
1/31

Sieve-SDP: A Simple Algorithm to Preprocess
Semidefinite Programs

Yuzixuan Zhu

Joint work with Gábor Pataki and Quoc Tran-Dinh

University of North Carolina at Chapel Hill

SIAGA, July 2019

Admin-local




2/31

Outline

I Basic Concepts

I Examples

I The Sieve Algorithm

I Computational Results



3/31

Semidefinite Program (SDP)

inf. C ·X
s.t. Ai ·X = bi (i = 1, ...,m)

X � 0

where

I C,Ai, X ∈ Sn, bi ∈ R, i = 1, ...,m

I A ·X := trace(AX) =
∑n

i,j=1 aijxij

I X � 0: X ∈ Sn+, i.e. X is symmetric positive semidefinite (psd)



4/31

Motivation
Softwares: SeDuMi, SDPT3, Mosek, ...

I Slow for problems that are large

I Error for problems without strict feasibility

We want to preprocess the problem to

I Reduce size by removing redundancy

I Detect lack of strict feasibility

before giving the problem to the solver.



5/31

Example 1

1 0 0
0 0 0
0 0 0

 ·X = 0

0 0 1
0 1 0
1 0 0

 ·X = −1

X � 0



6/31

Example 1

1 0 0
0 0 0
0 0 0

 ·X = 0

0 0 1
0 1 0
1 0 0

 ·X = −1

X � 0

Suppose X = (xij)3×3 feasible ⇒ x11 = 0

⇒ x12 = x13 = 0



7/31

Example 1

1 0 0
0 0 0
0 0 0

 ·X = 0

0 0 1
0 1 0
1 0 0

 ·X = −1

X � 0

Suppose X = (xij)3×3 feasible ⇒ x11 = 0

⇒ x12 = x13 = 0

⇒ x22 = −1

⇒ Infeasible!



8/31

Example 2


1 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 ·X = 0


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1

 ·X = 0


0 0 0 0
0 0 2 0
0 2 1 0
0 0 0 0

 ·X = 1

X � 0



9/31

Example 2


1 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 ·X = 0, removed


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1

 ·X = 0


0 0 0 0
0 0 2 0
0 2 1 0
0 0 0 0

 ·X = 1

X � 0



10/31

Example 2


1 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 ·X = 0, removed


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1

 ·X = 0, removed


0 0 0 0
0 0 2 0
0 2 1 0
0 0 0 0

 ·X = 1

X � 0



11/31

Example 2

Before preprocessing: X ∈ S4+; 3 constraints

After preprocessing: X ∈ S1+; 1 constraint: 1 ·X = 1



12/31

The Sieve structure

After reduction, the matrix looks like this:



13/31

A large example

(a) An SDP with m = 3002 and
∑

n2
i = 71775

(b) Reduced SDP with
m = 1286 and

∑
n2
i = 40743



14/31

Basic steps

Step 1. Find a constraint of the form(
Di 0
0 0

)
·X = bi,

where bi ≤ 0 and Di � 0 (checked by Cholesky factorization).

Step 2. If bi < 0, stop. The SDP is infeasible.

Step 3. If bi = 0, delete rows and columns corresponding to Di;
remove this constraint.



15/31

Sieve-SDP is a facial reduction algorithm (FRA)

I Literature: Borwein-Wolkowicz 1981; Waki-Muramatsu 2013;
Pataki 2013.

I The feasible region of an SDP is

{X ∈ Sn+ : Ai ·X = bi, i = 1, ...,m},

which is equivalent to

{X ∈ F : Ai ·X = bi, i = 1, ...,m}

for some F face of Sn+.

I FRA iterates to reduce the cone (Fk+1 ⊆ Fk ⊆ · · · ⊆ Sn+).



16/31

Other motivation: reformulations

Liu-Pataki 2015, 2017: if

inf. C ·X
s.t. Ai ·X = bi (i = 1, ...,m)

X � 0

is infeasible, then it can be reformulated (using eros, and similarity
transf) so Sieve-SDP trivially proves infeasibility.

This work: in many cases we do not even have to reformulate!



16/31

Other motivation: reformulations

Liu-Pataki 2015, 2017: if

inf. C ·X
s.t. Ai ·X = bi (i = 1, ...,m)

X � 0

is infeasible, then it can be reformulated (using eros, and similarity
transf) so Sieve-SDP trivially proves infeasibility.

This work: in many cases we do not even have to reformulate!



