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estimation: class of problems studied in signal processing,
statistics, and machine learning

estimation problem (aka inference / inverse problem)

given: output  of known randomized process for
 some unknown input 

goal: recover (approximately) this input 
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example: clustering as estimation problem
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example: clustering as estimation problem

k-clustering problem 
given: vectors  with , where
•  consists of  different vectors (“centers”)
•  are iid standard Gaussian vectors (“noise”) and
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example: clustering as estimation problem

k-clustering problem 
given: vectors  with , where
•  consists of  different vectors (“centers”)
•  are iid standard Gaussian vectors (“noise”) and
goal: recover  (center for each data point)
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example: clustering as estimation problem

k-clustering problem (aka Gaussian mixture model)

given: vectors  with , where
•  consists of  different vectors (“centers”)
•  are iid standard Gaussian vectors (“noise”) and
goal: recover  (center for each data point)

one of the most extensively studied statistical models
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k-clustering problem (aka Gaussian mixture model)

given: vectors  with , where
•  consists of  different vectors (“centers”)
•  are iid standard Gaussian vectors (“noise”) and
goal: recover  (center for each data point)

concise matrix form:

where  is restricted to have  different columns
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k-clustering problem (aka Gaussian mixture model)

given: vectors  with , where
•  consists of  different vectors (“centers”)
•  are iid standard Gaussian vectors (“noise”) and
goal: recover  (center for each data point)

concise matrix form:

where  is restricted to have  different columns

similar examples (different constraints on )

linear regression:  belongs to known linear subspace
principal component analysis (PCA):  is rank-1 matrix
tensor PCA:  is rank-1 tensor (order 3 or higher)
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k-clustering problem (aka Gaussian mixture model)

given: matrix  with , where
•  has iid standard Gaussian entries
•  has  different columns
goal: recover 

Y ∈ Rd×n Y = X +∗ W
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k-clustering problem (aka Gaussian mixture model)

given: matrix  with , where
•  has iid standard Gaussian entries
•  has  different columns
goal: recover 

desired: estimator  with small error 
(with high probability over ; even for worst )

Y ∈ Rd×n Y = X +∗ W
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k-clustering problem (aka Gaussian mixture model)

given: matrix  with , where
•  has iid standard Gaussian entries
•  has  different columns
goal: recover 

desired: estimator  with small error 
(with high probability over ; even for worst )

best known theoretical guarantees: (until recently)

statistical:   (exponential time) [Regev–Vijayaraghavan’17]

computational:   (polynomial time) [Vempala–Wang]
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best known theoretical guarantees: (until recently)

statistical:   (exponential time) [Regev–Vijayaraghavan’17]

computational:   (polynomial time) [Vempala–Wang]

inherent gap between statistical
and computational error?
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best known theoretical guarantees: (until recently)

statistical:   (exponential time) [Regev–Vijayaraghavan’17]

computational:   (polynomial time) [Vempala–Wang]

inherent gap between statistical
and computational error?

what about gap for other estimation problems,
e.g., tensor PCA?

k-clustering problem (aka Gaussian mixture model)

given: matrix  with , where
•  has iid standard Gaussian entries
•  has  different columns
goal: recover 
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overview

meta-algorithm: sum-of-squares (sos)

• applies in canonical way to wide range of est. problems



[Hopkins-Li, Kothari-Steinhardt-S.,
Diakonikolas-Kane-Stewart]

overview

clustering via sos:

• achieve improved computational error to nearly match
 optimal statistical error

• technique: proof-to-algorithm paradigm

meta-algorithm: sum-of-squares (sos)

• applies in canonical way to wide range of est. problems
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overview

strong limitations of sos:

• concrete evidence for inherent gap between statistical and
computational error for some est. problems, e.g., tensor PCA
• technique: pseudo-calibration

meta-algorithm: sum-of-squares (sos)

• applies in canonical way to wide range of est. problems

[Hopkins-Li, Kothari-Steinhardt-S.,
Diakonikolas-Kane-Stewart]clustering via sos:

• achieve improved computational error to nearly match
 optimal statistical error

• technique: proof-to-algorithm paradigm
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setup for sum-of-squares meta-algorithm
let  be set of possible signals (e.g., set of matrices with
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starting point: low-deg. polynomial constraints ;
for all  and most measurements :

let  be set of possible signals Ω ⊆ RN

given:  for  and std. Gaussian 
goal: estimate 

Y = X +∗ W X ∈∗ Ω W
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starting point: low-deg. polynomial constraints ;
for all  and most measurements :

1. signal-measurement pair satisfies 
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starting point: low-deg. polynomial constraints ;
for all  and most measurements :

1. signal-measurement pair satisfies 
2. constraints are “ -identifying”:
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starting point: low-deg. polynomial constraints ;
for all  and most measurements :

1. signal-measurement pair satisfies 
2. constraints are “ -identifying”:

solutions to this polynomial system are
estimates with error  ☺
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starting point: low-deg. polynomial constraints ;
for all  and most measurements :

