The set of separable states has no semidefinite representation except in dimension 3×2

Hamza Fawzi

University of Cambridge

SIAM Conference on Applied Algebraic Geometry Bern, July 2019

Separable states

$$\operatorname{Sep}(n,m)=\operatorname{conv}\left\{\ (x\otimes y)(x\otimes y)^{\dagger}\ : x\in\mathbb{C}^{n},y\in\mathbb{C}^{m}\ \right\}.$$

• $x^{\dagger} = \bar{x}^T$

• Full-dim convex cone in $\operatorname{Herm}(nm) \simeq \mathbb{C}^{n^2m^2}$

• Plays a fundamental role in quantum information. Sep = set of non-entangled bipartite states on $\mathbb{C}^n \otimes \mathbb{C}^m$

Polynomials, duality

Linear form nonnegative on Sep(n, m):

$$\underbrace{\langle M, (x \otimes y)(x \otimes y)^{\dagger} \rangle}_{\sum_{ijkl} M_{ij,kl} \times_i \bar{X}_k y_j \bar{y}_l} \geq 0 \quad \forall (x,y) \in \mathbb{C}^n \times \mathbb{C}^m.$$

Polynomials, duality

Linear form nonnegative on Sep(n, m):

$$\underbrace{\langle M, (x \otimes y)(x \otimes y)^{\dagger} \rangle}_{\sum_{ijkl} M_{ij,kl} x_i \bar{x}_k y_j \bar{y}_l} \geq 0 \quad \forall (x,y) \in \mathbb{C}^n \times \mathbb{C}^m.$$

- Dual of Sep = cone of nonnegative Hermitian biquadratic polynomials
- Hermitian polynomial: $f(z,\bar{z})$ polynomial in (z,\bar{z}) such that $f(z,\bar{z}) \in \mathbb{R}$ for all $z \in \mathbb{C}^N$

$$f(z, \bar{z}) = \sum_{lpha, eta} f_{lphaeta} z^{lpha} \bar{z}^{eta}, \qquad f_{lphaeta} = \overline{f_{etalpha}}$$

Sums of squares

• Hermitian polynomial $f(z,\bar{z})$ is a sum of squares if

$$f(z,\bar{z}) = \sum_{i} g_{i}(z,\bar{z})^{2}$$

for some Hermitian polynomials $g_i(z,\bar{z})$

$$p_M(x,\bar{x},y,\bar{y}) = \sum_{ijkl} M_{ijkl} x_i \bar{x}_k y_j \bar{y}_l$$

• $Sep^* = \{M \in Herm(nm) : p_M \text{ is nonnegative}\}.$

$$p_M(x,\bar{x},y,\bar{y}) = \sum_{ijkl} M_{ijkl} x_i \bar{x}_k y_j \bar{y}_l$$

- $Sep^* = \{M \in Herm(nm) : p_M \text{ is nonnegative}\}.$
- PPT* = $\{M \in \text{Herm}(nm) : p_M \text{ is sos}\}$ where

$$\mathtt{PPT} = \{ \rho \in \mathsf{Herm}(\mathit{nm}) : \rho \geq 0 \text{ and } (I \otimes T)(\rho) \geq 0 \}$$

with T = transpose map

$$p_M(x,\bar{x},y,\bar{y}) = \sum_{ijkl} M_{ijkl} x_i \bar{x}_k y_j \bar{y}_l$$

- $Sep^* = \{M \in Herm(nm) : p_M \text{ is nonnegative}\}.$
- $PPT^* = \{M \in Herm(nm) : p_M \text{ is sos}\}$ where

$$PPT = \{ \rho \in Herm(nm) : \rho \ge 0 \text{ and } (I \otimes T)(\rho) \ge 0 \}$$

with T = transpose map

$$p_M(x,\bar{x},y,\bar{y}) = \sum_{ijkl} M_{ijkl} x_i \bar{x}_k y_j \bar{y}_l$$

- $Sep^* = \{M \in Herm(nm) : p_M \text{ is nonnegative}\}.$
- $PPT^* = \{M \in Herm(nm) : p_M \text{ is sos}\}$ where

$$\mathtt{PPT} = \{ \rho \in \mathsf{Herm}(\mathit{nm}) : \rho \geq 0 \text{ and } (I \otimes T)(\rho) \geq 0 \}$$

with T = transpose map

• Størmer–Woronowicz: Sep(n, m) = PPT(n, m) iff $n + m \le 5$

• PPT has a nice description amenable to semidefinite programming (SDP)

- PPT has a nice description amenable to semidefinite programming (SDP)
- Set $C \subseteq \mathbb{R}^N$ has a SDP representation if

$$C = \{x \in \mathbb{R}^N : \exists y \in \mathbb{R}^M \text{ s.t. } A(x,y) \ge 0\}$$

where A(x, y) is a symmetric matrix that depends affinely on (x, y).

