Tighter bounds for AC-OPF THROUGH RANK-ONE CONVEXIFICATION (?)

Tillmann Weisser
T-5/CNLS, Los Alamos National Laboratory with Carleton Coffrin, Sidhant Misra, Smitha Gopinath and Hassan Hijazi

SIAM AG, Bern 2019

Center for
Nonlinear Studies

AC-Optimal Power Flow Problem (simplified)

$$
G=(N, E)
$$

Variables:

- at each node: $\square \mathrm{x} \in \mathbb{C}^{|N|}$ Power ■ $y \in \mathbb{C}^{|N|}$ Voltage
\square on each line $\square z \in \mathbb{C}^{|E|}$ power flow

AC Powerflow (Power balance):

$$
\begin{aligned}
& z_{i j} \approx\left|y_{i}\right|^{2}-y_{i} y_{j}{ }^{*} \\
& x_{i}=\sum_{(i, j) \in E} z_{i j}
\end{aligned}
$$

AC-Optimal Power Flow Problem (simplified)

$$
\begin{aligned}
& \min \sum c\left(\Re\left(x_{i}\right)\right) \\
& z_{i j}=\left|y_{i}\right|^{2}-y_{i} y_{j}{ }^{*} \quad x_{i}=\sum_{(i, j) \in E} z_{i j} \\
& \underline{x}_{i} \leq x_{i} \leq \bar{x}_{i} \\
& \underline{y}_{i}^{2} \leq\left|y_{i}\right|^{2} \leq \bar{y}_{i}^{2} \\
& \left|z_{i j}\right| \leq \bar{z}_{i j} \\
& \left.\theta_{-j} \mathfrak{R}\left(y_{i j} y_{j}{ }^{*}\right) \leq \Im_{\left(y_{i} y_{j}\right.}{ }^{*}\right) \leq \overline{\theta_{i j}} \Re\left(y_{i} y_{j}{ }^{*}\right)
\end{aligned}
$$

\Rightarrow QCQP
$\Rightarrow N$ large

OPTIMALITY GAP

Practice:

solve AC-OPF instance locally: $c\left(\mathrm{x}^{*}\right)=c_{\text {loc }}$

- solve relaxation: $c_{\text {rel }}$
\square if optimality gap $\frac{c_{\text {loc }}-c_{\text {rel }}}{c_{\text {loc }}}<1 \%$ dispatch at x^{*}

Need tight relaxations!

W-Space Formulation

Replace yy* $=W$:

$$
\begin{aligned}
& \min \sum c\left(\Re\left(\mathrm{x}_{i}\right)\right) \\
& \mathrm{z}_{i j}=W_{i j}-W_{i j}, \quad \mathrm{x}_{i}=\sum_{(i, j) \in E} \mathrm{z}_{i j} \\
& \underline{\mathrm{x}}_{i} \leq \mathrm{x}_{i} \leq \overline{\mathrm{x}}_{\mathrm{i}} \\
& \overline{\mathrm{y}_{i}}{ }^{2} \leq W_{i j} \leq \overline{\mathrm{y}}_{\mathrm{i}}{ }^{2} \\
& \mid \mathrm{z}_{i j} \leq \overline{\mathrm{z}}_{\mathrm{ij}} \\
& \theta_{i j} \Re\left(W_{i j}\right) \leq \Im\left(W_{i j}\right) \leq \overline{\theta_{i j}} \Re\left(W_{i j}\right) \\
& \bar{W} \succeq 0 \\
& \operatorname{rank}(W)=1
\end{aligned}
$$

(cost)
(power balance)
(generation limits)
(magnitude limits)
(line limits)
(angle differences)

W-Space: SDP RELAXATION

$$
\begin{aligned}
& \min \sum c\left(\Re\left(x_{i}\right)\right) \\
& \mathrm{z}_{i j}=W_{i j}-W_{i j}, \quad \mathrm{x}_{i}=\sum_{(i, j) \in E} \mathrm{z}_{i j} \\
& \underline{\mathrm{x}}_{i} \leq \mathrm{x}_{i} \leq \overline{\mathrm{x}}_{\mathrm{i}} \\
& -\mathrm{y}_{i}{ }^{2} \leq W_{i i} \leq \overline{\mathrm{y}}_{\mathrm{i}}^{2} \\
& \mid \mathrm{z}_{i j} \leq \overline{\mathrm{z}}_{\mathrm{ij}} \\
& \theta_{i j} \Re\left(W_{i j}\right) \leq \Im\left(W_{i j}\right) \leq \overline{\theta_{i j}} \Re\left(W_{i j}\right) \\
& \bar{W} \succeq 0 \\
& \operatorname{rank}(W) \subseteq I
\end{aligned}
$$

(power balance)
(generation limits) (magnitude limits)
(line limits)
(angle differences)
(drop rank-1 constraint)
\Rightarrow SDP relaxation often not tight enough.
$\square \mathrm{yy}^{*}=W$ can be understood as lifting in the space of moments:

$$
\mathrm{y}_{i} \mathrm{y}_{j}^{*}=\int \mathrm{y}_{i} \mathrm{y}_{j}^{*} d \mu
$$

for some unknown measure μ.
$\square W$ corresponds to the moment matrix of μ.
\Rightarrow SDP relaxation is first order Lasserre Relaxation for quadratic problems.

Higher order relaxation would provide better bounds
BUT too expensive to compute.

