Completely log-concave polynomials and matroids

Cynthia Vinzant
(North Carolina State University)
joint work with
Nima Anari, KuiKui Liu, Shayan Oveis Gharan
(Stanford) (U. Washington) (U. Washington)

Complete log-concavity

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is log-concave on $\mathbb{R}_{>0}^{n}$ if $f \equiv 0$ or $f(x) \geq 0$ for all $x \in \mathbb{R}_{\geq 0}^{n}$ and $\log (f)$ is concave on $\mathbb{R}_{>0}^{n}$.

Complete log-concavity

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is log-concave on $\mathbb{R}_{>0}^{n}$ if $f \equiv 0$ or $f(x) \geq 0$ for all $x \in \mathbb{R}_{\geq 0}^{n}$ and $\log (f)$ is concave on $\mathbb{R}_{>0}^{n}$.

For $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, let $D_{v}=\sum_{i=1}^{n} v_{i} \frac{\partial f}{\partial z_{i}}$.
$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is completely log-concave (CLC) on $\mathbb{R}_{>0}^{n}$ if for all $k \in \mathbb{N}, v_{1}, \ldots, v_{k} \in \mathbb{R}_{\geq 0}^{n}$,

$$
D_{v_{1}} \cdots D_{v_{k}} f \text { is log-concave on } \mathbb{R}_{\geq 0}^{n} .
$$

Complete log-concavity

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is log-concave on $\mathbb{R}_{>0}^{n}$ if $f \equiv 0$ or $f(x) \geq 0$ for all $x \in \mathbb{R}_{\geq 0}^{n}$ and $\log (f)$ is concave on $\mathbb{R}_{>0}^{n}$.

For $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, let $D_{v}=\sum_{i=1}^{n} v_{i} \frac{\partial f}{\partial z_{i}}$.
$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is completely log-concave (CLC) on $\mathbb{R}_{>0}^{n}$ if for all $k \in \mathbb{N}, v_{1}, \ldots, v_{k} \in \mathbb{R}_{\geq 0}^{n}$,

$$
D_{v_{1}} \cdots D_{v_{k}} f \text { is log-concave on } \mathbb{R}_{\geq 0}^{n} .
$$

Example: $f=\prod_{i=1}^{d}\left(z+r_{i}\right) \Rightarrow \log (f)^{\prime \prime}=\sum_{i=1}^{d} \frac{-1}{\left(z+r_{i}\right)^{2}} \leq 0$

Complete log-concavity

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is log-concave on $\mathbb{R}_{>0}^{n}$ if $f \equiv 0$ or $f(x) \geq 0$ for all $x \in \mathbb{R}_{\geq 0}^{n}$ and $\log (f)$ is concave on $\mathbb{R}_{>0}^{n}$.

For $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, let $D_{v}=\sum_{i=1}^{n} v_{i} \frac{\partial f}{\partial z_{i}}$.
$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is completely log-concave (CLC) on $\mathbb{R}_{>0}^{n}$ if for all $k \in \mathbb{N}, v_{1}, \ldots, v_{k} \in \mathbb{R}_{\geq 0}^{n}$,

$$
D_{v_{1}} \cdots D_{v_{k}} f \text { is log-concave on } \mathbb{R}_{\geq 0}^{n} .
$$

Example: $f=\prod_{i=1}^{d}\left(z+r_{i}\right) \Rightarrow \log (f)^{\prime \prime}=\sum_{i=1}^{d} \frac{-1}{\left(z+r_{i}\right)^{2}} \leq 0$
Equivalent Def: CLC $=$ strongly log-concave $=$ Lorentzian
(Gurvits)
(Brändén-Huh)

Example: stable polynomials

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{d}$ is stable if
$f(t v+w) \in \mathbb{R}[t]$ is real rooted for all $v \in \mathbb{R}_{\geq 0}^{n}, w \in \mathbb{R}^{n}$.