- PPT has a nice description amenable to semidefinite programming (SDP)
- Set $C \subseteq \mathbb{R}^N$ has a SDP representation if

$$C = \left\{ x \in \mathbb{R}^N : \exists y \in \mathbb{R}^M \text{ s.t. } A(x, y) \ge 0 \right\}$$

where A(x, y) is a symmetric matrix that depends affinely on (x, y).

• Does Sep(n, m) have an SDP representation outside the range $n + m \le 5$?

Theorem (Fawzi)

If $Sep(n, m) \neq PPT(n, m)$ then Sep(n, m) has no SDP representation.

• A lot of recent work on understanding existence of SDP representations/size of representations (psd rank, sums of squares, ...).

• A lot of recent work on understanding existence of SDP representations/size of representations (psd rank, sums of squares, ...).

• Scheiderer (2016) gave examples of convex semialgebraic sets that do not have any semidefinite representation, solving a long-standing open problem

• A lot of recent work on understanding existence of SDP representations/size of representations (psd rank, sums of squares, ...).

• Scheiderer (2016) gave examples of convex semialgebraic sets that do not have any semidefinite representation, solving a long-standing open problem

 This talk: another look at Scheiderer's proof, and application to the set of separable states

General result in the real case

Theorem (Main, real case)

Let $p \in \mathbb{R}[x]$ be a nonnegative polynomial that is not sos. Let

$$A = \{ \alpha \in \mathbb{N}^n : \alpha \leq \beta \text{ for some } \beta \in \text{support}(p) \}$$

be the "staircase" under support(p). Then

$$C_A = \operatorname{conv} \{(x^{\alpha})_{\alpha \in A} : x \in \mathbb{R}^n\}$$

has no semidefinite representation.

General result in the real case

Theorem (Main, real case)

Let $p \in \mathbb{R}[x]$ be a nonnegative polynomial that is not sos. Let

$$A = \{ \alpha \in \mathbb{N}^n : \alpha \leq \beta \text{ for some } \beta \in \text{support}(p) \}$$

be the "staircase" under support(p). Then

$$C_A = \operatorname{conv} \{(x^{\alpha})_{\alpha \in A} : x \in \mathbb{R}^n\}$$

has no semidefinite representation.

• Application: Take p= Motzkin (inhomogeneous) polynomial. Associated A is $\subseteq \{\alpha \in \mathbb{N}^2 : |\alpha| \le 6\}$. Shows that $P_{2,6}^*$ has no SDP representation (where $P_{2,6}$ is set of nonneg. polynomials in 2 vars. of degree ≤ 6)

$$C_A = \operatorname{conv} \{(x^{\alpha})_{\alpha \in A} : x \in \mathbb{R}^n\}$$

ullet Linear functions nonnegative on $\mathcal{C}_A \leftrightarrow$ nonnegative polynomials supported on A

Characterization of SDP lifts [Gouveia, Parrilo, Thomas]:

Theorem

 C_A has an SDP representation iff there are functions $f_i : \mathbb{R}^n \to \mathbb{R}$ (i = 1, ..., k) such that any nonnegative polynomial supported on A can be written as a sum of squares of functions from span $(f_1, ..., f_k)$.

$$C_A = \operatorname{conv} \{(x^{\alpha})_{\alpha \in A} : x \in \mathbb{R}^n\}$$

ullet Linear functions nonnegative on $C_A \leftrightarrow$ nonnegative polynomials supported on A

Characterization of SDP lifts [Gouveia, Parrilo, Thomas]:

Theorem

 C_A has an SDP representation iff there are semialgebraic functions $f_i: \mathbb{R}^n \to \mathbb{R}$ $(i=1,\ldots,k)$ such that any nonnegative polynomial supported on A can be written as a sum of squares of functions from $\mathrm{span}(f_1,\ldots,f_k)$.

$$C_A = \operatorname{conv} \{(x^{\alpha})_{\alpha \in A} : x \in \mathbb{R}^n\}$$

ullet Linear functions nonnegative on $C_A \leftrightarrow$ nonnegative polynomials supported on A

Characterization of SDP lifts [Gouveia, Parrilo, Thomas]:

Theorem

 C_A has an SDP representation iff there are semialgebraic functions $f_i: \mathbb{R}^n \to \mathbb{R}$ $(i=1,\ldots,k)$ such that any nonnegative polynomial supported on A can be written as a sum of squares of functions from $\mathrm{span}(f_1,\ldots,f_k)$.

• $f: \mathbb{R}^n \to \mathbb{R}$ is semialgebraic if its graph $\{(x, f(x)) : x \in \mathbb{R}^n\}$ is a semialgebraic subset of \mathbb{R}^{n+1}

$$C_A = \operatorname{conv} \{(x^{\alpha})_{\alpha \in A} : x \in \mathbb{R}^n\}$$

• Linear functions nonnegative on $C_A \leftrightarrow$ nonnegative polynomials supported on A

Characterization of SDP lifts [Gouveia, Parrilo, Thomas]:

$\mathsf{Theorem}$

 C_A has an SDP representation iff there are semialgebraic functions $f_i: \mathbb{R}^n \to \mathbb{R}$ $(i=1,\ldots,k)$ such that any nonnegative polynomial supported on A can be written as a sum of squares of functions from $\mathrm{span}(f_1,\ldots,f_k)$.

