Lower Bounds for Polynomials in Exact Arithmetic

Henning Seidler

(joint with Victor Magron and Timo de Wolff)

July 12, 2019

SIAM Conference on Applied Algebraic Geometry, Bern

Task

Global minimisation of multivariate polynomial

Let
$$p \in \mathbb{R}[x_1, \dots, x_n]$$

$$\min \{p(x) : x \in \mathbb{R}^n\}$$

Task

Global minimisation of multivariate polynomial

Let
$$p \in \mathbb{R}[x_1, \dots, x_n]$$

$$\min \{p(x) : x \in \mathbb{R}^n\}$$

equivalent

$$\min \left\{ \lambda \in \mathbb{R} : \forall x \in \mathbb{R}^n . \, p(x) + \lambda \ge 0 \right\}$$

Task

Global minimisation of multivariate polynomial

Let
$$p \in \mathbb{R}[x_1, \dots, x_n]$$

$$\min \{p(x) : x \in \mathbb{R}^n\}$$

equivalent

$$\min \left\{ \lambda \in \mathbb{R} : \forall x \in \mathbb{R}^n \, . \, \rho(x) + \lambda \ge 0 \right\}$$

Task

Global minimisation of multivariate polynomial

Let
$$p \in \mathbb{R}[x_1, \dots, x_n]$$

$$\min \{p(x) : x \in \mathbb{R}^n\}$$

equivalent

$$\min \left\{ \lambda \in \mathbb{R} : \forall x \in \mathbb{R}^n . \, p(x) + \lambda \ge 0 \right\}$$

want to prove non-negativity

Main Result - Software POEM

Main Result: "Effective Methods in Polynomial Optimisation"

- Version 0.2.1.0 just released
- Numerically compute lower bound for polynomial in polynomial time

Main Result - Software POEM

Main Result: "Effective Methods in Polynomial Optimisation"

- Version 0.2.1.0 just released
- Numerically compute lower bound for polynomial in polynomial time
- Symbolic Postprocessing Rounding to feasible rational solution
 - idea independent of future software improvements
 - even applicable for constrained optimisation

New Problem

New Problem

New Problem

- notation: t summands, n variables, degree 2d
- input: list of (exponent-vector × coefficient)
- size: $\mathcal{O}(t \cdot n \cdot \log d + t \cdot \max \{\log |c| : c \in \operatorname{coeff}(p)\})$

New Problem

- notation: t summands, n variables, degree 2d
- input: list of (exponent-vector × coefficient)
- size (unit cost): $\mathcal{O}(tn)$

New Problem

- notation: t summands, n variables, degree 2d
- input: list of (exponent-vector × coefficient)
- size (unit cost): $\mathcal{O}(tn)$
- coNP-hard for 2d = 4

New Problem

- notation: t summands, n variables, degree 2d
- input: list of (exponent-vector × coefficient)
- size (unit cost): $\mathcal{O}(tn)$
- coNP-hard for 2d = 4
- use sufficient condition
- obvious way: sum of squares (SOS)
 - semi-definite programme with linear equations

New Problem

Given sparse $p \in \mathbb{Z}[x]$. How to show $\forall x \in \mathbb{Q}^n$. p(x) > 0?

- notation: t summands, n variables, degree 2d
- input: list of (exponent-vector × coefficient)
- size (unit cost): $\mathcal{O}(tn)$
- coNP-hard for 2d = 4
- use sufficient condition
- obvious way: sum of squares (SOS)
 - semi-definite programme with linear equations
 - size of problem is $\mathcal{O}\left(\binom{n+d}{d}^2\right)$

→ exponential in input size

$$q = \sum_{i=0}^{n} b_i x^{a_i} + c x^y \qquad b_i > 0$$

points
$$a_i \in (2\mathbb{N})^n$$
 span simplex $y \in \operatorname{int}(\operatorname{hull}(\{a_0, \dots, a_n\}))$

Circuit Polynomial:

$$q = \sum_{i=0}^{n} b_i x^{a_i} + c x^y \qquad b_i > 0$$

points $a_i \in (2\mathbb{N})^n$ span simplex $y \in \operatorname{int}(\operatorname{hull}(\{a_0, \dots, a_n\}))$

Example (Motzkin polynomial)

$$q = 1 + x^2y^4 + x^4y^2 - 3x^2y^2$$

$$q = \sum_{i=0}^{n} b_i x^{a_i} + c x^y \qquad b_i > 0$$

points
$$a_i \in (2\mathbb{N})^n$$
 span simplex $y \in \operatorname{int}(\operatorname{hull}(\{a_0, \dots, a_n\}))$

Theorem (Iliman, de Wolff)

Let $y = \sum \lambda_i a_i$ unique convex combination.