17/31

Permenter-Parrilo (PP) preprocessing methods

I PP reduces the size of an SDP by solving linear programming
subproblems

I Implemented for primal (p-) and dual (d-) SDPs

I Implemented using diagonal (-d1) and diagonally dominant (-d2)
approximations



18/31

Problem sets

Table: 5 datasets consisting of 771 SDP problems.

dataset source # problems

Permenter-Parrilo (PP) paper in MPA, 2017 68
Mittelmann Mittelmann website 31
Dressler-Illiman-de Wolff (DIW) paper in 2017 155
Henrion-Toh Didier Henrion and Kim-Chuan Toh 98
Toh-Sun-Yang papers in SIOPT/MPA 419

total 771



19/31

Computational setup

I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,
dd1, dd2).

I Use MOSEK to solve each problem before and after
preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.



19/31

Computational setup
I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,

dd1, dd2).

I Use MOSEK to solve each problem before and after
preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.



19/31

Computational setup
I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,

dd1, dd2).

I Use MOSEK to solve each problem before and after
preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.



19/31

Computational setup
I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,

dd1, dd2).

I Use MOSEK to solve each problem before and after
preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.



19/31

Computational setup
I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,

dd1, dd2).

I Use MOSEK to solve each problem before and after
preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.



20/31

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Note: Sieve-SDP detects infeasibility without any optimization
solver!

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors1?

I Does it reduce solving time?

1http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/



20/31

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Note: Sieve-SDP detects infeasibility without any optimization
solver!

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors1?

I Does it reduce solving time?

1http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/



20/31

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Note: Sieve-SDP detects infeasibility without any optimization
solver!

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors1?

I Does it reduce solving time?

1http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/



20/31

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Note: Sieve-SDP detects infeasibility without any optimization
solver!

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors1?

I Does it reduce solving time?

1http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/



20/31

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Note: Sieve-SDP detects infeasibility without any optimization
solver!

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors1?

I Does it reduce solving time?

1http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/



20/31

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Note: Sieve-SDP detects infeasibility without any optimization
solver!

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors1?

I Does it reduce solving time?

1http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/



20/31

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Note: Sieve-SDP detects infeasibility without any optimization
solver!

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors1?

I Does it reduce solving time?

1http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/



21/31

Recover true objective values?

Problem set “Compact” from Waki 2012

problem correct w/o prep. pd1/pd2 dd1/dd2 Sieve
1 Inf, +∞ 3.79e+06, 4.20e+06 Inf, 1 3.79e+06, 4.20e+06 Inf, -
2 Inf, +∞ 6.41e-10, 6.81e-10 Inf, 2 6.41e-10, 6.81e-10 Inf, -
3 Inf, +∞ 1.5, 1.5 Inf, 2 1.5, 1.5 Inf, -
4 Inf, +∞ 1.5, 1.5 Inf, 2 1.5, 1.5 Inf, -
5 Inf, +∞ 1.5, 1.5 Inf, 2 1.5, 1.5 Inf, -
6 Inf, +∞ 1.5, 1.5 Inf, 2 1.5, 1.5 Inf, -
7 Inf, +∞ 1.5, 1.5 Inf, 2 1.5, 1.5 Inf, -
8 Inf, +∞ 1.5, 1.5 Inf, 2 1.5, 1.5 Inf, -
9 Inf, +∞ 1.5, 1.5 Inf, 2 1.5, 1.5 Inf, -
10 Inf, +∞ 1.5, 1.5 Inf, 2 1.5, 1.5 Inf, -

correct% 100%, 100% 0%, 0% 100%, 0% 0%, 0% 100%, -

Inf = Infeasible



22/31

Recover true objective values?

Similar results on problem set “unbounded” from
Waki-Muramatsu-Nakata 2012

In their paper, they used SDPA-GMP (whic carries a few hundred
digits of accuracy) to compute the correct solutions,



22/31

Recover true objective values?

Similar results on problem set “unbounded” from
Waki-Muramatsu-Nakata 2012

In their paper, they used SDPA-GMP (whic carries a few hundred
digits of accuracy) to compute the correct solutions,



23/31

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈RN

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I (poly-opt) has SDP relaxations (Lasserre 2001).

I if SDP is infeasible, then it is useless.

I Solvers could spend a lot of time (not) proving infeasibility.

I Sometimes one can compute near feasible solutions: Henrion-Lasserre 2005;
Magron-Lasserre 2019.



23/31

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈RN

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I (poly-opt) has SDP relaxations (Lasserre 2001).

I if SDP is infeasible, then it is useless.

I Solvers could spend a lot of time (not) proving infeasibility.

I Sometimes one can compute near feasible solutions: Henrion-Lasserre 2005;
Magron-Lasserre 2019.



23/31

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈RN

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I (poly-opt) has SDP relaxations (Lasserre 2001).

I if SDP is infeasible, then it is useless.

