Phaseless rank

António Goucha

Joint work with João Gouveia (U. Coimbra)
13th of July - SIAM AG 19

Phaseless rank

Given a matrix $A \in \mathbb{R}_{+}^{n \times m}$ we are interested in the quantity

Phaseless rank

$$
\begin{aligned}
\operatorname{rank}_{\theta}(A)=\min _{X} & \operatorname{rank}(X) \\
\text { s.t. } & \left|X_{i j}\right|=A_{i j}, \forall i, j ; \\
& X \in \mathbb{C}^{n \times m} .
\end{aligned}
$$

We will call this the phaseless rank of A.

Phaseless rank

Given a matrix $A \in \mathbb{R}_{+}^{n \times m}$ we are interested in the quantity

Phaseless rank

$$
\begin{aligned}
\operatorname{rank}_{\theta}(A)=\min _{X} & \operatorname{rank}(X) \\
\text { s.t. } & \left|X_{i j}\right|=A_{i j}, \forall i, j ; \\
& X \in \mathbb{C}^{n \times m} .
\end{aligned}
$$

We will call this the phaseless rank of A.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]} \\
& \operatorname{rank}(A)=4
\end{aligned}
$$

Phaseless rank

Given a matrix $A \in \mathbb{R}_{+}^{n \times m}$ we are interested in the quantity

Phaseless rank

$$
\begin{aligned}
\operatorname{rank}_{\theta}(A)=\min _{X} & \operatorname{rank}(X) \\
\text { s.t. } & \left|X_{i j}\right|=A_{i j}, \forall i, j ; \\
& X \in \mathbb{C}^{n \times m}
\end{aligned}
$$

We will call this the phaseless rank of A.

\[

\]

Phaseless rank

Given a matrix $A \in \mathbb{R}_{+}^{n \times m}$ we are interested in the quantity

Phaseless rank

$$
\begin{aligned}
\operatorname{rank}_{\theta}(A)=\min _{X} & \operatorname{rank}(X) \\
\text { s.t. } & \left|X_{i j}\right|=A_{i j}, \forall i, j ; \\
& X \in \mathbb{C}^{n \times m}
\end{aligned}
$$

We will call this the phaseless rank of A.

$$
\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & e^{i(\theta+\pi)} & e^{i\left(\theta+\frac{2 \pi}{3}\right)} \\
1 & e^{i \theta} & 0 & e^{i\left(\theta+\frac{\pi}{3}\right)} \\
1 & e^{i\left(\theta-\frac{\pi}{3}\right)} & e^{i\left(\theta-\frac{2 \pi}{3}\right)} & 0
\end{array}\right]
$$

Phaseless rank

Given a matrix $A \in \mathbb{R}_{+}^{n \times m}$ we are interested in the quantity

Phaseless rank

$$
\begin{aligned}
\operatorname{rank}_{\theta}(A)=\min _{X} & \operatorname{rank}(X) \\
\text { s.t. } & \left|X_{i j}\right|=A_{i j}, \forall i, j \\
& X \in \mathbb{C}^{n \times m}
\end{aligned}
$$

We will call this the phaseless rank of A.

$$
\begin{gathered}
{\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & e^{i(\theta+\pi)} & e^{i\left(\theta+\frac{2 \pi}{3}\right)} \\
1 & e^{i \theta} & 0 & e^{i\left(\theta+\frac{\pi}{3}\right)} \\
1 & e^{i\left(\theta-\frac{\pi}{3}\right)} & e^{i\left(\theta-\frac{2 \pi}{3}\right)} & 0
\end{array}\right]} \\
\operatorname{rank}(A)=4 \\
\operatorname{rank}(X)=2
\end{gathered}
$$

It is a problem of rank minimization under phase uncertainty.

Space of 3×3 matrices of phaseless rank at most 2 cut by a random two-dimensional affine space.

