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Phaseless rank

Given a matrix A € RT*™ we are interested in the quantity

Phaseless rank

rank o(A) = miny rank (X)
s.t. | Xj| = Ay, Vi,
X eCmm,

We will call this the phaseless rank of A.

2/22



Phaseless rank

Given a matrix A € R we are interested in the quantity

Phaseless rank

rank o(A) = miny rank(X)
S.t. |X,j| = A,'j, Vi7j;
X eCmm,

We will call this the phaseless rank of A.

01 11
1.0 1 1
11 0 1
1110
rank (A) = 4

2/22



Phaseless rank

Given a matrix A € R we are interested in the quantity

Phaseless rank

rank o(A) = miny rank(X)
S.t. |X,j| = A,'j, Vi7j;
X eCmm,

We will call this the phaseless rank of A.
ei97 eleg 0 6109
elfo  gif1 @itz
minrank (X)?

2/22



Phaseless rank

Given a matrix A € R we are interested in the quantity

Phaseless rank
rank o(A) = miny rank(X)
S.t. |X,j| = A,'j, Vi7j;
X e cnxm,

We will call this the phaseless rank of A.

0 1 1 1

1 0 gil(0+m)  Qi(O+%)

1 el? 0 ei(G-i—%)

1 &-3) &l0-5) 0
rank (X) =2

2/22



Phaseless rank

Given a matrix A € R we are interested in the quantity

Phaseless rank

rank o(A) = miny rank (X)
s.t. | Xj| = Ay, Vi,
X eCmm,

We will call this the phaseless rank of A.
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It is a problem of rank minimization under phase uncertainty.
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Space of 3 x 3 matrices of phaseless rank at most 2 cut by a random
two-dimensional affine space.
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Why we care - Amoebas

Definition (Amoeba)

Given a polynomial ideal / and its set of zeros, V(/), we define the
amoeba of / as

A(1) = {Log(|z|) = (log(|z1]), -, l0og(|zn])) | z € V(/) N (C*)"}.
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Why we care - Amoebas

Definition (Amoeba)

Given a polynomial ideal / and its set of zeros, V(/), we define the
amoeba of / as

A(1) = {Log(|z|) = (log(|z1]), -, l0og(|zn])) | z € V(/) N (C*)"}.

These are well-known structures, studied in complex analysis and
tropical algebraic geometry.

Let P7*™ = {A e RD*™ : ranky (A) < k}.
Log(P*™) = A(minors of order(k + 1))

It is an amoeba membership problem.
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A complex semidefinite representation of size k of a
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A complex semidefinite representation of size k of a
d-polytope P is a description

P:{xeRd ’3ys.t.A0+ZA,-x,-+ZB,-yit0},

where A;,B; are k x k complex hermitian matrices.

If P has vertices p1,---,py and facets hy(x) > 0, ..., hs(x) > 0, its
slack matrix, Sp, is defined by Sp(/,j) = h;i(p;), for all i and j.

Theorem (Gouveia-Parrilo-Thomas,2012)

The smallest size of a complex semidefinite representation of P is
rankgsd (Sp), defined as the smallest k for which there are

Us,...,Up, Vy,-- Vi, € SK(C) such that Sp(i,j) = (U, V) for all i, .
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(Gouveia-Robinson-Thomas,2013+G.-Gouveia-Silva,2017)

A d-dimensional polytope P with slack matrix Sp € R:LX" is
psd®-minimal if and only if
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where {/Sp is the entrywise nonnegative square root of Sp.
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The size of any complex semidefinite representation of a d-polytope P
cannot be smaller than d + 1. If it equals d 4+ 1 we call the polytope
psdC-minimal.

Proposition

(Gouveia-Robinson-Thomas,2013+G.-Gouveia-Silva,2017)

A d-dimensional polytope P with slack matrix Sp € R:LX" is
psd®-minimal if and only if

ranky (v/Sp) =d +1,

where {/Sp is the entrywise nonnegative square root of Sp.

In fact, more generally, we also have rankgsd (A) < ranky (v/A) for any
nonnegative matrix A.
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The phaseless-singular matrices

So the first interesting thing one can ask is the following:

When does a matrix A € R™™ with m > n verify rank ¢(A) < n? I
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The phaseless-singular matrices

So the first interesting thing one can ask is the following:

When does a matrix A € R™™ with m > n verify rank ¢(A) < n? I

It turns out that the answer is simple.

rank ¢(A) < niff we can scale rows of A by nonnegative numbers in
such a way that the entries on each of the columns are "balanced".

