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estimation: class of problems studied in signal processing,
statistics, and machine learning

estimation problem (aka inference / inverse problem)

given: output Y of known randomized process for
some unknown input X *
goal: recover (approximately) this input X *

. process .
parameter / signal X* —— measurement / observation Y’
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k-clustering problem (aka Gaussian mixture model)
given: vectors v, ..., v, ¢ R withy;, = x; + w;, where
« {x],..., ) } consists of < k different vectors (“centers”)
« W1, ...,Ww, are iid standard Gaussian vectors (“noise”) and
goal: recover x7, ..., T, (center for each data point)

one of the most extensively studied statistical models
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« {x],..., 2, } consists of < k different vectors (“centers”)
e W1, ...,Ww, are iid standard Gaussian vectors (“noise”) and
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concise matrix form:
X* c Rdxn additive Gaussian noise W Y — X* + W c Rdxn
where X " is restricted to have < k different columns




k-clustering problem (aka Gaussian mixture model)
given: vectors y1, ..., vy, € RY with Y; = x; + w;, where

« {x],...,x) } consists of < k different vectors (“centers”)

« W1, ...,Ww, are iid standard Gaussian vectors (“noise”) and
goal: recover x7, ..., T, (center for each data point)

concise matrix form:
X* c Rdxn additive Gaussian noise W Y — X* + 1%%4 c Rdxn

where X " is restricted to have < k different columns

similar examples (different constraints on X *)

linear regression: X * belongs to known linear subspace
principal component analysis (PCA): X * is rank-1 matrix
tensor PCA: X * is rank-1 tensor (order 3 or higher)
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given: matrix ¥ ¢ R with Y — X* + I/, where
« /W has iid standard Gaussian entries
« X" has < k different columns

goal: recover X"

desired: estimator X (V) with small error 1 1X(Y) — X*|]2
(with high probability over W'; even for worst X *)

best known theoretical guarantees: (until recently)
statistical: @ (log k) (exponential tlme) [Regev—Vijayaraghavan'17]
computational: O(k 1/2 ) (polynomial time) [vempala-wang|
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given: matrix with , Where
. has iid standard Gaussian entries

. has different columns
goal:
desired: estimator with small

best known theoretical guarantees: (until recently)
statistical: @ (log k) (exponential tlme) [Regev—Vijayaraghavan'17]

computational: O(k'?)  (polynomial time) [vempais wang

inherent gap between statistical
and computational error?

what about gap for other estimation problems,
e.g. tensor PCA?
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meta-algorithm: sum-of-squares (sos)

- applies in canonical way to wide range of est. problems



overview

meta-algorithm:

- applies to wide range of est. problems
. . [Hopkins-Li, Kothari-Steinhardt-S.,
clustering via sos: Diakonikolas-Kane-Stewart]

- achieve improved computational error to nearly match
optimal statistical error
« technique: proof-to-algorithm paradigm



overview

meta-algorithm:

- applies to wide range of est. problems

via SOS:

« achieve improved computational error to nearly match
optimal statistical error
« technique:

. . . [Barak-Hopkins-Kelner-Kothari-Moitra-Potechin,
strong limitations of sos: Hopkins-Kothari-Potechin-R.-Schramm.-S

« concrete evidence for inherent gap between statistical and
computational error for some est. problems, e.g., tensor PCA
« technique: pseudo-calibration



setup for sum-of-squares meta-algorithm



setup for sum-of-squares meta-algorithm

let () C R” be set of possible signals (e.g., set of matrices with
< k different columns or set of rank-1 tensors of order 3)



setup for sum-of-squares meta-algorithm

let 2 C R be set of possible signals (e.g., set of matrices with
< k different columns or set of rank-1 tensors of order 3)

given: Y = X" + W for X* € () and std. Gaussian W/
goal: estimate X~



setup for sum-of-squares meta-algorithm

let 2 C R be set of possible signals (e.g., set of matrices with
< k different columns or set of rank-1 tensors of order 3)

given: Y = X" + W for X* € () and std. Gaussian W/
goal: estimate X~

starting point: low-deg. polynomial constraints {p(X,Y) > 0},



let be set of possible signals

given: for and std. Gaussian

goal: estimate

starting point: low-deg. polynomial constraints {p(X,Y) > 0};
for all X* € () and most measurements ¥ = X* + W



let be set of possible signals

given: for and std. Gaussian
goal: estimate

starting point: low-deg. polynomial constraints {p(X,Y) > 0};
for all X* € () and most measurements ¥ = X" + W:
1. signal-measurement pair satisfies p( X", Y ) > 0



let be set of possible signals

given: for and std. Gaussian
goal: estimate

starting point: low-deg. polynomial constraints {p(X,Y) > 0};
for all X* € () and most measurements ¥ = X" + W:

1. signal-measurement pair satisfies p( X", Y ) > 0

2. constraints are “c-identifying”:

VX. p(X,Y) 2 0= | X - X" <e



let be set of possible signals

given: for and std. Gaussian
goal: estimate

starting point: low-deg. polynomial constraints {p(X,Y) > 0};
for all X* € () and most measurements ¥ = X" 4+ W:

1. signal-measurement pair satisfies p( X", Y) > 0

2. constraints are “c-identifying”:

