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Phaseless rank

Given a matrix A ∈ Rn×m
+ we are interested in the quantity

Phaseless rank
rank θ(A) = minX rank (X )

s.t. |Xij | = Aij , ∀i , j ;
X ∈ Cn×m.

We will call this the phaseless rank of A.


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 −→


0 1 1 1
1 0 ei(θ+π) ei(θ+ 2π

3 )

1 eiθ 0 ei(θ+π
3 )

1 ei(θ−π
3 ) ei(θ− 2π

3 ) 0


rank (A) = 4 rank (X ) = 2

It is a problem of rank minimization under phase uncertainty.
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Space of 3× 3 matrices of phaseless rank at most 2 cut by a random
two-dimensional affine space.
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Why we care - Amoebas

Definition (Amoeba)
Given a polynomial ideal I and its set of zeros, V(I), we define the
amoeba of I as

A(I) = {Log(|z|) = (log(|z1|), ..., log(|zn|)) | z ∈ V(I) ∩ (C∗)n}.

These are well-known structures, studied in complex analysis and
tropical algebraic geometry.

Let Pn×m
k = {A ∈ Rn×m

+ : rankθ (A) ≤ k}.

Log
(
Pn×m

k

)
= A(minors of order(k + 1))

It is an amoeba membership problem.
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Why we care - Semidefinite lifts

A complex semidefinite representation of size k of a
d-polytope P is a description

P =
{

x ∈ Rd
∣∣∣ ∃y s.t. A0 +

∑
Aixi +

∑
Biyi � 0

}
,

where Ai ,Bi are k × k complex hermitian matrices.

If P has vertices p1, · · · ,pv and facets h1(x) ≥ 0, . . . ,hf (x) ≥ 0, its
slack matrix, SP , is defined by SP(i , j) = hi(pj), for all i and j .

Theorem (Gouveia-Parrilo-Thomas,2012)
The smallest size of a complex semidefinite representation of P is
rankCpsd (SP), defined as the smallest k for which there are
U1, . . . ,Uf ,V1, · · · ,Vv ∈ Sk

+(C) such that SP(i , j) = 〈Ui ,Vj〉 for all i , j .
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Why we care - Semidefinite lifts

The size of any complex semidefinite representation of a d-polytope P
cannot be smaller than d + 1. If it equals d + 1 we call the polytope
psdC-minimal.

Proposition
(Gouveia-Robinson-Thomas,2013+G.-Gouveia-Silva,2017)

A d-dimensional polytope P with slack matrix SP ∈ Rf×v
+ is

psdC-minimal if and only if

rankθ (
◦
√

SP) = d + 1,

where ◦
√

SP is the entrywise nonnegative square root of SP .

In fact, more generally, we also have rankCpsd (A) ≤ rankθ (
◦√A) for any

nonnegative matrix A.
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The phaseless-singular matrices

So the first interesting thing one can ask is the following:

Question
When does a matrix A ∈ Rn×m, with m ≥ n verify rank θ(A) < n?

It turns out that the answer is simple.

rank θ(A) < n iff we can scale rows of A by nonnegative numbers in
such a way that the entries on each of the columns are "balanced".

1 2 3
1 1 0
1 1

√
2

 −→
 2

3
4
3 2

1 1 0√
2
√

2 2

 −→

√

2 ≤ 1 + 2/3;√
2 ≤ 1 + 4/3;
2 ≤ 2 + 0.
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LP-feasibility formulation

But this can be written in a very nice form.

Lemma (Camion-Hoffman,1966)
Let A ∈ Rn×m

+ , with m ≥ n. Then, rank θ(A) < n if and only if the
LP-feasibility problem

find λ ∈ Rn

s.t. λiAij −
∑

k 6=i λkAkj ≤ 0, ∀i , j ;∑
λi = 1;

λ ≥ 0;

has a solution.

We can now leverage this result to get a number of interesting
consequences.
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Nonmaximal phaseless rank - rectangular case

Proposition (G.-Gouveia)
A matrix A ∈ Rn×m

+ , with m ≥ n, verifies rank θ(A) < n if and only if for
any n × n submatrix B we have rank θ(B) < n.

Proof:
Ci = { multipliers λ making column i verify the triangular
inequality}.
Ci are convex and every n of them intersect, so by Helly’s theorem
all intersect.

Hence, solving the rectangular case consists in solving multiple square
case
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M =

x − y + 1 x − y + 1 x + 1 1
1− x −x + y + 1 1− y x + y + 1
1− y 1− x 1 x − y + 1



phaseless singular 3×3 submatrices phaseless singular M
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Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman,1966)
Given A ∈ Rn×n

+ , rank θ(A) = n if and only if there exists a permutation
matrix P such thatM(AP) is a nonsingular M-matrix.
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Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman,1966)
Given A ∈ Rn×n

+ , rank θ(A) = n if and only if there exists a permutation
matrix P such thatM(AP) is a nonsingular M-matrix.

Let X ∈ Cn×n.

M(X )ij =

{
|Xij |, i = j
−|Xij |, i 6= j .
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Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman,1966)
Given A ∈ Rn×n

+ , rank θ(A) = n if and only if there exists a permutation
matrix P such thatM(AP) is a nonsingular M-matrix.

