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AC-Optimal Power Flow Problem (simplified)

G = (N,E ) Variables:
� at each node:

� x ∈ C|N| Power
� y ∈ C|N| Voltage

� on each line
� z ∈ C|E | power flow

AC Powerflow (Power balance):

zij ≈ |yi |2 − yiyj
∗

xi =
∑

(i ,j)∈E
zij
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AC-Optimal Power Flow Problem (simplified)

min
∑

c(R(xi )) (cost)

zij = |yi |2 − yiyj
∗, xi =

∑
(i ,j)∈E

zij (power balance)

¯
xi ≤ xi ≤ x̄i (generation limits)

¯
yi

2 ≤ |yi |2 ≤ ȳi
2 (magnitude limits)

|zij | ≤ z̄ij (line limits)

¯
θijR(yiyj

∗) ≤ I(yiyj
∗) ≤ θ̄ijR(yiyj

∗) (angle differences)

⇒ QCQP
⇒ N large
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Optimality gap

Practice:
� solve AC-OPF instance locally: c(x∗) = cloc

� solve relaxation: crel

� if optimality gap cloc−crel
cloc

< 1% dispatch at x∗

Need tight relaxations!
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W-Space Formulation

Replace yy∗ = W :

min
∑

c(R(xi )) (cost)

zij = Wii −Wij , xi =
∑

(i ,j)∈E
zij (power balance)

¯
xi ≤ xi ≤ x̄i (generation limits)

¯
yi

2 ≤Wii ≤ ȳi
2 (magnitude limits)

|zij | ≤ z̄ij (line limits)

¯
θijR(Wij) ≤ I(Wij) ≤ θ̄ijR(Wij) (angle differences)
W � 0
rank(W ) = 1
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W-Space: SDP relaxation

min
∑

c(R(xi )) (cost)

zij = Wii −Wij , xi =
∑

(i ,j)∈E
zij (power balance)

¯
xi ≤ xi ≤ x̄i (generation limits)

¯
yi

2 ≤Wii ≤ ȳi
2 (magnitude limits)

|zij | ≤ z̄ij (line limits)

¯
θijR(Wij) ≤ I(Wij) ≤ θ̄ijR(Wij) (angle differences)
W � 0

(((((((hhhhhhhrank(W ) = 1 (drop rank-1 constraint)

⇒ SDP relaxation often not tight enough.
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Link Lasserre-Hierarchy (Putinar Positivstellensatz)

� yy∗ = W can be understood as lifting in the space of moments:

yiyj
∗ =

∫
yiy∗j dµ

for some unknown measure µ.
� W corresponds to the moment matrix of µ.
⇒ SDP relaxation is first order Lasserre Relaxation for quadratic problems.

Higher order relaxation would provide better bounds
BUT too expensive to compute.
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Convex outer approximations of psd Cone

For large N (first order) SDP relaxation is too
expensive.

⇒ relax even further:
� W � 0 ⇔ principal k-minors≥ 0, ∀k ≤ N.
→ consider only principal k-minors up to

k ≤ n << N (convex NLP, smaller SDPs)
→ consider only principal 2-minors (SOC)
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ReformulationLinearizationTechnique Relaxation (first Order)

Assuming real variables in the subsequent.

Introduce redundant constraints before lifting:

(ȳi − yi )(ȳj − yj) ≥ 0

McCormick envelope:

Wij ≥
¯
yiyj +

¯
yjyi −

¯
yi

¯
yj

Wij ≥ ȳiyj + ȳjyi − ȳiȳj

Wij ≤
¯
yiyj + ȳjyi −

¯
yi ȳj

Wij ≤ ȳiyj +
¯
yjyi − ȳi

¯
yj

⇒ Linear constraints instead of SDP constraint W � 0.
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Link LP-based Hierarchy (Krivine Positvstellensatz)

� Again understanding yy∗ = W as moment lift for some unknown measure µ.
� Dual of RLT relaxation corresponds to searching for a Krivine type certificate∑

|α|≤2

∏
λαgα.

� higher order relaxations become ill-conditioned.
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Comparison Relaxations

� SDP dominates k-minor and SOC but
computational much more expensive

� SDP and RLT do not dominate each
other
⇒ combine SDP+RLT to get better
relaxation

SOC

K-minor

SDP

AC

RLT

(dual side: BSOS1)
1Tillmann Weisser, Jean B. Lasserre, and Kim-Chuan Toh. “Sparse-BSOS: a bounded degree SOS

hierarchy for large scale polynomial optimization with sparsity”. In: Mathematical Programming
Computation 10 (2018), pp. 1–32.
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Redundant Constraints to Strengthen Relaxations

Redundant information in the original formulation can be
valuable in the relaxation.
� use additional physical knowledge (Smitha, Hassan)
� employ other liftings (T., Carleton)
� use mathematical description of QCQP (T., Hassan,

Sidhant)
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Redundant Constraints from Rank-1 Condition

Remember:

W = yy∗ ⇔ W � 0 and rank(W ) = 1

Proposition:2

Matrix is psd and rank-1 ⇔ all diagonal elements ≥ 0 and all 2-minors = 0.

� 1
2
(n

2
)2 2-minors to consider →

(n
2
)2 inequalities

� half of the inequalities non-convex
� McCormick (on non-convex part)

2Burak Kocuk, Santanu Dey, and Xu Sun. “Matrix Minor Reformulation and SOCP-based Spatial
Branch-and-Cut Method for the AC Optimal Power Flow Problem”. In: Mathematical Programming
Computation 10 (2018), pp. 557–596.
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Classification Convexified Rank-1 Constraints

From bounds
¯
yi , ȳi on yi derive bounds

¯
Wij , W̄ij on yiyj

∗.

Closer look to convexified constraints (in original space)
� Type A: (Products of) original bound constraints, e.g.,

W̄ij − yiyj
∗ ≥ 0, (ȳi − yi )(ȳj − yj

∗) ≥ 0

� Type B: Sums of products of Type A of total degree 2, e.g,

(yiyi
∗ − W̄ii )(ȳj − yj

∗) + (yiyj
∗ − W̄ij)(yi

∗ −
¯
yi ) ≥ 0

Higher degree cancels out! – Higher order information in lower order relaxation.
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Summary: Strengthen Relaxations in the W-Space

Summary:
� AC-OPF is a QCQP
� only first relaxation can be computed
� can we use higher order information in lower order relaxation?

Status:
� implementing/testing different ideas on power grid test-cases



Thank You!

Contact: tweisser@lanl.gov
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