Why we care - Amoebas

Definition (Amoeba)

Given a polynomial ideal I and its set of zeros, $\mathcal{V}(I)$, we define the amoeba of $/$ as

$$
\mathcal{A}(I)=\left\{\log (|z|)=\left(\log \left(\left|z_{1}\right|\right), \ldots, \log \left(\left|z_{n}\right|\right)\right) \mid z \in \mathcal{V}(I) \cap\left(\mathbb{C}^{*}\right)^{n}\right\} .
$$

Why we care - Amoebas

Definition (Amoeba)

Given a polynomial ideal I and its set of zeros, $\mathcal{V}(I)$, we define the amoeba of $/$ as

$$
\mathcal{A}(I)=\left\{\log (|z|)=\left(\log \left(\left|z_{1}\right|\right), \ldots, \log \left(\left|z_{n}\right|\right)\right) \mid z \in \mathcal{V}(I) \cap\left(\mathbb{C}^{*}\right)^{n}\right\} .
$$

These are well-known structures, studied in complex analysis and tropical algebraic geometry.

Why we care - Amoebas

Definition (Amoeba)

Given a polynomial ideal I and its set of zeros, $\mathcal{V}(I)$, we define the amoeba of I as

$$
\mathcal{A}(I)=\left\{\log (|z|)=\left(\log \left(\left|z_{1}\right|\right), \ldots, \log \left(\left|z_{n}\right|\right)\right) \mid z \in \mathcal{V}(I) \cap\left(\mathbb{C}^{*}\right)^{n}\right\} .
$$

These are well-known structures, studied in complex analysis and tropical algebraic geometry.

Let $P_{k}^{n \times m}=\left\{A \in \mathbb{R}_{+}^{n \times m}: \operatorname{rank}_{\theta}(A) \leq k\right\}$.

$$
\log \left(P_{k}^{n \times m}\right)=\mathcal{A}(\text { minors of } \operatorname{order}(k+1))
$$

It is an amoeba membership problem.

Why we care - Semidefinite lifts

Why we care - Semidefinite lifts

A complex semidefinite representation of size k of a d-polytope P is a description
$P=\left\{x \in \mathbb{R}^{d} \mid \exists y\right.$ s.t. $\left.A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}$,
where A_{i}, B_{i} are $k \times k$ complex hermitian matrices.

Why we care - Semidefinite lifts

A complex semidefinite representation of size k of a d-polytope P is a description
$P=\left\{x \in \mathbb{R}^{d} \mid \exists y\right.$ s.t. $\left.A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}$,
where A_{i}, B_{i} are $k \times k$ complex hermitian matrices.

Why we care - Semidefinite lifts

A complex semidefinite representation of size k of a d-polytope P is a description
$P=\left\{x \in \mathbb{R}^{d} \mid \exists y\right.$ s.t. $\left.A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}$,
where A_{i}, B_{i} are $k \times k$ complex hermitian matrices.
If P has vertices p_{1}, \cdots, p_{v} and facets $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, its slack matrix, S_{P}, is defined by $S_{P}(i, j)=h_{i}\left(p_{j}\right)$, for all i and j.

Why we care - Semidefinite lifts

A complex semidefinite representation of size k of a d-polytope P is a description
$P=\left\{x \in \mathbb{R}^{d} \mid \exists y\right.$ s.t. $\left.A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}$,
where A_{i}, B_{i} are $k \times k$ complex hermitian matrices.
If P has vertices p_{1}, \cdots, p_{v} and facets $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, its slack matrix, S_{P}, is defined by $S_{P}(i, j)=h_{i}\left(p_{j}\right)$, for all i and j.

Theorem (Gouveia-Parrilo-Thomas,2012)

The smallest size of a complex semidefinite representation of P is rank $_{p s d}^{\mathbb{C}}\left(S_{P}\right)$, defined as the smallest k for which there are $U_{1}, \ldots, U_{f}, V_{1}, \cdots, V_{v} \in \mathcal{S}_{+}^{k}(\mathbb{C})$ such that $S_{P}(i, j)=\left\langle U_{i}, V_{j}\right\rangle$ for all i, j.

Why we care - Semidefinite lifts

Why we care - Semidefinite lifts

The size of any complex semidefinite representation of a d-polytope P cannot be smaller than $d+1$. If it equals $d+1$ we call the polytope psd ${ }^{\mathbb{C}}$-minimal.

Why we care - Semidefinite lifts

The size of any complex semidefinite representation of a d-polytope P cannot be smaller than $d+1$. If it equals $d+1$ we call the polytope psd ${ }^{\mathbb{C}}$-minimal.

