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The Problem

The Problem

Task

Global minimisation of multivariate polynomial

Let p ∈ R[x1, . . . , xn]

min {p(x) : x ∈ Rn}

equivalent

min {λ ∈ R : ∀x ∈ Rn . p(x) + λ ≥ 0}

want to prove non-negativity
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The Problem

Main Result – Software POEM

Main Result: “Effective Methods in Polynomial Optimisation”

Version 0.2.1.0 just released

Numerically compute lower bound for polynomial
in polynomial time

Symbolic Postprocessing
Rounding to feasible rational solution

idea independent of future software improvements
even applicable for constrained optimisation

3 / 12



The Problem

Main Result – Software POEM

Main Result: “Effective Methods in Polynomial Optimisation”

Version 0.2.1.0 just released

Numerically compute lower bound for polynomial
in polynomial time

Symbolic Postprocessing
Rounding to feasible rational solution

idea independent of future software improvements
even applicable for constrained optimisation

3 / 12



The Problem

Non-Negativity

New Problem

Given sparse p ∈ Q[x ]. How to show ∀x ∈ Rn . p(x) ≥ 0?

notation: t summands, n variables, degree 2d

input: list of (exponent-vector × coefficient)

coNP-hard for 2d = 4

use sufficient condition

obvious way: sum of squares (SOS)

semi-definite programme with linear equations

size of problem is O
((

n+d
d

)2
)

; exponential in input size
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Sums of Nonnegative Circuit Polynomials

A New Approach

Circuit Polynomial: q =
n∑

i=0

bix
ai + cxy bi > 0

points ai ∈ (2N)n span simplex y ∈ int(hull({a0, . . . , an}))
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Circuit Polynomial: q =
n∑

i=0

bix
ai + cxy bi > 0

points ai ∈ (2N)n span simplex y ∈ int(hull({a0, . . . , an}))

Example (Motzkin polynomial)

q = 1 + x2y4 + x4y2 − 3x2y2
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i=0

bix
ai + cxy bi > 0

points ai ∈ (2N)n span simplex y ∈ int(hull({a0, . . . , an}))

Theorem (Iliman, de Wolff)

Let y =
∑
λiai unique convex combination.

Define Circuit Number Θ =
∏( bi

λi

)λi
|c | ≤ Θ or

c ≥ −Θ and y all even

⇐⇒ ∀x .q(x) ≥ 0

 c = −Θ =⇒ ∀x . q(x) ≥ 0
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Sums of Nonnegative Circuit Polynomials

A New Approach

Circuit Polynomial: q =
n∑

i=0

bix
ai + cxy bi > 0

points ai ∈ (2N)n span simplex y ∈ int(hull({a0, . . . , an}))

Decompose into

p ≥min relax(p) =
∑

qk + C ≥ C

where qk =
n∑

i=0

bikx
aik + ckx

yk as above

ck = −
∏(

bik
λik

)λik
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Sums of Nonnegative Circuit Polynomials

SONC Optimisation in Simple Case

Let p = b0 + b1 · x6
1x

2
2 + b2 · x2

1x
4
2 − c1 · x2

1x2 − c2 · x3
1x

2
2 .
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4
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1x

2
2 .

b1

b2

X0,1

X1,1

X2,1

c1

+

X0,2

X1,2

X2,2

c2

min X0,1 + X0,2

b1 ≥ X1,1 + X1,2

b2 ≥ X2,1 + X2,2

each non-negative
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Sums of Nonnegative Circuit Polynomials

Decompose into Circuits

write red as convex combination of black ; solve LPs
; covering of red points (no triangulation)

distribute negative coefficients
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Sums of Nonnegative Circuit Polynomials

Optimisation Programme

relax(p) =
m∑
i=0

bix
ai −

r∑
k=1

ckx
yk bi , ck > 0

compute circuits with ckx
yk as negative term

write each yk =
∑
λikai

min
r∑

k=1

X0k s.t. bi ≥
r∑

k=1

Xik (i = 1, . . . ,m)

c̄k =
∏

i∈circuitk

(
Xik

λik

)λik
(k = 1, . . . , r)

Observation: Size independent of degree!

