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Complete log-concavity

f ∈ R[z1, . . . , zn] is log-concave on Rn
>0 if f ≡ 0 or

f (x) ≥ 0 for all x ∈ Rn
≥0 and log(f ) is concave on Rn

>0.

For v = (v1, . . . , vn) ∈ Rn, let Dv =
∑n

i=1 vi
∂f
∂zi

.

f ∈ R[z1, . . . , zn] is completely log-concave (CLC) on Rn
>0 if

for all k ∈ N, v1, . . . , vk ∈ Rn
≥0,

Dv1 · · ·Dvk f is log-concave on Rn
≥0.

Example: f =
∏d

i=1(z + ri ) ⇒ log(f )′′ =
∑d

i=1
−1

(z+ri )2 ≤ 0

Equivalent Def: CLC = strongly log-concave = Lorentzian
(Gurvits) (Brändén-Huh)
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Example: stable polynomials

f ∈ R[z1, . . . , zn]d is stable if
f (tv + w) ∈ R[t] is real rooted
for all v ∈ Rn

≥0,w ∈ Rn.

⇒ Dv f stable for v ∈ Rn
≥0

⇒ log(f ) concave on Rn
≥0 (Güler)

⇒ f is completely log-concave

Example: det(
∑n

i=1 ziAi ) where Ai � 0, e.g.

det

(
z1 + z3 z3

z3 z2 + z3

)
= z1z2 + z1z3 + z2z3

Example: ek(z1, . . . , zn) = c · (D(1,...,1))n−k
∏n

i=1 zi
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Stable polynomials & supports

Example: v1, . . . , vn ∈ Rd →
det(

∑n
i=1 ziviv

T
i ) =

∑
I∈([n]

d ) det(vi : i ∈ I )2
∏

i∈I zi

Choe, Oxley, Sokal, Wagner: If f =
∑

I∈([n]
d ) cI

∏
i∈I zi is stable,

then supp(f ) = {I : cI 6= 0} are the bases of a matroid on [n].

Brändén: If f ∈ R[z1, . . . , zn]d is stable, then supp(f ) = P ∩ Zn

where P is M-convex.
(i.e. all edges of P parallel to ei − ej)

Brändén: Fano matroid 6= support of a stable polynomial f
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Matroids

A matroid on ground set [n] = {1, . . . , n} is a nonempty collection
B of subsets of [n] (“bases”) for which

PB = conv{1B : B ∈ B} ⊂ [0, 1]n

is M-convex (has edges parallel to ei − ej for i , j ∈ [n]).

“Independent sets” I = {I : I ⊂ B for some B ∈ B}

Examples:

I linear independence of vectors v1, . . . , vn ∈ Rd

I cyclic independence of n edges in a graph
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Characterization of CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For f ∈ R≥0[z1, . . . , zn]d ,
f is completely log-concave

⇔

{
supp(f ) = P ∩ Zn where P is M-convex, and

for all |α| = d − 2, quadratic ∂αf = zTQαz with λ2(Qα) ≤ 0

a testable condition!

Cor. (Gurvits/ALOV) For f =
∑d

k=0 cky
d−kzk ,

f is CLC ⇔


{k : ck 6= 0} has no gaps, and(

ck(d
k

))2

≥ ck−1( d
k−1

) · ck+1( d
k+1

) for all k
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Matroid polynomials are CLC

Theorem (Anari, Liu, Oveis Gharan, V.): For any matroid with
bases B and independent sets I,

fB =
∑
B∈B

∏
i∈B

zi and gI =
∑
I∈I

yn−|I |
∏
i∈I

zi

are completely log-concave.

(quadratic derivatives → rank-two matroids)

Cor:
∑n

k=0 Ikyn−kzk is CLC where Ik = #{I ∈ I : |I | = k}

Cor:

(
Ik(n
k

))2

≥ Ik−1( n
k−1

) · Ik+1( n
k+1

) (Mason’s conjecture)
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Other results

Let B = bases of a matroid with rank r .

Anari, Oveis Gharan, V: The solution to the concave program

τ = max
p∈PB

n∑
i=1

pi log 1
pi

+ (1− pi ) log 1
1−pi

can be computed in polynomial time and β = eτ satisfies

2O(−r)β ≤ #B ≤ β.

Anari, Liu, Oveis Gharan, V: There is a Markov chain on B with
uniform stationary distribution that mixes quickly:

min{t ∈ N : ||Pt(B, ·)− π||1 ≤ ε} ≤ r2 log(n/ε)

where P = transition matrix.
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Sum up: completely log-concave polynomials

I log-concavity of polynomial as functions
⇒ log-concavity of coefficients

I many matroid polynomials are completely log-concave

I much of the theory of stable polynomials extends to CLC

⇒

Thanks!



Sum up: completely log-concave polynomials

I log-concavity of polynomial as functions
⇒ log-concavity of coefficients

I many matroid polynomials are completely log-concave

I much of the theory of stable polynomials extends to CLC

⇒ Thanks!



References

I Karim Adiprasito, June Huh, Eric Katz, Hodge theory for combinatorial geometries, Annals of Mathematics
188(2), 2018.

I Nima Anari, Shayan Oveis Gharan, Cynthia Vinzant, Log-Concave Polynomials I: Entropy and a
Deterministic Approximation Algorithm for Counting Bases of Matroids, arXiv:1807.00929

I Nima Anari, KuiKui Liu, Shayan Oveis Gharan, Cynthia Vinzant, Log-Concave Polynomials II:
High-Dimensional Walks and an FPRAS for Counting Bases of a Matroid, arXiv:1811.01816

I Nima Anari, KuiKui Liu, Shayan Oveis Gharan, Cynthia Vinzant, Log-Concave Polynomials III: Mason’s
Ultra-Log-Concavity Conjecture for Independent Sets of Matroids, arXiv:1811.01600
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