Proposition/Definition
Let A ∈ Rn×n have nonpositive off-diagonal entries. Then the following
are equivalent:

i A is a nonsingular M-matrix.
ii All its eigenvalues have positive real part.
iii All its leading principal minors are positive.
iv All its leading principal minors of size at least 3 are positive.
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Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman,1966)
Given A ∈ Rn×n

+ , rank θ(A) = n if and only if there exists a permutation
matrix P such thatM(AP) is a nonsingular M-matrix.

Corollary (G.-Gouveia)
Let A ∈ Rn×n

+ , with n = 3,4. Then, rank θ(A) < n if and only if
det(M(AP)) ≤ 0 for all permutation matrices.

Thus, P3×3
2 and P4×4

3 are basic semialgebraic sets
(and, consequently, P3×n

2 and P4×n
3 )
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Let A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ R3×3
+ .

det

 a11 −a12 −a13
−a21 a22 −a23
−a31 −a32 a33

 = a11a22a33 − a11a23a32 − a12a21a33 − a12a23a31 − a13a21a32 − a13a22a31 ≤ 0

det

 a11 −a13 −a12
−a21 a23 −a22
−a31 −a33 a32

 = −a11a22a33 + a11a23a32 − a12a21a33 − a12a23a31 − a13a21a32 − a13a22a31 ≤ 0

det

 a12 −a11 −a13
−a22 a21 −a23
−a32 −a31 a33

 = −a11a22a33 − a11a23a32 + a12a21a33 − a12a23a31 − a13a21a32 − a13a22a31 ≤ 0

det

 a12 −a13 −a11
−a22 a23 −a21
−a32 −a33 a31

 = −a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 − a13a21a32 − a13a22a31 ≤ 0

det

 a13 −a11 −a12
−a23 a21 −a22
−a33 −a31 a32

 = −a11a22a33 − a11a23a32 − a12a21a33 − a12a23a31 + a13a21a32 − a13a22a31 ≤ 0

det

 a13 −a12 −a11
−a23 a22 −a21
−a33 −a32 a31

 = −a11a22a33 − a11a23a32 − a12a21a33 − a12a23a31 − a13a21a32 + a13a22a31 ≤ 0
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Bounds on phaseless rank

Question: does rank θ(A) < k if and only if all k × k submatrices of A
have nonmaximal phaseless rank?

Proposition (Levinger,1972)
Let A = mI + J, where 0 < m < n − 2, and J is the n × n all-ones
matrix. All (m + 2)× (m + 2) submatrices have nonmaximal phaseless
rank but rank θ(A) > m + 1.

Proposition (Levinger,1972)

Let A ∈ Rn×m
+ , n ≤ m. If all its k × k submatrices of A have

nonmaximal phaseless rank, k ≤ n, then

rank θ(A) ≤ m −
⌊

m − 1
k − 1

⌋
.
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Amoeba membership

Checking amoeba membership is hard, even for amoebas of ideals
generated by a single polynomial, A(f ).

Let f (z) = m1(z) + . . .+ md(z) ∈ C[z]. An easy necessary condition
for amoeba membership can be derived using lopsidedness.

Purbhoo,2008
We have the inclusion A(f ) ⊆ Nlop(f ), where

Nlop(f ) = {Log(a) : a ∈ Rn
++ and {|m1(a)|, . . . , |mk (a)|} is not lopsided}

In general, it is not a sufficient condition.
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Amoeba membership

Let f (x , y) = 1 + x + y + xy + y2 ∈ C[x , y ].

A(f ) ⊂ Nlop(f )
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Amoeba membership

Theorem (Purbhoo,2008)

A(I) =
⋂
f∈I

A(f ) =
⋂
f∈I

Nlop(f )

This is remarkable but of little use, since it is an infinite intersection.

Definition (Amoeba basis, Schroeter-de Wolff)
Given I, a proper ideal of C[z], {f1, . . . , fs} is an amoeba basis if it is a
set of generators of I which is minimal w.r.t the property

A(I) =
s⋂

i=1

A(fi).

In general, amoeba bases may not exist.
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Our results revisited - another perspective

Proposition (G.-Gouveia)
A matrix A ∈ Rn×m

+ with m ≥ n verifies rank θ(A) < n if and only if for
any n × n submatrix B we have rank θ(B) < n.

Corollary (G.-Gouveia)
The maximal minors form an amoeba basis for the determinantal ideal
they generate.

Corollary (G.-Gouveia)

Let A ∈ R3×3
+ . Then, rank θ(A) < 3 if and only if det(M(AP)) ≤ 0 for all

permutation matrices.

Corollary (G.-Gouveia)
The amoeba of the 3× 3 determinant is completely characterized by
the nonlopsidedness of the determinant.
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PSD-rank

rankCpsd (A) ≤ rankθ (
◦√A)

Proposition (Lee-Wei-de Wolf,2016)

Let A ∈ Rn×m
+ , n ≤ m. If every of column of ◦√A is not lopsided,

rankCpsd (A) < n.

The assumption in previous result is simply a sufficient condition for
rankθ (

◦√A) < n.

Proposition (G.-Gouveia)

Let A ∈ Rn×m
+ , n ≤ m. If every column of all k × k submatrices of ◦√A is

not lopsided, k ≤ n, then

rankCpsd (A) ≤ n −
⌊

n − 1
k − 1

⌋
.
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Thank You
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