Convex outer approximations of psd Cone

For large N (first order) SDP relaxation is too expensive.
\Rightarrow relax even further:
■ $W \succeq 0 \Leftrightarrow$ principal k-minors $\geq 0, \forall k \leq N$.
\rightarrow consider only principal k-minors up to $k \leq n \ll N$ (convex NLP, smaller SDPs)
\rightarrow consider only principal 2-minors (SOC)

ReformulationLinearization Technique ReLaxation (first Order)

Assuming real variables in the subsequent.

Introduce redundant constraints before lifting:

$$
\left(\bar{y}_{i}-y_{i}\right)\left(\bar{y}_{j}-y_{j}\right) \geq 0
$$

McCormick envelope:

$$
\begin{aligned}
& W_{i j} \geq \mathrm{y}_{i} \mathrm{y}_{j}+\underline{y}_{\underline{j}} \mathrm{y}_{i}-\underline{\mathrm{y}}_{\underline{i}} \mathrm{y}_{j} \\
& W_{i j} \geq \overline{\mathrm{y}}_{\mathrm{i}} \mathrm{y}_{j}+\overline{\mathrm{y}}_{\mathrm{j}} \mathrm{y}_{i}-\overline{\mathrm{y}} \mathrm{i}^{\bar{y}_{j}} \\
& W_{i j} \leq \mathrm{y}_{i} \mathrm{y}_{j}+\overline{\mathrm{y}}_{\mathrm{j}}{ }_{i}-\mathrm{y}_{i} \overline{\mathrm{y}}_{\mathrm{j}} \\
& W_{i j} \leq \overline{\mathrm{y}} \mathrm{i}^{\mathrm{y}} j+\underline{\mathrm{y}}_{j} \mathrm{y}_{i}-\overline{\mathrm{y}}_{\mathrm{i}} \mathrm{y}_{j}
\end{aligned}
$$

\Rightarrow Linear constraints instead of SDP constraint $W \succeq 0$.

Link LP-based Hierarchy (Krivine Positvstellensatz)

- Again understanding yy* $=W$ as moment lift for some unknown measure μ.
- Dual of RLT relaxation corresponds to searching for a Krivine type certificate

$$
\sum_{|\alpha| \leq 2} \prod \lambda_{\alpha} g^{\alpha}
$$

- higher order relaxations become ill-conditioned.

Comparison Relaxations

■ SDP dominates k-minor and SOC but computational much more expensive

- SDP and RLT do not dominate each other
\Rightarrow combine SDP+RLT to get better relaxation

K-minor

(dual side: BSOS^{1})

[^0]Redundant information in the original formulation can be valuable in the relaxation.
\square use additional physical knowledge (Smitha, Hassan)

- employ other liftings (T., Carleton)
\square use mathematical description of QCQP (T., Hassan, Sidhant)

Redundant Constraints from Rank-1 Condition

Remember:

$$
W=y y^{*} \quad \Leftrightarrow \quad W \succeq 0 \text { and } \operatorname{rank}(W)=1
$$

Proposition: ${ }^{2}$

Matrix is psd and rank-1 \Leftrightarrow all diagonal elements ≥ 0 and all 2-minors $=0$.
$\square \frac{1}{2}\binom{n}{2}^{2}$ 2-minors to consider $\rightarrow\binom{n}{2}^{2}$ inequalities
\square half of the inequalities non-convex
■ McCormick (on non-convex part)

[^1]
Classification Convexified Rank-1 Constraints

From bounds $\mathrm{y}_{i}, \overline{\mathrm{y}}_{\mathrm{i}}$ on y_{i} derive bounds $W_{-}, \bar{W}_{i j}$ on $\mathrm{y}_{i} \mathrm{y}_{j}{ }^{*}$.
Closer look to convexified constraints (in original space)

- Type A: (Products of) original bound constraints, e.g.,

$$
\bar{W}_{i j}-\mathrm{y}_{i} \mathrm{y}_{j}{ }^{*} \geq 0, \quad\left(\overline{\mathrm{y}}_{\mathrm{i}}-\mathrm{y}_{i}\right)\left(\overline{\mathrm{y}}_{\mathrm{j}}-\mathrm{y}_{j}^{*}\right) \geq 0
$$

- Type B: Sums of products of Type A of total degree 2, e.g,

$$
\left(\mathrm{y}_{i} \mathrm{y}_{i}^{*}-\bar{W}_{i i}\right)\left(\overline{\mathrm{y}}_{\mathrm{j}}-\mathrm{y}_{j}^{*}\right)+\left(\mathrm{y}_{i} \mathrm{y}_{j}^{*}-\bar{W}_{i j}\right)\left(\mathrm{y}_{i}^{*}-\underline{y}_{i}\right) \geq 0
$$

Higher degree cancels out! - Higher order information in lower order relaxation.

Summary:

- AC-OPF is a QCQP
\square only first relaxation can be computed
- can we use higher order information in lower order relaxation?

Status:

- implementing/testing different ideas on power grid test-cases

Thank You!

Contact: tweisser@lanl.gov

[^0]: ${ }^{1}$ Tillmann Weisser, Jean B. Lasserre, and Kim-Chuan Toh. "Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity". In: Mathematical Programming

[^1]: ${ }^{2}$ Burak Kocuk, Santanu Dey, and Xu Sun. "Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem". In: Mathematical Programming Computation 10 (2018), pp. 557-596.

