Sieve-SDP: A Simple Algorithm to Preprocess Semidefinite Programs

Yuzixuan Zhu

Joint work with Gábor Pataki and Quoc Tran-Dinh

University of North Carolina at Chapel Hill

SIAGA, July 2019

Outline

- ▶ Basic Concepts
- ► Examples
- ▶ The Sieve Algorithm
- \blacktriangleright Computational Results

Semidefinite Program (SDP)

inf.
$$C \cdot X$$

s.t. $A_i \cdot X = b_i \ (i = 1, ..., m)$
 $X \succeq 0$

where

- $ightharpoonup C, A_i, X \in \mathcal{S}^n, \ b_i \in \mathbb{R}, \ i = 1, ..., m$
- $A \cdot X := \operatorname{trace}(AX) = \sum_{i,j=1}^{n} a_{ij} x_{ij}$
- ▶ $X \succeq 0$: $X \in \mathcal{S}_{+}^{n}$, i.e. X is symmetric positive semidefinite (psd)

Motivation

Softwares: SeDuMi, SDPT3, Mosek, ...

- ▶ Slow for problems that are large
- ▶ Error for problems without strict feasibility

We want to preprocess the problem to

- ▶ Reduce size by removing redundancy
- ▶ Detect lack of strict feasibility

before giving the problem to the solver.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot X = 0$$
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot X = -1$$
$$X \succeq 0$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot X = 0$$
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot X = -1$$
$$X \succeq 0$$

Suppose
$$X = (x_{ij})_{3\times 3}$$
 feasible $\Rightarrow x_{11} = 0$
 $\Rightarrow x_{12} = x_{13} = 0$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot X = 0$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot X = -1$$

$$X \succeq 0$$

Suppose
$$X = (x_{ij})_{3\times 3}$$
 feasible $\Rightarrow x_{11} = 0$
 $\Rightarrow x_{12} = x_{13} = 0$
 $\Rightarrow x_{22} = -1$
 \Rightarrow Infeasible!

Before preprocessing: $X \in \mathcal{S}_{+}^{4}$; 3 constraints

After preprocessing: $X \in \mathcal{S}^1_+$; 1 constraint: $1 \cdot X = 1$

The Sieve structure

After reduction, the matrix looks like this:

A large example

(a) An SDP with m=3002 and $\sum n_i^2=71775$

Basic steps

Step 1. Find a constraint of the form

$$\begin{pmatrix} D_i & 0 \\ 0 & 0 \end{pmatrix} \cdot X = b_i,$$

where $b_i \leq 0$ and $D_i \succ 0$ (checked by Cholesky factorization).

Step 2. If $b_i < 0$, stop. The SDP is infeasible.

Step 3. If $b_i = 0$, delete rows and columns corresponding to D_i ; remove this constraint.

Sieve-SDP is a facial reduction algorithm (FRA)

- Literature: Borwein-Wolkowicz 1981; Waki-Muramatsu 2013; Pataki 2013.
- ▶ The feasible region of an SDP is

$$\{X \in \mathcal{S}^n_+: A_i \cdot X = b_i, i = 1, ..., m\},\$$

which is equivalent to

$${X \in F : A_i \cdot X = b_i, i = 1, ..., m}$$

for some F face of \mathcal{S}^n_+ .

▶ FRA iterates to reduce the cone $(F_{k+1} \subseteq F_k \subseteq \cdots \subseteq S_+^n)$.

Other motivation: reformulations

Liu-Pataki 2015, 2017: if

inf.
$$C \cdot X$$

s.t. $A_i \cdot X = b_i \ (i = 1, ..., m)$
 $X \succeq 0$

is infeasible, then it can be **reformulated** (using eros, and similarity transf) so Sieve-SDP trivially proves infeasibility.

Other motivation: reformulations

Liu-Pataki 2015, 2017: if

inf.
$$C \cdot X$$

s.t. $A_i \cdot X = b_i \ (i = 1, ..., m)$
 $X \succeq 0$

is infeasible, then it can be **reformulated** (using eros, and similarity transf) so Sieve-SDP trivially proves infeasibility.

This work: in many cases we do not even have to reformulate!

Permenter-Parrilo (PP) preprocessing methods

- ▶ PP reduces the size of an SDP by solving linear programming subproblems
- ▶ Implemented for primal (p-) and dual (d-) SDPs
- ▶ Implemented using diagonal (-d1) and diagonally dominant (-d2) approximations

Problem sets

Table: 5 datasets consisting of 771 SDP problems.

dataset	source	# problems
Permenter-Parrilo (PP)	paper in MPA, 2017	68
Mittelmann	Mittelmann website	31
Dressler-Illiman-de Wolff (DIW)	paper in 2017	155
Henrion-Toh	Didier Henrion and Kim-Chuan Toh	98
Toh-Sun-Yang	papers in SIOPT/MPA	419
total		771

▶ Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).

