ rk-} r \text{ } d \times d \text{ projectors } X_{u} \text{ s.t. } X_{u} X_{v} = 0 \text{ } (uv \in E)$

▶ We can do the same for the (quantum) stability number

- ▶ We can do the same for the (quantum) stability number
 - Link $\gamma_r^{\rm col}(G)$ and $\gamma_r^{\rm stab}(G)$ to $\xi_r^{\rm stab}(G)$ using graph products

- ▶ We can do the same for the (quantum) stability number
 - Link $\gamma_r^{\mathrm{col}}(G)$ and $\gamma_r^{\mathrm{stab}}(G)$ to $\xi_r^{\mathrm{stab}}(G)$ using graph products
- ▶ Today only $\chi_q(G)$, but there is also $\chi_{qc}(G)$, can these be separated? (tracial rank in fact lower bounds $\chi_{qc}(G)$)

- ▶ We can do the same for the (quantum) stability number
 - ▶ Link $\gamma_r^{\rm col}(G)$ and $\gamma_r^{\rm stab}(G)$ to $\xi_r^{\rm stab}(G)$ using graph products
- ▶ Today only $\chi_q(G)$, but there is also $\chi_{qc}(G)$, can these be separated? (tracial rank in fact lower bounds $\chi_{qc}(G)$)
- ▶ Can $\xi_{\infty}(G)$ and $\xi_{*}(G)$ be different?

- ▶ We can do the same for the (quantum) stability number
 - ▶ Link $\gamma_r^{\rm col}(G)$ and $\gamma_r^{\rm stab}(G)$ to $\xi_r^{\rm stab}(G)$ using graph products
- ▶ Today only $\chi_q(G)$, but there is also $\chi_{qc}(G)$, can these be separated? (tracial rank in fact lower bounds $\chi_{qc}(G)$)
- ▶ Can $\xi_{\infty}(G)$ and $\xi_{*}(G)$ be different?
 - Connes' embedding conjecture implies "="

[Dykema-Paulsen'16]

- ▶ We can do the same for the (quantum) stability number
 - ▶ Link $\gamma_r^{\rm col}(G)$ and $\gamma_r^{\rm stab}(G)$ to $\xi_r^{\rm stab}(G)$ using graph products
- ▶ Today only $\chi_q(G)$, but there is also $\chi_{qc}(G)$, can these be separated? (tracial rank in fact lower bounds $\chi_{qc}(G)$)
- ▶ Can $\xi_{\infty}(G)$ and $\xi_{*}(G)$ be different?
 - Connes' embedding conjecture implies "="

[Dykema-Paulsen'16]

• $\xi_*(G)$ or $\xi_\infty(G)$ irrational \Rightarrow Tsirelson's conjecture is false.

- ▶ We can do the same for the (quantum) stability number
 - ▶ Link $\gamma_r^{\rm col}(G)$ and $\gamma_r^{\rm stab}(G)$ to $\xi_r^{\rm stab}(G)$ using graph products
- ▶ Today only $\chi_q(G)$, but there is also $\chi_{qc}(G)$, can these be separated? (tracial rank in fact lower bounds $\chi_{qc}(G)$)
- ▶ Can $\xi_{\infty}(G)$ and $\xi_{*}(G)$ be different?
 - Connes' embedding conjecture implies "="

[Dykema-Paulsen'16]

▶ $\xi_*(G)$ or $\xi_\infty(G)$ irrational \Rightarrow Tsirelson's conjecture is false. We now know that Tsirelson's conjecture is false.

- ▶ We can do the same for the (quantum) stability number
 - ▶ Link $\gamma_r^{\rm col}(G)$ and $\gamma_r^{\rm stab}(G)$ to $\xi_r^{\rm stab}(G)$ using graph products
- ▶ Today only $\chi_q(G)$, but there is also $\chi_{qc}(G)$, can these be separated? (tracial rank in fact lower bounds $\chi_{qc}(G)$)
- ▶ Can $\xi_{\infty}(G)$ and $\xi_{*}(G)$ be different?
 - Connes' embedding conjecture implies "="

[Dykema-Paulsen'16]

• $\xi_*(G)$ or $\xi_\infty(G)$ irrational \Rightarrow Tsirelson's conjecture is false. We now know that Tsirelson's conjecture is false. Can we find a graph for which $\xi_*(G)$ or $\xi_\infty(G)$ is irrational?

- ▶ We can do the same for the (quantum) stability number
 - ▶ Link $\gamma_r^{\rm col}(G)$ and $\gamma_r^{\rm stab}(G)$ to $\xi_r^{\rm stab}(G)$ using graph products
- ▶ Today only $\chi_q(G)$, but there is also $\chi_{qc}(G)$, can these be separated? (tracial rank in fact lower bounds $\chi_{qc}(G)$)
- ▶ Can $\xi_{\infty}(G)$ and $\xi_{*}(G)$ be different?
 - Connes' embedding conjecture implies "="

[Dykema-Paulsen'16]

• $\xi_*(G)$ or $\xi_\infty(G)$ irrational \Rightarrow Tsirelson's conjecture is false. We now know that Tsirelson's conjecture is false. Can we find a graph for which $\xi_*(G)$ or $\xi_\infty(G)$ is irrational? (Use the SoS-dual to give lower bounds?)

- ▶ We can do the same for the (quantum) stability number
 - Link $\gamma_r^{\mathrm{col}}(G)$ and $\gamma_r^{\mathrm{stab}}(G)$ to $\xi_r^{\mathrm{stab}}(G)$ using graph products
- ▶ Today only $\chi_q(G)$, but there is also $\chi_{qc}(G)$, can these be separated? (tracial rank in fact lower bounds $\chi_{qc}(G)$)
- ▶ Can $\xi_{\infty}(G)$ and $\xi_{*}(G)$ be different?
 - Connes' embedding conjecture implies "="

[Dykema-Paulsen'16]

- $\xi_*(G)$ or $\xi_\infty(G)$ irrational \Rightarrow Tsirelson's conjecture is false. We now know that Tsirelson's conjecture is false. Can we find a graph for which $\xi_*(G)$ or $\xi_\infty(G)$ is irrational? (Use the SoS-dual to give lower bounds?)
- ▶ The tracial rank and $\overline{\vartheta}$ are multiplicative wrt the OR product and lexicographical product; what about ξ_t ?