Proposition
 (Gouveia-Robinson-Thomas,2013+G.-Gouveia-Silva,2017)

A d-dimensional polytope P with slack matrix $S_{P} \in \mathbb{R}_{+}^{f \times v}$ is psd ${ }^{\mathbb{C}}$-minimal if and only if

$$
\operatorname{rank}_{\theta}\left(\sqrt[\circ]{S_{P}}\right)=d+1
$$

where $\sqrt[\circ]{S_{P}}$ is the entrywise nonnegative square root of S_{P}.

Why we care - Semidefinite lifts

The size of any complex semidefinite representation of a d-polytope P cannot be smaller than $d+1$. If it equals $d+1$ we call the polytope psd ${ }^{\mathbb{C}}$-minimal.

Proposition
 (Gouveia-Robinson-Thomas,2013+G.-Gouveia-Silva,2017)

A d-dimensional polytope P with slack matrix $S_{P} \in \mathbb{R}_{+}^{f \times v}$ is psd ${ }^{\mathbb{C}}$-minimal if and only if

$$
\operatorname{rank}_{\theta}\left(\sqrt[\circ]{S_{P}}\right)=d+1
$$

where $\sqrt[\circ]{S_{P}}$ is the entrywise nonnegative square root of S_{P}.

In fact, more generally, we also have $\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A) \leq \operatorname{rank}_{\theta}(\sqrt[\circ]{A})$ for any nonnegative matrix A.

The phaseless-singular matrices

So the first interesting thing one can ask is the following:

Question

When does a matrix $A \in \mathbb{R}^{n \times m}$, with $m \geq n$ verify $\operatorname{rank}_{\theta}(A)<n$?

The phaseless-singular matrices

So the first interesting thing one can ask is the following:

Question

When does a matrix $A \in \mathbb{R}^{n \times m}$, with $m \geq n$ verify $\operatorname{rank}_{\theta}(A)<n$?

It turns out that the answer is simple.

The phaseless-singular matrices

So the first interesting thing one can ask is the following:

Question

When does a matrix $A \in \mathbb{R}^{n \times m}$, with $m \geq n$ verify $\operatorname{rank}_{\theta}(A)<n$?

It turns out that the answer is simple.
$\operatorname{rank}_{\theta}(A)<n$ iff we can scale rows of A by nonnegative numbers in such a way that the entries on each of the columns are "balanced".

The phaseless-singular matrices

So the first interesting thing one can ask is the following:

Question

When does a matrix $A \in \mathbb{R}^{n \times m}$, with $m \geq n$ verify $\operatorname{rank}_{\theta}(A)<n$?

It turns out that the answer is simple.
$\operatorname{rank}_{\theta}(A)<n$ iff we can scale rows of A by nonnegative numbers in such a way that the entries on each of the columns are "balanced".

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 0 \\
1 & 1 & \sqrt{2}
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
\frac{2}{3} & \frac{4}{3} & 2 \\
1 & 1 & 0 \\
\sqrt{2} & \sqrt{2} & 2
\end{array}\right] \longrightarrow\left\{\begin{aligned}
\sqrt{2} & \leq 1+2 / 3 \\
\sqrt{2} & \leq 1+4 / 3 \\
2 & \leq 2+0
\end{aligned}\right.
$$

LP-feasibility formulation

But this can be written in a very nice form.

Lemma (Camion-Hoffman, 1966)

Let $A \in \mathbb{R}_{+}^{n \times m}$, with $m \geq n$. Then, $\operatorname{rank}_{\theta}(A)<n$ if and only if the LP-feasibility problem

$$
\begin{aligned}
\text { find } & \lambda \in \mathbb{R}^{n} \\
\text { s.t. } & \lambda_{i} A_{i j}-\sum_{k \neq i} \lambda_{k} A_{k j} \leq 0, \quad \forall i, j ; \\
& \sum_{i} \lambda_{i}=1 ; \\
& \lambda \geq 0
\end{aligned}
$$

has a solution.

LP-feasibility formulation

But this can be written in a very nice form.