Define Circuit Number
$$\Theta = \prod_{i} \left(\frac{b_i}{\lambda_i}\right)^{\lambda_i}$$

- $|c| \leq \Theta$ or
- $c \ge -\Theta$ and y all even

$$\iff \forall x. q(x) \geq 0$$

$$q = \sum_{i=0}^{n} b_i x^{a_i} + c x^y \qquad b_i > 0$$

points $a_i \in (2\mathbb{N})^n$ span simplex $y \in \text{int}(\text{hull}(\{a_0, \dots, a_n\}))$

Theorem (Iliman, de Wolff)

Let $y = \sum \lambda_i a_i$ unique convex combination.

Define Circuit Number $\Theta = \prod_i \left(\frac{b_i}{\lambda_i}\right)^{\lambda_i}$

•
$$|c| \leq \Theta$$
 or

•
$$c \ge -\Theta$$
 and y all even

$$\iff \forall x. q(x) \ge 0$$

$$\begin{array}{l} \bullet \ |c| \leq \Theta \ or \\ \bullet \ c \geq -\Theta \ and \ y \ all \ even \\ \iff \forall x. \ q(x) \geq 0 \end{array} \right\} c = -\Theta \ \Longrightarrow \ \forall x. \ q(x) \geq 0$$

$$q = \sum_{i=0}^{n} b_i x^{a_i} + c x^y$$

points $a_i \in (2\mathbb{N})^n$ span simplex $y \in \operatorname{int}(\operatorname{hull}(\{a_0, \dots, a_n\}))$

 $b_{i} > 0$

Decompose into

$$p \ge_{\min} ext{relax}(\mathsf{p}) = \sum_{i=0}^n q_k + C \ge C$$
 where $q_k = \sum_{i=0}^n b_{ik} x^{a_{ik}} + c_k x^{y_k}$ as above $c_k = -\prod \left(rac{b_{ik}}{\lambda_{ik}}
ight)^{\lambda_{ik}}$

Let
$$p = b_0 + b_1 \cdot x_1^6 x_2^2 + b_2 \cdot x_1^2 x_2^4 - c_1 \cdot x_1^2 x_2 - c_2 \cdot x_1^3 x_2^2$$
.

Let
$$p = b_0 + b_1 \cdot x_1^6 x_2^2 + b_2 \cdot x_1^2 x_2^4 - c_1 \cdot x_1^2 x_2 - c_2 \cdot x_1^3 x_2^2$$
.

Let
$$p = b_0 + b_1 \cdot x_1^6 x_2^2 + b_2 \cdot x_1^2 x_2^4 - c_1 \cdot x_1^2 x_2 - c_2 \cdot x_1^3 x_2^2$$
.

Let
$$p = b_0 + b_1 \cdot x_1^6 x_2^2 + b_2 \cdot x_1^2 x_2^4 - c_1 \cdot x_1^2 x_2 - c_2 \cdot x_1^3 x_2^2$$
.

Let
$$p = b_0 + b_1 \cdot x_1^6 x_2^2 + b_2 \cdot x_1^2 x_2^4 - c_1 \cdot x_1^2 x_2 - c_2 \cdot x_1^3 x_2^2$$
.

each non-negative

Decompose into Circuits

Decompose into Circuits

• write red as convex combination of black \sim solve LPs \sim covering of red points (no triangulation)

Decompose into Circuits

- write red as convex combination of black → solve LPs
 → covering of red points (no triangulation)
- distribute negative coefficients

$$relax(p) = \sum_{i=0}^{m} b_i x^{a_i} - \sum_{k=1}^{r} c_k x^{y_k}$$
 $b_i, c_k > 0$

compute circuits with $\overline{c}_k x^{\overline{y}_k}$ as negative term write each $\overline{y}_k = \sum \lambda_{ik} a_i$

$$relax(p) = \sum_{i=0}^{m} b_i x^{a_i} - \sum_{k=1}^{r} c_k x^{y_k}$$
 $b_i, c_k > 0$

compute circuits with $\overline{c}_k x^{\overline{y}_k}$ as negative term write each $\overline{y}_k = \sum \lambda_{ik} a_i$

$$\min \sum_{k=1}^{\overline{r}} X_{0k}$$
 s.t. $b_i \geq \sum_{k=1}^{\overline{r}} X_{ik}$ $(i=1,\ldots,m)$ $ar{c}_k = \prod_{i \in ext{circuit.}} \left(rac{X_{ik}}{\lambda_{ik}}
ight)^{\lambda_{ik}}$ $(k=1,\ldots,\overline{r})$