Example: stable polynomials

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{d}$ is stable if $f(t v+w) \in \mathbb{R}[t]$ is real rooted for all $v \in \mathbb{R}_{\geq 0}^{n}, w \in \mathbb{R}^{n}$.
$\Rightarrow D_{v} f$ stable for $v \in \mathbb{R}_{\geq 0}^{n}$
$\Rightarrow \log (f)$ concave on $\mathbb{R}_{\geq 0}^{n}$ (Güler)
$\Rightarrow f$ is completely log-concave

Example: stable polynomials

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{d}$ is stable if $f(t v+w) \in \mathbb{R}[t]$ is real rooted for all $v \in \mathbb{R}_{\geq 0}^{n}, w \in \mathbb{R}^{n}$.
$\Rightarrow D_{v} f$ stable for $v \in \mathbb{R}_{\geq 0}^{n}$
$\Rightarrow \log (f)$ concave on $\mathbb{R}_{\geq 0}^{n}$ (Güler)
$\Rightarrow f$ is completely log-concave

Example: $\operatorname{det}\left(\sum_{i=1}^{n} z_{i} A_{i}\right)$ where $A_{i} \succeq 0$,

Example: stable polynomials

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{d}$ is stable if $f(t v+w) \in \mathbb{R}[t]$ is real rooted for all $v \in \mathbb{R}_{\geq 0}^{n}, w \in \mathbb{R}^{n}$.
$\Rightarrow D_{v} f$ stable for $v \in \mathbb{R}_{\geq 0}^{n}$
$\Rightarrow \log (f)$ concave on $\mathbb{R}_{\geq 0}^{n}$ (Güler)
$\Rightarrow f$ is completely log-concave

Example: $\operatorname{det}\left(\sum_{i=1}^{n} z_{i} A_{i}\right)$ where $A_{i} \succeq 0$, e.g.

$$
\operatorname{det}\left(\begin{array}{cc}
z_{1}+z_{3} & z_{3} \\
z_{3} & z_{2}+z_{3}
\end{array}\right)=z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}
$$

Example: stable polynomials

$f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{d}$ is stable if $f(t v+w) \in \mathbb{R}[t]$ is real rooted for all $v \in \mathbb{R}_{\geq 0}^{n}, w \in \mathbb{R}^{n}$.
$\Rightarrow D_{v} f$ stable for $v \in \mathbb{R}_{\geq 0}^{n}$
$\Rightarrow \log (f)$ concave on $\mathbb{R}_{\geq 0}^{n}$ (Güler)
$\Rightarrow f$ is completely log-concave

Example: $\operatorname{det}\left(\sum_{i=1}^{n} z_{i} A_{i}\right)$ where $A_{i} \succeq 0$, e.g.

$$
\operatorname{det}\left(\begin{array}{cc}
z_{1}+z_{3} & z_{3} \\
z_{3} & z_{2}+z_{3}
\end{array}\right)=z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}
$$

Example: $e_{k}\left(z_{1}, \ldots, z_{n}\right)=c \cdot\left(D_{(1, \ldots, 1)}\right)^{n-k} \prod_{i=1}^{n} z_{i}$

Stable polynomials \& supports

Example: $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d} \rightarrow$

$$
\operatorname{det}\left(\sum_{i=1}^{n} z_{i} v_{i} v_{i}^{T}\right)=\sum_{l \in\binom{[n]}{d}} \operatorname{det}\left(v_{i}: i \in I\right)^{2} \prod_{i \in I} z_{i}
$$

Stable polynomials \& supports

Example: $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d} \rightarrow$

$$
\operatorname{det}\left(\sum_{i=1}^{n} z_{i} v_{i} v_{i}^{T}\right)=\sum_{I \in\binom{[n]}{d}} \operatorname{det}\left(v_{i}: i \in I\right)^{2} \prod_{i \in I} z_{i}
$$

Choe, Oxley, Sokal, Wagner: If $f=\sum_{l \in\binom{[n]}{d}} c_{l} \prod_{i \in I} z_{i}$ is stable, then $\operatorname{supp}(f)=\left\{I: c_{I} \neq 0\right\}$ are the bases of a matroid on [$\left.n\right]$.

