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Synchronous quantum correlations & CPSD

A € R* is CPSD if there are Hermitian d x d psd matrices
X1, ..., Xg with Aj = Tr(X;X;) for i,j € [€].
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Restricting to polynomials of degree < 2t gives the parameters:

7(G) = mink s.t. IL € R{x)3, satisfying (1)-(2)|

7t(G) < xq(G)
7t(G) = xq(G) if there exists a ‘flat’ optimal solution
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Solution: use variables x, indexed by vertices u:

&(G) =inf L(1) s.t. L € R(x)3, symmetric, tracial, positive
L(x,)=1
L = 0 on ideal generated by
x2—x, (We V), xux, (uv € E)

Write £,(G) for “€5(G) plus a finite rank constraint”

> )(G) = &(6)

> £-1(G) < &(6) = §o(G) < &u(G) < xq(G)

» &(G) is a tracial analogue of Lasserre-type bounds las:(G)

» We know 1as$®(G) = x¢(G) if t > a(G)

[Gvozdenovié¢-Laurent'08]

» We show {.(G) = tracial rank of G [Paulsen et al. '14]
and £.(G) = projective rank of G~ [Mantinska-Roberson‘12]
= inf% s.t. drk-r d x d projectors X, s.t. X, X, =0 (uv € E)



Concluding remarks & open questions

» We can do the same for the (quantum) stability number



Concluding remarks & open questions

» We can do the same for the (quantum) stability number
» Link 7°/(G) and 45t2P(G) to £5*2P(G) using graph products



Concluding remarks & open questions

» We can do the same for the (quantum) stability number
» Link 7°/(G) and 45t2P(G) to £5*2P(G) using graph products
» Today only x4(G), but there is also x4c(G), can these be
separated? (tracial rank in fact lower bounds x4c(G))



Concluding remarks & open questions

» We can do the same for the (quantum) stability number
» Link 7°/(G) and 45t2P(G) to £5*2P(G) using graph products
» Today only x4(G), but there is also x4c(G), can these be
separated? (tracial rank in fact lower bounds x4c(G))
» Can £5(G) and &,(G) be different?



Concluding remarks & open questions

» We can do the same for the (quantum) stability number
» Link 7¢°(G) and ~5%P(G) to &P (G) using graph products
» Today only x4(G), but there is also x4c(G), can these be
separated? (tracial rank in fact lower bounds x4c(G))
» Can £5(G) and &,(G) be different?
» Connes’ embedding conjecture implies ="
[Dykema-Paulsen‘16]



Concluding remarks & open questions

v

We can do the same for the (quantum) stability number
» Link 7¢°(G) and ~5%P(G) to &P (G) using graph products
Today only x4(G), but there is also xqc(G), can these be
separated? (tracial rank in fact lower bounds x4c(G))
Can £5(G) and &,(G) be different?
» Connes’ embedding conjecture implies ="
[Dykema-Paulsen‘16]

&«(G) or £xo(G) irrational = Tsirelson's conjecture is false.

v

v

v



Concluding remarks & open questions

v

We can do the same for the (quantum) stability number

» Link 7°/(G) and 45t2P(G) to £5*2P(G) using graph products
Today only x4(G), but there is also xqc(G), can these be
separated? (tracial rank in fact lower bounds x4c(G))
Can £5(G) and &,(G) be different?

» Connes’ embedding conjecture implies ="

[Dykema-Paulsen'16]

€+(G) or £ao(G) irrational = Tsirelson's conjecture is false.
We now know that Tsirelson's conjecture is false.

v

v

v



Concluding remarks & open questions

v

We can do the same for the (quantum) stability number

» Link 7°/(G) and 45t2P(G) to £5*2P(G) using graph products
Today only x4(G), but there is also xqc(G), can these be
separated? (tracial rank in fact lower bounds x4c(G))
Can £5(G) and &,(G) be different?

» Connes’ embedding conjecture implies ="

[Dykema-Paulsen'16]

€+(G) or £ao(G) irrational = Tsirelson's conjecture is false.
We now know that Tsirelson's conjecture is false.
Can we find a graph for which &.(G) or {oo(G) is irrational?

v

v

v



Concluding remarks & open questions

v

We can do the same for the (quantum) stability number

» Link 7¢°(G) and ~5%P(G) to &P (G) using graph products
Today only x4(G), but there is also xqc(G), can these be
separated? (tracial rank in fact lower bounds x4c(G))
Can £5(G) and &,(G) be different?

» Connes’ embedding conjecture implies ="

[Dykema-Paulsen‘16]

€+(G) or £ao(G) irrational = Tsirelson's conjecture is false.
We now know that Tsirelson's conjecture is false.
Can we find a graph for which &.(G) or {oo(G) is irrational?
(Use the SoS-dual to give lower bounds?)

v

v

v



Concluding remarks & open questions

» We can do the same for the (quantum) stability number
» Link 7¢°(G) and ~5%P(G) to &P (G) using graph products
» Today only x4(G), but there is also x4c(G), can these be
separated? (tracial rank in fact lower bounds x4c(G))
» Can £5(G) and &,(G) be different?
» Connes’ embedding conjecture implies ="
[Dykema-Paulsen‘16]
> £(G) or £5(G) irrational = Tsirelson's conjecture is false.
We now know that Tsirelson's conjecture is false.
Can we find a graph for which &.(G) or {oo(G) is irrational?
(Use the SoS-dual to give lower bounds?)

» The tracial rank and ¥ are multiplicative wrt the OR product
and lexicographical product; what about &7