$$relax(p) = \sum_{i=0}^{m} b_i x^{a_i} - \sum_{k=1}^{r} c_k x^{y_k}$$
 $b_i, c_k > 0$

compute circuits with $\overline{c}_k x^{\overline{y}_k}$ as negative term write each $\overline{y}_k = \sum \lambda_{ik} a_i$

$$\begin{array}{ll} \min \; \sum_{k=1}^{\overline{r}} X_{0k} \quad \text{ s.t. } \quad b_i \geq \sum_{k=1}^{\overline{r}} X_{ik} \qquad \qquad (i=1,\ldots,m) \\ \text{called Geometric} \quad \\ \text{Programme} \quad \bar{c}_k = \prod_{i \in \mathsf{circuit}_k} \left(\frac{X_{ik}}{\lambda_{ik}}\right)^{\lambda_{ik}} \quad (k=1,\ldots,\overline{r}) \\ \\ \rightsquigarrow \; \mathsf{good solvers} \end{array}$$

$$relax(p) = \sum_{i=0}^{m} b_i x^{a_i} - \sum_{k=1}^{r} c_k x^{y_k}$$
 $b_i, c_k > 0$

compute circuits with $\overline{c}_k x^{\overline{y}_k}$ as negative term write each $\overline{y}_k = \sum \lambda_{ik} a_i$

$$\begin{array}{ll} \min \; \sum_{k=1}^{\overline{r}} X_{0k} \quad \text{ s.t. } \quad b_i \geq \sum_{k=1}^{\overline{r}} X_{ik} \qquad \qquad (i=1,\ldots,m) \\ \text{called Geometric} \quad \\ \text{Programme} \quad \bar{c}_k = \prod_{i \in \mathsf{circuit}_k} \left(\frac{X_{ik}}{\lambda_{ik}}\right)^{\lambda_{ik}} \quad (k=1,\ldots,\overline{r}) \\ \\ \rightsquigarrow \; \mathsf{good solvers} \end{array}$$

Observation: Size independent of degree!

Symbolic Certificates/Exact Arithmetic

$$\begin{array}{ll} \min \; \sum_{k=1}^{\overline{r}} X_{0k} & \text{ s.t. } & b_i \geq \sum_{k=1}^{\overline{r}} X_{ik} & (i=1,\ldots,m) \\ \\ \bar{c}_k = \prod_{i \in \mathsf{circuit}_k} \left(\frac{X_{ik}}{\lambda_{ik}}\right)^{\lambda_{ik}} & (k=1,\ldots,\overline{r}) \end{array}$$

Observations

• each feasible solution yields lower bound

Symbolic Certificates/Exact Arithmetic

$$egin{aligned} \min & \sum_{k=1}^{\overline{r}} X_{0k} \quad ext{ s.t. } \quad b_i \geq \sum_{k=1}^{\overline{r}} X_{ik} & (i=1,\ldots,m) \ & ar{c}_k = \prod_{i \in \mathsf{circuit}_k} \left(rac{X_{ik}}{\lambda_{ik}}
ight)^{\lambda_{ik}} & (k=1,\ldots,\overline{r}) \end{aligned}$$

Observations

- each feasible solution yields lower bound
- inequalities are independent
- X_{0k} does not appear in inequalities
- can solve equalities for X_{0k} (if $\mathbf{0} \in \operatorname{circuit}_k \Leftrightarrow \lambda_{0k} \neq 0$)

Symbolic Certificates/Exact Arithmetic

$$egin{aligned} \min & \sum_{k=1}^{\overline{r}} X_{0k} \quad ext{ s.t. } \quad b_i \geq \sum_{k=1}^{\overline{r}} X_{ik} & (i=1,\ldots,m) \ & ar{c}_k = \prod_{i \in \mathsf{circuit}_k} \left(rac{X_{ik}}{\lambda_{ik}}
ight)^{\lambda_{ik}} & (k=1,\ldots,\overline{r}) \end{aligned}$$

Observations

- each feasible solution yields lower bound
- inequalities are independent
- X_{0k} does not appear in inequalities
- can solve equalities for X_{0k} (if $\mathbf{0} \in \operatorname{circuit}_k \Leftrightarrow \lambda_{0k} \neq 0$)
- ⇒ can refine any assignment to feasible solution

- 1. Compute the exact cover, including exact values for $\lambda_{i,k}$ solve LPs exactly over $\mathbb Q$
- 2. Numerically solve the GP
- 3. Apply symbolic post-processing method