I Solvers could spend a lot of time (not) proving infeasibility.

I Sometimes one can compute near feasible solutions: Henrion-Lasserre 2005;
Magron-Lasserre 2019.



23/31

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈RN

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I (poly-opt) has SDP relaxations (Lasserre 2001).

I if SDP is infeasible, then it is useless.

I Solvers could spend a lot of time (not) proving infeasibility.

I Sometimes one can compute near feasible solutions: Henrion-Lasserre 2005;
Magron-Lasserre 2019.



23/31

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈RN

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I (poly-opt) has SDP relaxations (Lasserre 2001).

I if SDP is infeasible, then it is useless.

I Solvers could spend a lot of time (not) proving infeasibility.

I Sometimes one can compute near feasible solutions: Henrion-Lasserre 2005;
Magron-Lasserre 2019.



24/31

Results of DIW dataset (polynomial optimization
problems)

Table: Results of DIW dataset.

prep. method # reduced # infeas detected n m tprep + tsol (s)

w/o prep. - - 53,523 186,225 (39 hrs ≈) 139,493
pd1 155 56 1,450 3,278 1,743
pd2 155 56 1,450 3,278 10,956
dd1 0 0 53,523 186,225 139,541
dd2 0 0 53,523 186,225 161,628
Sieve-SDP 155 59 1,385 3,204 (22 min ≈) 1,319

I Increased the solving speed by more than 100 times!

I Infeasibility has been double-checked in exact arithmetic.



25/31

An example from DIW dataset

Figure: Size and sparsity before and after Sieve-SDP.



26/31

Overall summary on all 771 problems: size reduction

Table: Overall size reduction.

method # reduced red. on n red. on m extra free vars

pd1 209 15.47% 17.79% 0
pd2 230 15.59% 18.23% 0
dd1 14 6.74% 0.00% 2,293,495
dd2 21 9.28% 0.00% 2,315,849
Sieve-SDP 216 16.55% 20.66% 0

red. on n:
∑

nbefore−
∑

nafter∑
nbefore

red. on m:
∑

mbefore−
∑

mafter∑
mbefore



27/31

Overall summary on all 771 problems: helpfulness

Table: Overall helpfulness.

method # reduced # infeas detected # DIMACS error improved # out of memory

pd1 209 67 74 0
pd2 230 67 78 6
dd1 14 0 2 0
dd2 21 0 4 4
Sieve-SDP 216 73 74 0



28/31

Overall summary on all 771 problems: time

Table: Preprocessing and solving times.

method tprep (hr) tsol (hr) tprep/tsol w/o time reduction

w/o - 75.67 - -
pd1 0.69 36.77 0.91% 50.50%
pd2 6.48 36.57 8.56% 43.12%
dd1 0.16 75.62 0.22% -0.15%
dd2 10.00 75.56 13.21% -13.16%
Sieve-SDP 0.60 36.62 0.80% 51.81%

time reduction:
tsol w/o − (tprep + tsol)

tsol w/o
× 100%.



29/31

Summary

I Sieve-SDP is fast and stable.

I No need for an optimization solver: Only needs Cholesky
factorization.



29/31

Summary

I Sieve-SDP is fast and stable.

I No need for an optimization solver: Only needs Cholesky
factorization.



29/31

Summary

I Sieve-SDP is fast and stable.

I No need for an optimization solver: Only needs Cholesky
factorization.



30/31

Paper and Code

I Paper: https://arxiv.org/abs/1710.08954

I To appear, Math. Programming Computation

I Code: https://github.com/unc-optimization/SieveSDP

I Try Sieve-SDP in your research, and share your experience with
us, please!



30/31

Paper and Code

I Paper: https://arxiv.org/abs/1710.08954

I To appear, Math. Programming Computation

I Code: https://github.com/unc-optimization/SieveSDP

I Try Sieve-SDP in your research, and share your experience with
us, please!



30/31

Paper and Code

I Paper: https://arxiv.org/abs/1710.08954

I To appear, Math. Programming Computation

I Code: https://github.com/unc-optimization/SieveSDP

I Try Sieve-SDP in your research, and share your experience with
us, please!



30/31

Paper and Code

I Paper: https://arxiv.org/abs/1710.08954

I To appear, Math. Programming Computation

I Code: https://github.com/unc-optimization/SieveSDP

I Try Sieve-SDP in your research, and share your experience with
us, please!



30/31

Paper and Code

I Paper: https://arxiv.org/abs/1710.08954

I To appear, Math. Programming Computation

I Code: https://github.com/unc-optimization/SieveSDP

I Try Sieve-SDP in your research, and share your experience with
us, please!



31/31

Thank you for your attention!