12 3 2 4 2 V2 <1+2/3;
11 0 — |1 1 0 —{ v2 <1+4/3;
11 V2 V2 V2 2 2 <2+0.
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LP-feasibility formulation

But this can be written in a very nice form.

Lemma (Camion-Hoffman,1966)

Let A e RT*™, with m > n. Then, rank¢(A) < nif and only if the
LP-feasibility problem

find X eR"

s.t. )\,'A,'j — Zk;éi )\kAkj <0, Vi,j;
D=1,
A>0;

has a solution.
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But this can be written in a very nice form.

Lemma (Camion-Hoffman,1966)

Let A e RT*™, with m > n. Then, rank¢(A) < nif and only if the
LP-feasibility problem

find X eR"

s.t. )\,'A,'j — Zk;éi )\kAkj <0, Vi,j;
Y Ai=1;
A>0;

has a solution.

We can now leverage this result to get a number of interesting
consequences.
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Nonmaximal phaseless rank - rectangular case

Proposition (G.-Gouveia)

A matrix A € R7*™, with m > n, verifies rank 4(A) < nif and only if for
any n x n submatrix B we have rank4(B) < n.
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inequality }.
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Nonmaximal phaseless rank - rectangular case

Proposition (G.-Gouveia)

A matrix A € R7*™, with m > n, verifies rank 4(A) < nif and only if for
any n x n submatrix B we have rank4(B) < n.

Proof:
@ C; = { multipliers A making column i verify the triangular
inequality }.
@ C; are convex and every n of them intersect, so by Helly’s theorem
all intersect.

Hence, solving the rectangular case consists in solving multiple square
case
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X—y+1 x—-y+1 x+1 1
M= 1—x —Xx+y+1 11—y x+y+1
1—y 1—x 1 X—y+1
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1—y 1—x 1 X—y+1

phaseless singular 3 x 3 submatrices
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Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman,1966)

Given A € R7*", rank »(A) = nif and only if there exists a permutation
matrix P such that M(AP) is a nonsingular M-matrix.
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Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman,1966)

Given A € R7*", rank »(A) = nif and only if there exists a permutation
matrix P such that M(AP) is a nonsingular M-matrix.

Let X € C™ .
(Xil, =1

M= {—|X,-,-|, i#]

12/22



Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman,1966)

Given A € RT*", rank 4(A) = nif and only if there exists a permutation
matrix P such that M(AP) is a nonsingular M-matrix.

Proposition/Definition

Let A € R™" have nonpositive off-diagonal entries. Then the following
are equivalent:

i Ais a nonsingular M-matrix.
i Allits eigenvalues have positive real part.
il All its leading principal minors are positive.
iv All its leading principal minors of size at least 3 are positive.

13/22



Nonmaximal phaseless rank - square case

Theorem (Camion-Hoffman,1966)

Given A € RT*", rank 4(A) = nif and only if there exists a permutation
matrix P such that M(AP) is a nonsingular M-matrix.

Corollary (G.-Gouveia)

Let A€ RT*", with n = 3,4. Then, rank4(A) < nif and only if
det(M(AP)) < 0 for all permutation matrices.

Thus, P33 and P3** are basic semialgebraic sets
(and, consequently, P3*" and P3*")
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. a2 a3
Let A= |ax»y ax ao3 | € R‘ixs.
azy dz2 dss
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. a2 a3
Let A= |ax»y ax ao3 | € Rixs.
azy dz2 dss

an —ar2  —a13
det | —apy ag —ap3 | = a1apa33 — 11323332 — 312821333 — A1283831 — 13821832 — 213322331 < 0
—a3  —axp 233
ar —a3 a2
det | —apy a3 —ap | = —ar1axpasz + a11a3a3 — 12321833 — 312323831 — 13821432 — A13a04a31 < 0
L —a31 —as3 az |
a2 —ann  —a3
det | —ap a1 —a3| = —ai1axpazs — a11a3a3 + 812821833 — 12323831 — 13821432 — a13a0az < 0
L—4d32  —ast a3 |
a2 —a3  —an
det | —ap a3 —apy | = —ay1apa33 — a11323832 — A12321a33 1 312323331 — 313821332 — A1382831 < 0
Ll—d32 —as asy |
a3 —an —a2
det | —ap3 a1 —ap | = —ayiaxpaz — ajiaxgds — apdxidzs — a12dx3dsy + a138p1832 — 31382831 < 0
L—@3 —asz1 azp |
a3 —d2 —an
det | —ap3 a2 —ax | = —ai1axpaz — 113383 — 312821833 — 312823831 — 313821832 + A13a831 < 0
l—@3 —a3 aszy |
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Let A= ml+ J,where0 < m< n—2,and Jis the n x nall-ones
matrix. All (m+ 2) x (m+ 2) submatrices have nonmaximal phaseless
rank but rank g(A) > m+ 1.