- ▶ Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- Use MOSEK to solve each problem before and after preprocessing.

- ▶ Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- Use MOSEK to solve each problem before and after preprocessing.
- ▶ MATLAB R2015a on MacBook Pro with 8GB of RAM.

- ▶ Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- Use MOSEK to solve each problem before and after preprocessing.
- ▶ MATLAB R2015a on MacBook Pro with 8GB of RAM.

 $^{^{1} \}verb|http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/$

▶ Does preprocessing reduce a problem?

 $^{^{1} \}verb|http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/$

- ▶ Does preprocessing reduce a problem?
- ▶ Does it help to detect infeasibility?

¹ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

- ▶ Does preprocessing reduce a problem?
- ▶ Does it help to detect infeasibility?
- ▶ Note: Sieve-SDP detects infeasibility without any optimization solver!

¹ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

- ▶ Does preprocessing reduce a problem?
- ▶ Does it help to detect infeasibility?
- Note: Sieve-SDP detects infeasibility without any optimization solver!
- ▶ Does it help to recover the true objective value?

¹ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

- ▶ Does preprocessing reduce a problem?
- ▶ Does it help to detect infeasibility?
- Note: Sieve-SDP detects infeasibility without any optimization solver!
- ▶ Does it help to recover the true objective value?
- ▶ Does it reduce solution inaccuracy defined by DIMACS errors¹?

¹ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

- ▶ Does preprocessing reduce a problem?
- ▶ Does it help to detect infeasibility?
- Note: Sieve-SDP detects infeasibility without any optimization solver!
- ▶ Does it help to recover the true objective value?
- ▶ Does it reduce solution inaccuracy defined by DIMACS errors¹?
- ▶ Does it reduce solving time?

¹ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Recover true objective values?

Problem set "Compact" from Waki 2012

problem	correct	w/o prep.	pd1/pd2	dd1/dd2	Sieve
1	Inf, $+\infty$	3.79e+06, 4.20e+06	Inf, 1	3.79e+06, 4.20e+06	Inf, -
2	Inf, $+\infty$	6.41e-10, 6.81e-10	Inf, 2	6.41e-10, 6.81e-10	Inf, -
3	Inf, $+\infty$	1.5, 1.5	Inf, 2	1.5, 1.5	Inf, -
4	Inf, $+\infty$	1.5, 1.5	Inf, 2	1.5, 1.5	Inf, -
5	Inf, $+\infty$	1.5, 1.5	Inf, 2	1.5, 1.5	Inf, -
6	Inf, $+\infty$	1.5, 1.5	Inf, 2	1.5, 1.5	Inf, -
7	Inf, $+\infty$	1.5, 1.5	Inf, 2	1.5, 1.5	Inf, -
8	Inf, $+\infty$	1.5, 1.5	Inf, 2	1.5, 1.5	Inf, -
9	Inf, $+\infty$	1.5, 1.5	Inf, 2	1.5, 1.5	Inf, -
10	Inf, $+\infty$	1.5, 1.5	Inf, 2	1.5, 1.5	Inf, -
correct%	100%, 100%	0%, 0%	100%, 0%	0%, 0%	100%, -

Inf = Infeasible

Recover true objective values?

Similar results on problem set "unbounded" from Waki-Muramatsu-Nakata 2012

Recover true objective values?

Similar results on problem set "unbounded" from Waki-Muramatsu-Nakata 2012

In their paper, they used SDPA-GMP (whic carries a few hundred digits of accuracy) to compute the correct solutions,

SDP relaxation for polynomial optimization

▶ Polynomial optimization:

$$\begin{array}{ll} \min_{x \in \mathbb{R}^N} & f_0(x) \\ \text{s.t.} & f_i(x) \geq 0, \quad i = 1, ..., r. \end{array} \tag{poly-opt}$$

SDP relaxation for polynomial optimization

▶ Polynomial optimization:

$$\min_{x \in \mathbb{R}^N} \quad f_0(x)$$
 s.t. $f_i(x) > 0, \quad i = 1, ..., r.$ (poly-opt)

▶ (poly-opt) has SDP relaxations (Lasserre 2001).

SDP relaxation for polynomial optimization

▶ Polynomial optimization:

$$\min_{x \in \mathbb{R}^N} \quad f_0(x)$$
 (poly-opt) s.t. $f_i(x) > 0, \quad i = 1, ..., r.$

- ▶ (poly-opt) has SDP relaxations (Lasserre 2001).
- ▶ if SDP is infeasible, then it is useless.