VX. p(X,Y) 2 0= X - X" <e

solutions to this polynomial system are
estimates with error < € ©



let be set of possible signals

given: for and std. Gaussian
goal: estimate

starting point: low-deg. polynomial constraints {p(X,Y) > 0};
for all X* € () and most measurements ¥ = X" + W:

1. signal-measurement pair satisfies p( X", Y ) > 0

2. constraints are “c-identifying”:

VX. p(X,Y) 2 0= | X - X" <e

solutions to this polynomial system are
estimates with error < € ©

estimates a-priori not efficiently computable because
polynomial systems are NP-hard to solve in worst-case @
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for all X* € () and most measurements ¥ = X* + W

1. signal-measurement pair satisfies p( X", Y) > 0

2. constraints are “c-identifying”:

VX. B(X,Y) 2 0= [ X - X*|* <e (*)

many classical estimation algorithms can be viewed as
specialized solvers to exploit structure of polynomial system;
often notoriously hard to analyze

emerging approach: often proof of (*) can be turned
systematically into efficient estimation algorithm



let be set of possible signals

given: for and std. Gaussian
goal: estimate

starting point: low-deg. polynomial constraints {p(X,Y) > 0};
for all X* € () and most measurements ¥ = X" 4+ W:

1. signal-measurement pair satisfies p( X", Y) > 0

2. constraints are “c-identifying”:

VX. B(X,Y) 2 0= [ X - X*|* <e (*)

sum-of-squares meta-algorithm: computationally-efficient
estimator with error < ¢ whenever - “low-degree proof” for (*)
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let

definition: of the statement

expresses as
with degree of the form

where is polynomial and

assuming compactness of 5, every true statement has sum-of-
squares proof (of potentially large degree)

related to:
e Hilbert's 17th problem (expressing positive polynomials as
sum of squares of rational functions) [Artin]
« Positivstellensatz in real algebraic geometry [krivine, Stengle]



let S ={X cRY | pi(X) > 0,...,pn(X) > 0}

definition: degree-/ sum-of-squares proof of the statement
VX eSS q(X)>0

expresses ¢(X ) as sum of nonnegative polynomials over S
with degree < / of the form

r(X)? - pr(X)™ - p (X)),
where (X ) is polynomial and by, ..., b,, € {0, 1}

assuming compactness of .5, every true statement has sum-of-
squares proof (of potentially large degree)

key property: many “useful” statements require only low degree
(independent of dimension V)
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definition: of the statement

expresses as
with degree of the form

where is polynomial and

key property: [Grotschel-Lovasz—Schrijver and Shor, Parrilo, Lasserre]
given p; (X), ..., p,,(X), q(X),if degree-/ proof exists, can

find it efficiently by convex optimization in time /V o)



let

definition: of the statement

expresses as
with degree of the form

where is polynomial and

key property: [Grotschel-Lovasz—Schrijver and Shor, Parrilo, Lasserre]
given p; (X), ..., p,,(X), q(X),if degree-/ proof exists, can

find it efficiently by convex optimization in time /V o)

underlies computational efficiency of
sum-of-squares meta-algorithm
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back to clustering

polynomial constraints: (X, Y ) > 0 holds if and only if
1. X € R™" has at most & different columns
2. W =Y — X € R¥™" “looks Gaussian”, that is, Vt < ¢,

n
1 ®t ot
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theorem: if n > d’, constraints are / - k'/-identifying
and the proof requires only degree /
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polynomial constraints: holds if and only if
1. has at most £ different columns
2. , that is, ,

theorem: if n > d’, constraints are / - k'/‘-identifying
and the proof requires only degree /

sum-of-squares meta-algorithm: existence of low-deg. proof
2
directly implies efficient d’ -time estimator with error / - k'/*

for / = log k, match optimal statistical error (at cost of quasi-
polynomial time and sample size)



polynomial constraints: holds if and only if
1. has at most £ different columns
2. , that is, ,

theorem: if n > d’, constraints are / - k'/‘-identifying
and the proof requires only degree /

strategy: find “reqular proof” that constraints are identifying;
then, turn this proof step-by-step into low-degree one
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polynomial constraints: holds if and only if
1. has at most £ different columns
2. , that is, ,

theorem: if n > d’, constraints are / - k'/‘-identifying
and the proof requires only degree /

key ingredient: stability of mean of Gaussian w ~ N (0, Id)
under restrictions

VA C R |E[w | A]||* < log(1/P(4))
get bound / - P(A)"" if just first £ moments of w are Gaussian

this proof has degree < 2/ (in indicator function of A)
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proof-to-algorithm paradigm

estimation problem

K
low-degree polynomial
constraints
12
property: constraints are | 3 | low-degree proof of this
e-identifying property
I (direct) U (sos black box)
estimator with error ¢ estimator with error ¢

(inefficient @) (efficient ©)
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proof-to-algorithm paradigm

strategy for step 3: turn

estimation problem . ,
regular proof” from step 2

K into low-degree proof
_ growing general toolkit to
low-degree pc?lynomlal carry out this modular task
constraints (see www.sumofsquares.org)
02 Thank you!
property: constraints are | 3 | low-degree proof of this
e-identifying property

J (direct) U (sos black box)

estimator with error ¢ estimator with error ¢

(inefficient @) (efficient ©)