1. signal-measurement pair satisfies 
2. constraints are “ -identifying”:

solutions to this polynomial system are
estimates with error  ☺

estimates a-priori not efficiently computable because
polynomial systems are NP-hard to solve in worst-case ☹

let  be set of possible signals Ω ⊆ RN

given:  for  and std. Gaussian 
goal: estimate 
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starting point: low-deg. polynomial constraints ;
for all  and most measurements :

1. signal-measurement pair satisfies 
2. constraints are “ -identifying”:

many classical estimation algorithms can be viewed as
specialized solvers to exploit structure of polynomial system;

often notoriously hard to analyze
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starting point: low-deg. polynomial constraints ;
for all  and most measurements :

1. signal-measurement pair satisfies 
2. constraints are “ -identifying”:

many classical estimation algorithms can be viewed as
specialized solvers to exploit structure of polynomial system;

often notoriously hard to analyze

emerging approach: often proof of  can be turned
systematically into efficient estimation algorithm

let  be set of possible signals Ω ⊆ RN

given:  for  and std. Gaussian 
goal: estimate 
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starting point: low-deg. polynomial constraints ;
for all  and most measurements :

1. signal-measurement pair satisfies 
2. constraints are “ -identifying”:

sum-of-squares meta-algorithm: computationally-efficient
estimator with error  whenever  “low-degree proof” for 

let  be set of possible signals Ω ⊆ RN

given:  for  and std. Gaussian 
goal: estimate 

Y = X +∗ W X ∈∗ Ω W

X∗

{ (X,Y ) ⩾p 0}
X ∈∗ Ω Y = X +∗ W

(X ,Y ) ⩾p ∗ 0
ε

(∗)∀X.   (X,Y ) ⩾p 0 ⇒ ∥X −X ∥ ⩽∗ 2 ε

⩽ ε ∃ (∗)
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let 

definition: degree-  sum-of-squares proof of the statement

expresses  as sum of nonnegative polynomials over 
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assuming compactness of , every true statement has sum-of-
squares proof (of potentially large degree)
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assuming compactness of , every true statement has sum-of-
squares proof (of potentially large degree)

related to:
• Hilbert’s 17th problem (expressing positive polynomials as
 sum of squares of rational functions) [Artin]

• Positivstellensatz in real algebraic geometry [Krivine, Stengle]
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assuming compactness of , every true statement has sum-of-
squares proof (of potentially large degree)

key property: many “useful” statements require only low degree
(independent of dimension )
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key property: [Grötschel–Lovász–Schrijver and Shor, Parrilo, Lasserre]

given , if degree-  proof exists, can
find it efficiently by convex optimization in time 
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key property: [Grötschel–Lovász–Schrijver and Shor, Parrilo, Lasserre]

given , if degree-  proof exists, can
find it efficiently by convex optimization in time 

underlies computational efficiency of
sum-of-squares meta-algorithm
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back to clustering
polynomial constraints:  holds if and only if
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2.   “looks Gaussian”, that is, ,

theorem: if , constraints are -identifying
and the proof requires only degree 
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theorem: if , constraints are -identifying
and the proof requires only degree 

sum-of-squares meta-algorithm: existence of low-deg. proof
directly implies efficient -time estimator with error 
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theorem: if , constraints are -identifying
and the proof requires only degree 

sum-of-squares meta-algorithm: existence of low-deg. proof
directly implies efficient -time estimator with error 

for , match optimal statistical error (at cost of quasi-
polynomial time and sample size)

polynomial constraints:  holds if and only if
1.   has at most  different columns
2.   “looks Gaussian”, that is, ,
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theorem: if , constraints are -identifying
and the proof requires only degree 

strategy: find “regular proof” that constraints are identifying;
then, turn this proof step-by-step into low-degree one

polynomial constraints:  holds if and only if
1.   has at most  different columns
2.   “looks Gaussian”, that is, ,
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theorem: if , constraints are -identifying
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key ingredient: stability of mean of Gaussian 
under restrictions
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key ingredient: stability of mean of Gaussian 
under restrictions
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theorem: if , constraints are -identifying
and the proof requires only degree 

key ingredient: stability of mean of Gaussian 
under restrictions

get bound  if just first  moments of  are Gaussian

polynomial constraints:  holds if and only if
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theorem: if , constraints are -identifying
and the proof requires only degree 

key ingredient: stability of mean of Gaussian 
under restrictions

get bound  if just first  moments of  are Gaussian

this proof has degree  (in indicator function of )

polynomial constraints:  holds if and only if
1.   has at most  different columns
2.   “looks Gaussian”, that is, ,

(X,Y ) ⩾p 0
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strategy for step 3: turn
“regular proof” from step 2
into low-degree proof

growing general toolkit to
carry out this modular task
(see www.sumofsquares.org)

Thank you!

property: constraints are
-identifying

⇩ (direct)

estimator with error 
(inefficient ☹)

low-degree proof of this
property 

⇩ (sos black box)

estimator with error 
(efficient ☺)

⇨³

proof-to-algorithm paradigm

estimation problem

⇩¹

low-degree polynomial
constraints

⇩²

ε

ε ε