Proposition (Levinger,1972)

Let Ac R*™, n< m. Ifallits k x k submatrices of A have
nonmaximal phaseless rank, k < n, then

m—1
rank o(A) < m — {WJ .
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Bounds on phaseless rank

Question: does ranky(A) < k if and only if all k x k submatrices of A
have nonmaximal phaseless rank?

Proposition (Levinger,1972)

Let A=ml+ J,where 0 < m< n—2,and Jis the n x n all-ones
matrix. All (m+ 2) x (m + 2) submatrices have nonmaximal phaseless
rank but rank g(A) > m+ 1.

Proposition (G.-Gouveia)

Let Ac R, n< m. If all its k x k submatrices of A have
nonmaximal phaseless rank, k < n, then

n—1
<n- .
ranko(A) < n L‘—J
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Checking amoeba membership is hard, even for amoebas of ideals
generated by a single polynomial, A(f).

Let f(z) = my(2) + ...+ my(2) € C[z]. An easy necessary condition
for amoeba membership can be derived using lopsidedness.

Purbhoo,2008

We have the inclusion A(f) C Nlop(f), where

Nlop(f) = {Log(a) : a € R", and {|my(a)|,...,|mk(a)|} is not lopsided}

In general, it is not a sufficient condition.
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Amoeba membership

Let f(x,y) =14+ x+y +xy + y? € C[x, y].
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Amoeba membership

Theorem (Purbhoo,2008)

A(l) = (") A(f) = (| Nlop(f)

fel fel

This is remarkable but of little use, since it is an infinite intersection.
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This is remarkable but of little use, since it is an infinite intersection.

Definition (Amoeba basis, Schroeter-de Wolff)

Given [, a proper ideal of C[z], {fi, ..., fs} is an amoeba basis if it is a
set of generators of / which is minimal w.r.t the property
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A(l) = [ A(h)-




Amoeba membership

Theorem (Purbhoo,2008)

A(l) = (") A(f) = (| Nlop(f)

fel fel

This is remarkable but of little use, since it is an infinite intersection.

Definition (Amoeba basis, Schroeter-de Wolff)

Given [, a proper ideal of C[z], {fi, ..., fs} is an amoeba basis if it is a
set of generators of / which is minimal w.r.t the property

S

A(l) = [ A(h)-

i=1

In general, amoeba bases may not exist.
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Our results revisited - another perspective

Proposition (G.-Gouveia)

A matrix A € R7*™ with m > n verifies rank ¢(A) < nif and only if for
any n x n submatrix B we have rank4(B) < n.

v

Corollary (G.-Gouveia)

The maximal minors form an amoeba basis for the determinantal ideal
they generate.
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Our results revisited - another perspective

Proposition (G.-Gouveia)

A matrix A € R7*™ with m > n verifies rank ¢(A) < nif and only if for
any n x n submatrix B we have rank4(B) < n.

Corollary (G.-Gouveia)

The maximal minors form an amoeba basis for the determinantal ideal
they generate.

Corollary (G.-Gouveia)

Let A € R®3. Then, rank 4(A) < 3 if and only if det(M(AP)) < 0 for all
permutation matrices.

v

Corollary (G.-Gouveia)

The amoeba of the 3 x 3 determinant is completely characterized by
the nonlopsidedness of the determinant.
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PSD-rank

rankSsq (A) < ranky (VA)
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PSD-rank

rankSsq (A) < ranky (VA)
Proposition (Lee-Wei-de Wolf,2016)

Let A€ RT*™, n < m. If every of column of V/A is not lopsided,

rankSq (A) < n.

The assumption in previous result is simply a sufficient condition for
ranky (V/A) < n.

Proposition (G.-Gouveia)

Let A€ R7*™, n < m. If every column of all k x k submatrices of VA is
not lopsided, k < n, then

n-—A1
rankSq (A) < n— { J :
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