Stable polynomials \& supports

Example: $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d} \rightarrow$

$$
\operatorname{det}\left(\sum_{i=1}^{n} z_{i} v_{i} v_{i}^{T}\right)=\sum_{l \in\binom{[n]}{d}} \operatorname{det}\left(v_{i}: i \in I\right)^{2} \prod_{i \in I} z_{i}
$$

Choe, Oxley, Sokal, Wagner: If $f=\sum_{l \in\binom{[n]}{d}} c_{l} \prod_{i \in I} z_{i}$ is stable, then $\operatorname{supp}(f)=\left\{I: c_{I} \neq 0\right\}$ are the bases of a matroid on [$\left.n\right]$.

Brändén: If $f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{d}$ is stable, then $\operatorname{supp}(f)=P \cap \mathbb{Z}^{n}$ where P is M -convex.

Stable polynomials \& supports

Example: $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d} \rightarrow$

$$
\operatorname{det}\left(\sum_{i=1}^{n} z_{i} v_{i} v_{i}^{T}\right)=\sum_{I \in\binom{[n]}{d}} \operatorname{det}\left(v_{i}: i \in I\right)^{2} \prod_{i \in I} z_{i}
$$

Choe, Oxley, Sokal, Wagner: If $f=\sum_{l \in\binom{[n]}{d}} c_{l} \prod_{i \in I} z_{i}$ is stable, then $\operatorname{supp}(f)=\left\{I: c_{I} \neq 0\right\}$ are the bases of a matroid on [$\left.n\right]$.

Brändén: If $f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{d}$ is stable, then $\operatorname{supp}(f)=P \cap \mathbb{Z}^{n}$ where P is M -convex.
(i.e. all edges of P parallel to $e_{i}-e_{j}$)

Stable polynomials \& supports

Example: $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d} \rightarrow$

$$
\operatorname{det}\left(\sum_{i=1}^{n} z_{i} v_{i} v_{i}^{T}\right)=\sum_{I \in\binom{[n]}{d}} \operatorname{det}\left(v_{i}: i \in I\right)^{2} \prod_{i \in I} z_{i}
$$

Choe, Oxley, Sokal, Wagner: If $f=\sum_{l \in\binom{[n]}{d}} c_{l} \prod_{i \in I} z_{i}$ is stable, then $\operatorname{supp}(f)=\left\{I: c_{I} \neq 0\right\}$ are the bases of a matroid on $[n]$.

Brändén: If $f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{d}$ is stable, then $\operatorname{supp}(f)=P \cap \mathbb{Z}^{n}$ where P is M-convex.
(i.e. all edges of P parallel to $e_{i}-e_{j}$)

Brändén: Fano matroid \neq support of a stable polynomial f

Matroids

A matroid on ground set $[n]=\{1, \ldots, n\}$ is a nonempty collection \mathcal{B} of subsets of $[n]$ ("bases") for which

$$
\mathcal{P}_{\mathcal{B}}=\operatorname{conv}\left\{\mathbf{1}_{B}: B \in \mathcal{B}\right\} \subset[0,1]^{n}
$$

is M-convex (has edges parallel to $e_{i}-e_{j}$ for $i, j \in[n]$).
"Independent sets" $\mathcal{I}=\{I: I \subset B$ for some $B \in \mathcal{B}\}$

Matroids

A matroid on ground set $[n]=\{1, \ldots, n\}$ is a nonempty collection \mathcal{B} of subsets of $[n]$ ("bases") for which

$$
\mathcal{P}_{\mathcal{B}}=\operatorname{conv}\left\{\mathbf{1}_{B}: B \in \mathcal{B}\right\} \subset[0,1]^{n}
$$

is M-convex (has edges parallel to $e_{i}-e_{j}$ for $i, j \in[n]$).
"Independent sets" $\mathcal{I}=\{I: I \subset B$ for some $B \in \mathcal{B}\}$
Examples:

- linear independence of vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- cyclic independence of n edges in a graph