Lemma (Camion-Hoffman, 1966)

Let $A \in \mathbb{R}_{+}^{n \times m}$, with $m \geq n$. Then, $\operatorname{rank}_{\theta}(A)<n$ if and only if the LP-feasibility problem

$$
\begin{array}{cl}
\text { find } & \lambda \in \mathbb{R}^{n} \\
\text { s.t. } & \lambda_{i} A_{i j}-\sum_{k \neq i} \lambda_{k} A_{k j} \leq 0, \quad \forall i, j ; \\
& \sum_{i} \lambda_{i}=1 ; \\
& \lambda \geq 0
\end{array}
$$

has a solution.
We can now leverage this result to get a number of interesting consequences.

Nonmaximal phaseless rank - rectangular case

Proposition (G.-Gouveia)

A matrix $A \in \mathbb{R}_{+}^{n \times m}$, with $m \geq n$, verifies $\operatorname{rank}_{\theta}(A)<n$ if and only if for any $n \times n$ submatrix B we have $\operatorname{rank}_{\theta}(B)<n$.

Nonmaximal phaseless rank - rectangular case

Proposition (G.-Gouveia)

A matrix $A \in \mathbb{R}_{+}^{n \times m}$, with $m \geq n$, verifies $\operatorname{rank}_{\theta}(A)<n$ if and only if for any $n \times n$ submatrix B we have $\operatorname{rank}_{\theta}(B)<n$.

Proof:

- $C_{i}=\{$ multipliers λ making column i verify the triangular inequality\}.
- C_{i} are convex and every n of them intersect, so by Helly's theorem all intersect.

Nonmaximal phaseless rank - rectangular case

Proposition (G.-Gouveia)

A matrix $A \in \mathbb{R}_{+}^{n \times m}$, with $m \geq n$, verifies $\operatorname{rank}_{\theta}(A)<n$ if and only if for any $n \times n$ submatrix B we have $\operatorname{rank}_{\theta}(B)<n$.

Proof:

- $C_{i}=\{$ multipliers λ making column i verify the triangular inequality\}.
- C_{i} are convex and every n of them intersect, so by Helly's theorem all intersect.

Hence, solving the rectangular case consists in solving multiple square case

$$
M=\left[\begin{array}{cccc}
x-y+1 & x-y+1 & x+1 & 1 \\
1-x & -x+y+1 & 1-y & x+y+1 \\
1-y & 1-x & 1 & x-y+1
\end{array}\right]
$$

$$
M=\left[\begin{array}{cccc}
x-y+1 & x-y+1 & x+1 & 1 \\
1-x & -x+y+1 & 1-y & x+y+1 \\
1-y & 1-x & 1 & x-y+1
\end{array}\right]
$$

phaseless singular 3×3 submatrices

$$
M=\left[\begin{array}{cccc}
x-y+1 & x-y+1 & x+1 & 1 \\
1-x & -x+y+1 & 1-y & x+y+1 \\
1-y & 1-x & 1 & x-y+1
\end{array}\right]
$$

phaseless singular 3×3 submatrices

phaseless singular M

Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman, 1966)

Given $A \in \mathbb{R}_{+}^{n \times n}, \operatorname{rank}_{\theta}(A)=n$ if and only if there exists a permutation matrix P such that $\mathcal{M}(A P)$ is a nonsingular M-matrix.

Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman, 1966)

Given $A \in \mathbb{R}_{+}^{n \times n}, \operatorname{rank}_{\theta}(A)=n$ if and only if there exists a permutation matrix P such that $\mathcal{M}(A P)$ is a nonsingular M-matrix.

Let $X \in \mathbb{C}^{n \times n}$.

$$
\mathcal{M}(X)_{i j}= \begin{cases}\left|X_{i j}\right|, & i=j \\ -\left|X_{i j}\right|, & i \neq j\end{cases}
$$

Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman, 1966)

Given $A \in \mathbb{R}_{+}^{n \times n}, \operatorname{rank}_{\theta}(A)=n$ if and only if there exists a permutation matrix P such that $\mathcal{M}(A P)$ is a nonsingular M-matrix.

Proposition/Definition

Let $A \in \mathbb{R}^{n \times n}$ have nonpositive off-diagonal entries. Then the following are equivalent:
i A is a nonsingular M-matrix.
ii All its eigenvalues have positive real part.
iii All its leading principal minors are positive.
iv All its leading principal minors of size at least 3 are positive.

Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman, 1966)

Given $A \in \mathbb{R}_{+}^{n \times n}, \operatorname{rank}_{\theta}(A)=n$ if and only if there exists a permutation matrix P such that $\mathcal{M}(A P)$ is a nonsingular M-matrix.

Corollary (G.-Gouveia)

Let $A \in \mathbb{R}_{+}^{n \times n}$, with $n=3,4$. Then, $\operatorname{rank}_{\theta}(A)<n$ if and only if $\operatorname{det}(\mathcal{M}(A P)) \leq 0$ for all permutation matrices.

Thus, $P_{2}^{3 \times 3}$ and $P_{3}^{4 \times 4}$ are basic semialgebraic sets (and, consequently, $P_{2}^{3 \times n}$ and $P_{3}^{4 \times n}$)

Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \in \mathbb{R}_{+}^{3 \times 3}$.

Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \in \mathbb{R}_{+}^{3 \times 3}$.
$\operatorname{det}\left[\begin{array}{ccc}a_{11} & -a_{12} & -a_{13} \\ -a_{21} & a_{22} & -a_{23} \\ -a_{31} & -a_{32} & a_{33}\end{array}\right]=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{12} a_{23} a_{31}-a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31} \leq 0$
$\operatorname{det}\left[\begin{array}{ccc}a_{11} & -a_{13} & -a_{12} \\ -a_{21} & a_{23} & -a_{22} \\ -a_{31} & -a_{33} & a_{32}\end{array}\right]=-a_{11} a_{22} a_{33}+a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{12} a_{23} a_{31}-a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31} \leq 0$
$\operatorname{det}\left[\begin{array}{ccc}a_{12} & -a_{11} & -a_{13} \\ -a_{22} & a_{21} & -a_{23} \\ -a_{32} & -a_{31} & a_{33}\end{array}\right]=-a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}-a_{12} a_{23} a_{31}-a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31} \leq 0$
$\operatorname{det}\left[\begin{array}{ccc}a_{12} & -a_{13} & -a_{11} \\ -a_{22} & a_{23} & -a_{21} \\ -a_{32} & -a_{33} & a_{31}\end{array}\right]=-a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31}-a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31} \leq 0$
$\operatorname{det}\left[\begin{array}{ccc}a_{13} & -a_{11} & -a_{12} \\ -a_{23} & a_{21} & -a_{22} \\ -a_{33} & -a_{31} & a_{32}\end{array}\right]=-a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31} \leq 0$
$\operatorname{det}\left[\begin{array}{ccc}a_{13} & -a_{12} & -a_{11} \\ -a_{23} & a_{22} & -a_{21} \\ -a_{33} & -a_{32} & a_{31}\end{array}\right]=-a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{12} a_{23} a_{31}-a_{13} a_{21} a_{32}+a_{13} a_{22} a_{31} \leq 0$

Bounds on phaseless rank

Question: does $\operatorname{rank}_{\theta}(A)<k$ if and only if all $k \times k$ submatrices of A have nonmaximal phaseless rank?

Bounds on phaseless rank

Question: does $\operatorname{rank}_{\theta}(A)<k$ if and only if all $k \times k$ submatrices of A have nonmaximal phaseless rank?

Proposition (Levinger, 1972)

Let $A=m I+J$, where $0<m<n-2$, and J is the $n \times n$ all-ones matrix. All $(m+2) \times(m+2)$ submatrices have nonmaximal phaseless rank but $\operatorname{rank}_{\theta}(A)>m+1$.

Bounds on phaseless rank

Question: does $\operatorname{rank}_{\theta}(A)<k$ if and only if all $k \times k$ submatrices of A have nonmaximal phaseless rank?

Proposition (Levinger, 1972)

Let $A=m I+J$, where $0<m<n-2$, and J is the $n \times n$ all-ones matrix. All $(m+2) \times(m+2)$ submatrices have nonmaximal phaseless rank but $\operatorname{rank}_{\theta}(A)>m+1$.