SDP relaxation for polynomial optimization

▶ Polynomial optimization:

$$\min_{x \in \mathbb{R}^N} \quad f_0(x)$$
 (poly-opt) s.t. $f_i(x) > 0, \quad i = 1, ..., r.$

- ▶ (poly-opt) has SDP relaxations (Lasserre 2001).
- ▶ if SDP is infeasible, then it is useless.
- ▶ Solvers could spend a lot of time (not) proving infeasibility.

SDP relaxation for polynomial optimization

▶ Polynomial optimization:

$$\min_{x \in \mathbb{R}^N} \quad f_0(x)$$
 s.t. $f_i(x) > 0, \quad i = 1, ..., r.$ (poly-opt)

- ▶ (poly-opt) has SDP relaxations (Lasserre 2001).
- if SDP is infeasible, then it is useless.
- ▶ Solvers could spend a lot of time (not) proving infeasibility.
- Sometimes one can compute near feasible solutions: Henrion-Lasserre 2005; Magron-Lasserre 2019.

Results of DIW dataset (polynomial optimization problems)

Table: Results of DIW dataset.

prep. method	# reduced	# infeas detected	n	m	$t_{prep} + t_{sol} (s)$
w/o prep.	-	-	53,523	186,225	$(39 \text{ hrs} \approx) 139,493$
pd1	155	56	1,450	3,278	1,743
pd2	155	56	1,450	3,278	10,956
dd1	0	0	53,523	186,225	139,541
dd2	0	0	53,523	186,225	161,628
Sieve-SDP	155	59	1,385	3,204	(22 min \approx) 1,319

- ▶ Increased the solving speed by more than 100 times!
- ▶ Infeasibility has been double-checked in exact arithmetic.

An example from DIW dataset

Figure: Size and sparsity before and after Sieve-SDP.

Overall summary on all 771 problems: size reduction

Table: Overall size reduction.

method	# reduced	red. on n	red. on m	extra free vars
pd1	209	15.47%	17.79%	0
pd2	230	15.59%	18.23%	0
dd1	14	6.74%	0.00%	2,293,495
dd2	21	9.28%	0.00%	2,315,849
Sieve-SDP	216	16.55%	20.66%	0

red. on
$$n$$
:
$$\frac{\sum n_{\text{before}} - \sum n_{\text{after}}}{\sum n_{\text{before}}}$$
red. on m :
$$\frac{\sum m_{\text{before}} - \sum m_{\text{after}}}{\sum m_{\text{before}}}$$

Overall summary on all 771 problems: helpfulness

Table: Overall helpfulness.

method	$\# \ {\rm reduced}$	# infeas detected	# DIMACS error improved	# out of memory
pd1	209	67	74	0
pd2	230	67	78	6
dd1	14	0	2	0
dd2	21	0	4	4
Sieve-SDP	216	73	74	0

Overall summary on all 771 problems: time

Table: Preprocessing and solving times.

method	t _{prep} (hr)	t _{sol} (hr)	$t_{\rm prep}/t_{\rm sol_w/o}$	time reduction
w/o	-	75.67	-	-
pd1	0.69	36.77	0.91%	50.50%
pd2	6.48	36.57	8.56%	43.12%
dd1	0.16	75.62	0.22%	-0.15%
dd2	10.00	75.56	13.21%	-13.16%
Sieve-SDP	0.60	36.62	0.80%	51.81%

$$\label{eq:time_reduction:} \frac{t_{\rm sol_w/o} - (t_{\rm prep} + t_{\rm sol})}{t_{\rm sol_w/o}} \times 100\%.$$

Summary

▶ Sieve-SDP is fast and stable.

Summary

- ▶ Sieve-SDP is fast and stable.
- ▶ No need for an optimization solver: Only needs Cholesky factorization.

Summary

- ▶ Sieve-SDP is fast and stable.
- ▶ No need for an optimization solver: Only needs Cholesky factorization.

▶ Paper: https://arxiv.org/abs/1710.08954

- ▶ Paper: https://arxiv.org/abs/1710.08954
- \blacktriangleright To appear, Math. Programming Computation

- ▶ Paper: https://arxiv.org/abs/1710.08954
- ▶ To appear, Math. Programming Computation
- ► Code: https://github.com/unc-optimization/SieveSDP

- ▶ Paper: https://arxiv.org/abs/1710.08954
- ▶ To appear, Math. Programming Computation
- ► Code: https://github.com/unc-optimization/SieveSDP
- ► Try Sieve-SDP in your research, and share your experience with us, please!

- ▶ Paper: https://arxiv.org/abs/1710.08954
- ▶ To appear, Math. Programming Computation
- ► Code: https://github.com/unc-optimization/SieveSDP
- ► Try Sieve-SDP in your research, and share your experience with us, please!

Thank you for your attention!