Characterization of CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For $f \in \mathbb{R}_{\geq 0}\left[z_{1}, \ldots, z_{n}\right]_{d}$, f is completely log-concave
$\Leftrightarrow\left\{\begin{array}{l}\operatorname{supp}(f)=P \cap \mathbb{Z}^{n} \text { where } P \text { is } M \text {-convex, and } \\ \text { for all }|\alpha|=d-2, \text { quadratic } \partial^{\alpha} f=z^{T} Q_{\alpha} z \text { with } \lambda_{2}\left(Q_{\alpha}\right) \leq 0\end{array}\right.$

Characterization of CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For $f \in \mathbb{R}_{\geq 0}\left[z_{1}, \ldots, z_{n}\right]_{d}$, f is completely log-concave
$\Leftrightarrow\left\{\begin{array}{l}\operatorname{supp}(f)=P \cap \mathbb{Z}^{n} \text { where } P \text { is M-convex, and } \\ \text { for all }|\alpha|=d-2, \text { quadratic } \partial^{\alpha} f=z^{T} Q_{\alpha} z \text { with } \lambda_{2}\left(Q_{\alpha}\right) \leq 0\end{array}\right.$
a testable condition!

Characterization of CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For $f \in \mathbb{R}_{\geq 0}\left[z_{1}, \ldots, z_{n}\right]_{d}$, f is completely log-concave
$\Leftrightarrow\left\{\begin{array}{l}\operatorname{supp}(f)=P \cap \mathbb{Z}^{n} \text { where } P \text { is M-convex, and } \\ \text { for all }|\alpha|=d-2, \text { quadratic } \partial^{\alpha} f=z^{T} Q_{\alpha} z \text { with } \lambda_{2}\left(Q_{\alpha}\right) \leq 0\end{array}\right.$
a testable condition!
Cor. (Gurvits/ALOV) For $f=\sum_{k=0}^{d} c_{k} y^{d-k} z^{k}$,

$$
f \text { is CLC } \Leftrightarrow\left\{\begin{array}{l}
\left\{k: c_{k} \neq 0\right\} \text { has no gaps, and } \\
\left(\frac{c_{k}}{\binom{d}{k}}\right)^{2} \geq \frac{c_{k-1}}{\binom{d}{k-1}} \cdot \frac{c_{k+1}}{\binom{d}{k+1}} \text { for all } k
\end{array}\right.
$$

Matroid polynomials are CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For any matroid with bases \mathcal{B} and independent sets \mathcal{I},

$$
f_{\mathcal{B}}=\sum_{B \in \mathcal{B}} \prod_{i \in B} z_{i} \quad \text { and } \quad g_{\mathcal{I}}=\sum_{I \in \mathcal{I}} y^{n-|I|} \prod_{i \in I} z_{i}
$$

are completely log-concave.

Matroid polynomials are CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For any matroid with bases \mathcal{B} and independent sets \mathcal{I},

$$
f_{\mathcal{B}}=\sum_{B \in \mathcal{B}} \prod_{i \in B} z_{i} \quad \text { and } \quad g_{\mathcal{I}}=\sum_{I \in \mathcal{I}} y^{n-|I|} \prod_{i \in I} z_{i}
$$

are completely log-concave.
(quadratic derivatives \rightarrow rank-two matroids)

Matroid polynomials are CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For any matroid with bases \mathcal{B} and independent sets \mathcal{I},

$$
f_{\mathcal{B}}=\sum_{B \in \mathcal{B}} \prod_{i \in B} z_{i} \quad \text { and } \quad g_{\mathcal{I}}=\sum_{I \in \mathcal{I}} y^{n-|I|} \prod_{i \in I} z_{i}
$$

are completely log-concave.

$$
\text { (quadratic derivatives } \rightarrow \text { rank-two matroids) }
$$

Cor: $\sum_{k=0}^{n} \mathcal{I}_{k} y^{n-k} z^{k}$ is CLC where $\mathcal{I}_{k}=\#\{I \in \mathcal{I}:|I|=k\}$

Matroid polynomials are CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For any matroid with bases \mathcal{B} and independent sets \mathcal{I},

$$
f_{\mathcal{B}}=\sum_{B \in \mathcal{B}} \prod_{i \in B} z_{i} \quad \text { and } \quad g_{\mathcal{I}}=\sum_{I \in \mathcal{I}} y^{n-|I|} \prod_{i \in I} z_{i}
$$

are completely log-concave.