Proposition (Levinger, 1972)

Let $A \in \mathbb{R}_{+}^{n \times m}, n \leq m$. If all its $k \times k$ submatrices of A have nonmaximal phaseless rank, $k \leq n$, then

$$
\operatorname{rank}_{\theta}(A) \leq m-\left\lfloor\frac{m-1}{k-1}\right\rfloor .
$$

Bounds on phaseless rank

Question: does $\operatorname{rank}_{\theta}(A)<k$ if and only if all $k \times k$ submatrices of A have nonmaximal phaseless rank?

Proposition (Levinger, 1972)

Let $A=m I+J$, where $0<m<n-2$, and J is the $n \times n$ all-ones matrix. All $(m+2) \times(m+2)$ submatrices have nonmaximal phaseless rank but $\operatorname{rank}_{\theta}(A)>m+1$.

Proposition (G.-Gouveia)

Let $A \in \mathbb{R}_{+}^{n \times m}, n \leq m$. If all its $k \times k$ submatrices of A have nonmaximal phaseless rank, $k \leq n$, then

$$
\operatorname{rank}_{\theta}(A) \leq n-\left\lfloor\frac{n-1}{k-1}\right\rfloor
$$

Amoeba membership

Checking amoeba membership is hard, even for amoebas of ideals generated by a single polynomial, $\mathcal{A}(f)$.

Amoeba membership

Checking amoeba membership is hard, even for amoebas of ideals generated by a single polynomial, $\mathcal{A}(f)$.

Let $f(z)=m_{1}(z)+\ldots+m_{d}(z) \in \mathbb{C}[z]$. An easy necessary condition for amoeba membership can be derived using lopsidedness.

Amoeba membership

Checking amoeba membership is hard, even for amoebas of ideals generated by a single polynomial, $\mathcal{A}(f)$.

Let $f(z)=m_{1}(z)+\ldots+m_{d}(z) \in \mathbb{C}[z]$. An easy necessary condition for amoeba membership can be derived using lopsidedness.

Purbhoo,2008

We have the inclusion $\mathcal{A}(f) \subseteq \operatorname{Nlop}(f)$, where
$\operatorname{Nlop}(f)=\left\{\log (a): a \in \mathbb{R}_{++}^{n}\right.$ and $\left\{\left|m_{1}(a)\right|, \ldots,\left|m_{k}(a)\right|\right\}$ is not lopsided $\}$

Amoeba membership

Checking amoeba membership is hard, even for amoebas of ideals generated by a single polynomial, $\mathcal{A}(f)$.

Let $f(z)=m_{1}(z)+\ldots+m_{d}(z) \in \mathbb{C}[z]$. An easy necessary condition for amoeba membership can be derived using lopsidedness.

Purbhoo,2008

We have the inclusion $\mathcal{A}(f) \subseteq \operatorname{Nlop}(f)$, where
$\operatorname{Nlop}(f)=\left\{\log (a): a \in \mathbb{R}_{++}^{n}\right.$ and $\left\{\left|m_{1}(a)\right|, \ldots,\left|m_{k}(a)\right|\right\}$ is not lopsided $\}$

In general, it is not a sufficient condition.

Amoeba membership

Let $f(x, y)=1+x+y+x y+y^{2} \in \mathbb{C}[x, y]$.

Amoeba membership

Let $f(x, y)=1+x+y+x y+y^{2} \in \mathbb{C}[x, y]$.

Amoeba membership

Let $f(x, y)=1+x+y+x y+y^{2} \in \mathbb{C}[x, y]$.

$\mathcal{A}(f) \subset \mathrm{Nlop}(f)$

Amoeba membership

Theorem (Purbhoo,2008)

$$
\mathcal{A}(I)=\bigcap_{f \in I} \mathcal{A}(f)=\bigcap_{t \in I} \operatorname{Nlop}(f)
$$

This is remarkable but of little use, since it is an infinite intersection.

Amoeba membership

Theorem (Purbhoo,2008)

$$
\mathcal{A}(I)=\bigcap_{f \in I} \mathcal{A}(f)=\bigcap_{t \in I} \operatorname{Nlop}(f)
$$

This is remarkable but of little use, since it is an infinite intersection.