- $f: \mathbb{R}^n \to \mathbb{R}$ is semialgebraic if its graph $\{(x, f(x)) : x \in \mathbb{R}^n\}$ is a semialgebraic subset of \mathbb{R}^{n+1}
- Semialgebraic functions are tame: They are smooth (C^{∞}) almost everywhere (except on a set of measure 0)

Proof of main theorem

$$p$$
 nonnegative polynomial not sos, $A=$ staircase under support (p)
$$C_A=\operatorname{conv}\left\{(x^\alpha)_{\alpha\in A}:x\in\mathbb{R}^n\right\}.$$

- Assume C_A has an SDP representation, and let $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ be the semialgebraic functions associated to this representation
- Since A is a staircase, I can translate the f_i as I want, i.e., the $\tilde{f}_i(x) = f_i(x-a)$ (for any $a \in \mathbb{R}^n$) are also "valid"
- Since the $(f_i)_{i=1,...,k}$ are smooth almost everywhere, there is a point $a \in \mathbb{R}^n$ such that the f_i are all smooth at a. By shifting, can assume wlog that a=0

Smooth sums of squares

Proposition

Assume p is a homogeneous polynomial such that $p = \sum_j f_j^2$ for some arbitrary functions f_j that are C^{∞} at the origin. Then p is a sum of squares of polynomials.

Proof: Taylor expansion

Smooth sums of squares

Proposition

Assume p is a homogeneous polynomial such that $p = \sum_j f_j^2$ for some arbitrary functions f_j that are C^{∞} at the origin. Then p is a sum of squares of polynomials.

Proof: Taylor expansion

• Proves theorem when *p* is homogeneous

Smooth sums of squares

Proposition

Assume p is a homogeneous polynomial such that $p = \sum_j f_j^2$ for some arbitrary functions f_j that are C^{∞} at the origin. Then p is a sum of squares of polynomials.

Proof: Taylor expansion

• Proves theorem when *p* is homogeneous

 Additional technical argument based on Puiseux expansions is needed for general p

Main result, complex case

Theorem (Main, complex case)

Let p be a nonnegative Hermitian polynomial that is not sos. Let

$$A = \{(\alpha, \alpha') \in \mathbb{N}^n \times \mathbb{N}^n : (\alpha, \alpha') \le (\beta, \beta'), \text{ for some } (\beta, \beta') \in \text{support}(p)\}$$

be the "staircase" under support(p). Then

$$C_A = \operatorname{conv}\left\{\left(z^{\alpha}\overline{z}^{\alpha'}\right)_{(\alpha,\alpha')\in A}: z\in\mathbb{C}^n\right\}$$

has no semidefinite representation.

Main result, complex case

Theorem (Main, complex case)

Let p be a nonnegative Hermitian polynomial that is not sos. Let

$$A = \{(\alpha, \alpha') \in \mathbb{N}^n \times \mathbb{N}^n : (\alpha, \alpha') \le (\beta, \beta'), \text{ for some } (\beta, \beta') \in \text{support}(p)\}$$

be the "staircase" under support(p). Then

$$C_A = \operatorname{conv}\left\{\left(z^{\alpha}\overline{z}^{\alpha'}\right)_{(\alpha,\alpha')\in A}: z\in\mathbb{C}^n\right\}$$

has no semidefinite representation.

- If $Sep(n, m) \neq PPT(n, m)$, apply theorem above with p = (dehomogenized) nonnegative Hermitian biquadratic on (n, m) variables that is not sos
- Caveat about Hermitian polynomials: dehomogenized polynomial can be sos even if the homogeneous form is not!

Main result, complex case

Theorem (Main, complex case)

Let p be a nonnegative Hermitian polynomial that is not sos. Let

$$A = \{(\alpha, \alpha') \in \mathbb{N}^n \times \mathbb{N}^n : (\alpha, \alpha') \le (\beta, \beta'), \text{ for some } (\beta, \beta') \in \text{support}(p)\}$$

be the "staircase" under support(p). Then

$$C_A = \operatorname{conv}\left\{\left(z^{\alpha}\overline{z}^{\alpha'}\right)_{(\alpha,\alpha')\in A}: z\in\mathbb{C}^n\right\}$$

has no semidefinite representation.

- If $Sep(n, m) \neq PPT(n, m)$, apply theorem above with p = (dehomogenized) nonnegative Hermitian biquadratic on (n, m) variables that is not sos
- Caveat about Hermitian polynomials: dehomogenized polynomial can be sos even if the homogeneous form is not!

Thank you! arXiv:1905.02575