$$
\text { (quadratic derivatives } \rightarrow \text { rank-two matroids) }
$$

Cor: $\sum_{k=0}^{n} \mathcal{I}_{k} y^{n-k} z^{k}$ is CLC where $\mathcal{I}_{k}=\#\{I \in \mathcal{I}:|I|=k\}$
Cor: $\left(\frac{\mathcal{I}_{k}}{\binom{n}{k}}\right)^{2} \geq \frac{\mathcal{I}_{k-1}}{\binom{n}{k-1}} \cdot \frac{\mathcal{I}_{k+1}}{\binom{n+1}{k+1}}$

Other results

Let $\mathcal{B}=$ bases of a matroid with rank r.
Anari, Oveis Gharan, V: The solution to the concave program

$$
\tau=\max _{p \in \mathcal{P}_{\mathcal{B}}} \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}+\left(1-p_{i}\right) \log \frac{1}{1-p_{i}}
$$

can be computed in polynomial time and $\beta=e^{\tau}$ satisfies

$$
2^{O(-r)} \beta \leq \# \mathcal{B} \leq \beta
$$

Other results

Let $\mathcal{B}=$ bases of a matroid with rank r.
Anari, Oveis Gharan, V: The solution to the concave program

$$
\tau=\max _{p \in \mathcal{P}_{\mathcal{B}}} \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}+\left(1-p_{i}\right) \log \frac{1}{1-p_{i}}
$$

can be computed in polynomial time and $\beta=e^{\tau}$ satisfies

$$
2^{O(-r)} \beta \leq \# \mathcal{B} \leq \beta
$$

Anari, Liu, Oveis Gharan, V: There is a Markov chain on \mathcal{B} with uniform stationary distribution that mixes quickly:

$$
\min \left\{t \in \mathbb{N}:\left\|P^{t}(B, \cdot)-\pi\right\|_{1} \leq \epsilon\right\} \leq r^{2} \log (n / \epsilon)
$$

where $P=$ transition matrix.

Sum up: completely log-concave polynomials

- log-concavity of polynomial as functions \Rightarrow log-concavity of coefficients
- many matroid polynomials are completely log-concave
- much of the theory of stable polynomials extends to CLC

Sum up: completely log-concave polynomials

- log-concavity of polynomial as functions \Rightarrow log-concavity of coefficients
- many matroid polynomials are completely log-concave
- much of the theory of stable polynomials extends to CLC

References

- Karim Adiprasito, June Huh, Eric Katz, Hodge theory for combinatorial geometries, Annals of Mathematics 188(2), 2018.
- Nima Anari, Shayan Oveis Gharan, Cynthia Vinzant, Log-Concave Polynomials I: Entropy and a Deterministic Approximation Algorithm for Counting Bases of Matroids, arXiv:1807.00929
- Nima Anari, KuiKui Liu, Shayan Oveis Gharan, Cynthia Vinzant, Log-Concave Polynomials II: High-Dimensional Walks and an FPRAS for Counting Bases of a Matroid, arXiv:1811.01816
- Nima Anari, KuiKui Liu, Shayan Oveis Gharan, Cynthia Vinzant, Log-Concave Polynomials III: Mason's Ultra-Log-Concavity Conjecture for Independent Sets of Matroids, arXiv:1811.01600
- Petter Brändén, Polynomials with the half-plane property and matroid theory, Advances in Mathematics 216(1), 2007.
- Petter Brändén, June Huh, Hodge-Riemann relations for Potts model partition functions, arXiv:1811.01696
- Petter Brändén, June Huh, Lorentzian Polynomials, arXiv:1902.03719
- Young-Bin Choe, James Oxley, Alan Sokal, David Wagner, Homogeneous multivariate polynomials with the half-plane property, Advances in Applied Mathematics, 32(1-2), 2004.
- Leonid Gurvits, On multivariate Newton-like inequalities, Advances in combinatorial mathematics, 61-78, 2009.
- June Huh, Benjamin Schröter, Botong Wang, Correlation bounds for fields and matroids, arXiv:1806.02675