Definition (Amoeba basis, Schroeter-de Wolff)

Given I, a proper ideal of $\mathbb{C}[z],\left\{f_{1}, \ldots, f_{s}\right\}$ is an amoeba basis if it is a set of generators of / which is minimal w.r.t the property

$$
\mathcal{A}(I)=\bigcap_{i=1}^{s} \mathcal{A}\left(f_{i}\right)
$$

Amoeba membership

Theorem (Purbhoo,2008)

$$
\mathcal{A}(I)=\bigcap_{f \in I} \mathcal{A}(f)=\bigcap_{f \in I} \operatorname{Nlop}(f)
$$

This is remarkable but of little use, since it is an infinite intersection.

Definition (Amoeba basis, Schroeter-de Wolff)

Given I, a proper ideal of $\mathbb{C}[z],\left\{f_{1}, \ldots, f_{s}\right\}$ is an amoeba basis if it is a set of generators of I which is minimal w.r.t the property

$$
\mathcal{A}(I)=\bigcap_{i=1}^{s} \mathcal{A}\left(f_{i}\right)
$$

In general, amoeba bases may not exist.

Our results revisited - another perspective

Proposition (G.-Gouveia)

A matrix $A \in \mathbb{R}_{+}^{n \times m}$ with $m \geq n$ verifies $\operatorname{rank}_{\theta}(A)<n$ if and only if for any $n \times n$ submatrix B we have $\operatorname{rank}_{\theta}(B)<n$.

Corollary (G.-Gouveia)

The maximal minors form an amoeba basis for the determinantal ideal they generate.

Our results revisited - another perspective

Proposition (G.-Gouveia)

A matrix $A \in \mathbb{R}_{+}^{n \times m}$ with $m \geq n$ verifies $\operatorname{rank}_{\theta}(A)<n$ if and only if for any $n \times n$ submatrix B we have $\operatorname{rank}_{\theta}(B)<n$.

Corollary (G.-Gouveia)

The maximal minors form an amoeba basis for the determinantal ideal they generate.

Corollary (G.-Gouveia)

Let $A \in \mathbb{R}_{+}^{3 \times 3}$. Then, $\operatorname{rank}_{\theta}(A)<3$ if and only if $\operatorname{det}(\mathcal{M}(A P)) \leq 0$ for all permutation matrices.

Corollary (G.-Gouveia)

The amoeba of the 3×3 determinant is completely characterized by the nonlopsidedness of the determinant.

PSD-rank

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A) \leq \operatorname{rank}_{\theta}(\sqrt[\circ]{A})
$$

PSD-rank

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A) \leq \operatorname{rank}_{\theta}(\sqrt[\circ]{A})
$$

Proposition (Lee-Wei-de Wolf,2016)

Let $A \in \mathbb{R}_{+}^{n \times m}, n \leq m$. If every of column of $\sqrt[\circ]{A}$ is not lopsided,

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A)<n .
$$

PSD-rank

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A) \leq \operatorname{rank}_{\theta}(\sqrt[\circ]{A})
$$

Proposition (Lee-Wei-de Wolf,2016)

Let $A \in \mathbb{R}_{+}^{n \times m}, n \leq m$. If every of column of $\sqrt[\circ]{A}$ is not lopsided,

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A)<n .
$$

The assumption in previous result is simply a sufficient condition for $\operatorname{rank}_{\theta}(\sqrt[\circ]{A})<n$.

PSD-rank

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A) \leq \operatorname{rank}_{\theta}(\sqrt[\circ]{A})
$$

Proposition (Lee-Wei-de Wolf,2016)

Let $A \in \mathbb{R}_{+}^{n \times m}, n \leq m$. If every of column of $\sqrt[\circ]{A}$ is not lopsided,

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A)<n .
$$

The assumption in previous result is simply a sufficient condition for $\operatorname{rank}_{\theta}(\sqrt[\circ]{A})<n$.

Proposition (G.-Gouveia)

Let $A \in \mathbb{R}_{+}^{n \times m}, n \leq m$. If every column of all $k \times k$ submatrices of $\sqrt[\circ]{A}$ is not lopsided, $k \leq n$, then

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(A) \leq n-\left\lfloor\frac{n-1}{k-1}\right\rfloor .
$$

Thank You