- 1. Compute the exact cover, including exact values for $\lambda_{i,k}$ solve LPs exactly over $\mathbb Q$
- 2. Numerically solve the GP
- 3. Apply symbolic post-processing method

$$\begin{split} \widehat{X}_{i,k} &:= \left\lfloor \widetilde{X}_{i,k} \right\rceil & \text{make rational} \\ X_{i,k} &:= \frac{b_i \cdot \widehat{X}_{i,k}}{\sum_k \widehat{X}_{i,k}} & \text{scale, to match constraints} \\ X_{0,k} &:= \left\lceil \lambda_{0,k} \cdot \left(\overline{c}_k \cdot \prod_{\substack{i \in \text{cover}_k \\ i > 0}} \left(\frac{\lambda_{i,k}}{X_{i,k}} \right)^{\lambda_{i,k}} \right)^{\frac{1}{\lambda_{0,k}}} \right\rceil \end{split}$$

- 1. Compute the exact cover, including exact values for $\lambda_{i,k}$ solve LPs exactly over $\mathbb Q$
- 2. Numerically solve the GP
- 3. Apply symbolic post-processing method

$$\widehat{X}_{i,k} := \left\lfloor \widetilde{X}_{i,k} \right
vert$$
 make rational $X_{i,k} := \frac{b_i \cdot \widehat{X}_{i,k}}{\sum_k \widehat{X}_{i,k}}$ scale, to match constraints $X_{0,k} := \left\lceil \lambda_{0,k} \cdot \left(\overline{c}_k \cdot \prod_{\substack{i \in \mathsf{cover}_k \\ i > 0}} \left(\frac{\lambda_{i,k}}{X_{i,k}} \right)^{\lambda_{i,k}} \right)^{\frac{1}{\lambda_{0,k}}} \right\rceil$

Similar idea works for SAGE

Current state

software POEM: lower bound of polynomial and minimisers, in polynomial time; improved bounds in FPT, bounds in exact arithmetic

POEM homepage is linked on my homepage

Current state

software POEM: lower bound of polynomial and minimisers, in polynomial time; improved bounds in FPT, bounds in exact arithmetic

POEM homepage is linked on my homepage

Planned/Ongoing

- improve (computation of)
 - covering
 - distribution of coefficients (own iterative method)

Current state

software POEM: lower bound of polynomial and minimisers, in polynomial time; improved bounds in FPT, bounds in exact arithmetic

POEM homepage is linked on my homepage

Planned/Ongoing

- improve (computation of)
 - covering
 - distribution of coefficients (own iterative method)
- handle case $\lambda_{k,0} = 0$

Current state

software POEM: lower bound of polynomial and minimisers, in polynomial time; improved bounds in FPT, bounds in exact arithmetic

POEM homepage is linked on my homepage

Planned/Ongoing

- improve (computation of)
 - covering
 - distribution of coefficients (own iterative method)
- handle case $\lambda_{k,0} = 0$
- constrained polynomial optimisation (long term)

You have an answer? Please talk to me.

Complexity of deciding nonnegativity?

• (co)NP-problems with \exists/\forall over unbounded space

You have an answer? Please talk to me.

Complexity of deciding nonnegativity?

 \bullet (co)NP-problems with \exists/\forall over unbounded space

Is $SOS \in PSPACE$, i.e. can we avoid the large matrix?

You have an answer? Please talk to me.

Complexity of deciding nonnegativity?

(co)NP-problems with ∃/∀ over unbounded space
 Is SOS ∈ PSPACE, i.e. can we avoid the large matrix?

Solving LPs: same coefficient matrix, small entries

complexity, preprocessing, implementations?

You have an answer? Please talk to me.

Complexity of deciding nonnegativity?

(co)NP-problems with ∃/∀ over unbounded space
 Is SOS ∈ PSPACE, i.e. can we avoid the large matrix?

Solving LPs: same coefficient matrix, small entries

complexity, preprocessing, implementations?

Implementations of exact methods

- Tarski's quantifier elimination
- Algorithm for existential theory over the reals

You have an answer? Please talk to me.

Complexity of deciding nonnegativity?

(co)NP-problems with ∃/∀ over unbounded space
 Is SOS ∈ PSPACE, i.e. can we avoid the large matrix?

Solving LPs: same coefficient matrix, small entries

complexity, preprocessing, implementations?

Implementations of exact methods

- Tarski's quantifier elimination
- Algorithm for existential theory over the reals

Your questions to me?