8 / 12



Sums of Nonnegative Circuit Polynomials

Optimisation Programme

relax(p) =
m∑
i=0

bix
ai −

r∑
k=1

ckx
yk bi , ck > 0

compute circuits with ckx
yk as negative term

write each yk =
∑
λikai

min
r∑

k=1

X0k s.t. bi ≥
r∑

k=1

Xik (i = 1, . . . ,m)

c̄k =
∏

i∈circuitk

(
Xik

λik

)λik
(k = 1, . . . , r)

Observation: Size independent of degree!

8 / 12



Sums of Nonnegative Circuit Polynomials

Optimisation Programme

relax(p) =
m∑
i=0

bix
ai −

r∑
k=1

ckx
yk bi , ck > 0

compute circuits with ckx
yk as negative term

write each yk =
∑
λikai

min
r∑

k=1

X0k s.t. bi ≥
r∑

k=1

Xik (i = 1, . . . ,m)

c̄k =
∏

i∈circuitk

(
Xik

λik

)λik
(k = 1, . . . , r)

Observation: Size independent of degree!

called Geometric
Programme
; good solvers

8 / 12



Sums of Nonnegative Circuit Polynomials

Optimisation Programme

relax(p) =
m∑
i=0

bix
ai −

r∑
k=1

ckx
yk bi , ck > 0

compute circuits with ckx
yk as negative term

write each yk =
∑
λikai

min
r∑

k=1

X0k s.t. bi ≥
r∑

k=1

Xik (i = 1, . . . ,m)

c̄k =
∏

i∈circuitk

(
Xik

λik

)λik
(k = 1, . . . , r)

Observation: Size independent of degree!

called Geometric
Programme
; good solvers

8 / 12



Extensions and Outlook

Symbolic Certificates/Exact Arithmetic

min
r∑

k=1

X0k s.t. bi ≥
r∑

k=1

Xik (i = 1, . . . ,m)

c̄k =
∏

i∈circuitk

(
Xik

λik

)λik
(k = 1, . . . , r)

Observations

each feasible solution yields lower bound

inequalities are independent

X0k does not appear in inequalities

can solve equalities for X0k (if 0 ∈ circuitk ⇔ λ0k 6= 0)

⇒ can refine any assignment to feasible solution
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Extensions and Outlook

1. Compute the exact cover, including exact values for λi ,k
solve LPs exactly over Q

2. Numerically solve the GP

3. Apply symbolic post-processing method

X̂i ,k :=
⌊
X̃i ,k

⌉
make rational

Xi ,k :=
bi · X̂i ,k∑

k X̂i ,k

scale, to match constraints

X0,k :=

λ0,k ·

ck ·
∏

i∈coverk
i>0

(
λi ,k
Xi ,k

)λi,k
1

λ0,k


Similar idea works for SAGE
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Extensions and Outlook

Recap

Current state

software POEM: lower bound of polynomial and minimisers, in
polynomial time; improved bounds in FPT, bounds in exact
arithmetic
POEM homepage is linked on my homepage

Planned/Ongoing

improve (computation of)

covering
distribution of coefficients (own iterative method)

handle case λk,0 = 0

constrained polynomial optimisation (long term)
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Extensions and Outlook

Questions

You have an answer? Please talk to me.

Complexity of deciding nonnegativity?

(co)NP-problems with ∃/∀ over unbounded space

Is SOS ∈ PSPACE, i.e. can we avoid the large matrix?

Solving LPs: same coefficient matrix, small entries

complexity, preprocessing, implementations?

Implementations of exact methods

Tarski’s quantifier elimination

Algorithm for existential theory over the reals

Your questions to me?
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