high-dimensional estimation via sum-of-squares proofs

David Steurer (ETH Zurich)

based on ICM proceedings article with **Prasad Raghavendra (UC Berkeley)** and **Tselil Schramm (Harvard / MIT)**

SIAM AG, Polynomial Optimization and its Applications, Bern, 2019

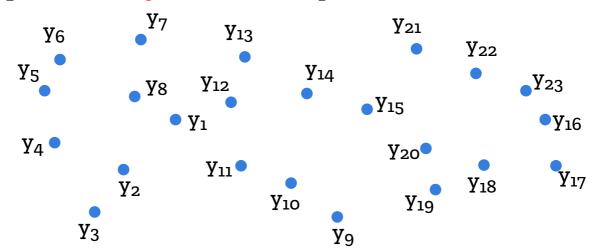
estimation: class of problems studied in signal processing, statistics, and machine learning

estimation problem (aka inference / inverse problem)

given: output Y of known randomized process for some unknown input X^*

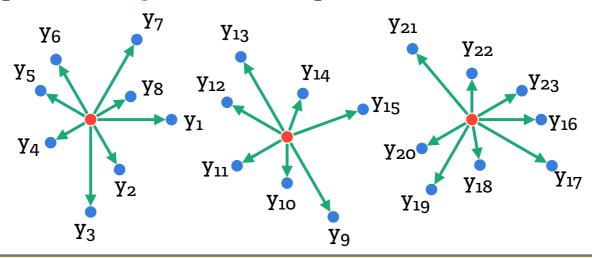
goal: recover (approximately) this input X^*

parameter / signal $X^* \xrightarrow{\text{process}}$ measurement / observation Y



k-clustering problem

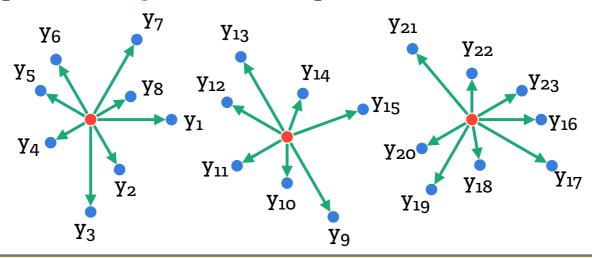
given: vectors $y_1,\ldots,y_n\in\mathbb{R}^d$



k-clustering problem

given: vectors $y_1,\ldots,y_n\in\mathbb{R}^d$ with $y_i=x_i^*+w_i$, where

- $\{x_1^*, \dots, x_n^*\}$ consists of $\leqslant k$ different vectors ("centers")
- w_1, \ldots, w_n are iid standard Gaussian vectors ("noise") and

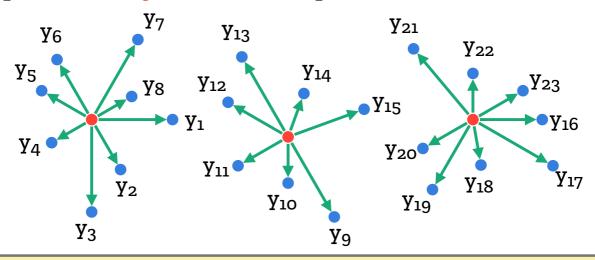


k-clustering problem

given: vectors $y_1,\ldots,y_n\in\mathbb{R}^d$ with $y_i=x_i^*+w_i$, where

- $\{x_1^*, \ldots, x_n^*\}$ consists of $\leqslant k$ different vectors ("centers")
- w_1, \ldots, w_n are iid standard Gaussian vectors ("noise") and

goal: recover x_1^*, \ldots, x_n^* (center for each data point)



k-clustering problem (aka Gaussian mixture model)

given: vectors $y_1,\ldots,y_n\in\mathbb{R}^d$ with $y_i=x_i^*+w_i$, where

- $\{x_1^*, \dots, x_n^*\}$ consists of $\leqslant k$ different vectors ("centers")
- w_1, \ldots, w_n are iid standard Gaussian vectors ("noise") and

goal: recover x_1^*, \ldots, x_n^* (center for each data point)

one of the most extensively studied statistical models

given: vectors $y_1,\ldots,y_n\in\mathbb{R}^d$ with $y_i=x_i^*+w_i$, where

- $\{x_1^*, \ldots, x_n^*\}$ consists of $\leqslant k$ different vectors ("centers")
- w_1,\ldots,w_n are iid standard Gaussian vectors ("noise") and

goal: recover x_1^*, \ldots, x_n^* (center for each data point)

concise matrix form:

$$X^* \in \mathbb{R}^{d imes n} \xrightarrow{ ext{additive Gaussian noise } W} Y = X^* + W \in \mathbb{R}^{d imes n}$$

where X^* is restricted to have $\leq k$ different columns

given: vectors $y_1,\ldots,y_n\in\mathbb{R}^d$ with $y_i=x_i^*+w_i$, where

- $\{x_1^*, \ldots, x_n^*\}$ consists of $\leq k$ different vectors ("centers")
- w_1, \ldots, w_n are iid standard Gaussian vectors ("noise") and

goal: recover x_1^*, \ldots, x_n^* (center for each data point)

concise matrix form:

 $X^* \in \mathbb{R}^{d imes n} \xrightarrow{ ext{additive Gaussian noise } W} Y = X^* + W \in \mathbb{R}^{d imes n}$

where X^* is restricted to have $\leq k$ different columns

similar examples (different constraints on X^*)

linear regression: X^* belongs to known linear subspace principal component analysis (PCA): X^* is rank-1 matrix

tensor PCA: X^* is rank-1 tensor (order 3 or higher)

given: matrix $Y \in \mathbb{R}^{d imes n}$ with $Y = X^* + W$, where

- ullet W has iid standard Gaussian entries
- X^* has $\leq k$ different columns

goal: recover X^*

given: matrix $Y \in \mathbb{R}^{d imes n}$ with $Y = X^* + W$, where

- ullet W has iid standard Gaussian entries
- X^* has $\leq k$ different columns

goal: recover X^*

desired: estimator $\hat{X}(Y)$ with small $\underbrace{error}_{n} \frac{1}{n} \|\hat{X}(Y) - X^*\|_{\mathrm{F}}^2$ (with high probability over W; even for worst X^*)

given: matrix $Y \in \mathbb{R}^{d imes n}$ with $Y = X^* + W$, where

- W has iid standard Gaussian entries
- X^* has $\leq k$ different columns

goal: recover X^*

desired: estimator $\hat{X}(Y)$ with small error $\frac{1}{n} ||\hat{X}(Y) - X^*||_{\mathrm{F}}^2$ (with high probability over W; even for worst X^*)

best known theoretical guarantees: (until recently)

statistical: $\Theta(\log k)$ (exponential time) [Regev-Vijayaraghavan'17]

computational: $O(k^{1/2})$ (polynomial time) [Vempala-Wang]

given: matrix $Y \in \mathbb{R}^{d imes n}$ with $Y = X^* + W$, where

- ullet W has iid standard Gaussian entries
- X^* has $\leq k$ different columns

goal: recover X^*

desired: estimator $\hat{X}(Y)$ with small error $\frac{1}{n}\|\hat{X}(Y) - X^*\|_{\mathrm{F}}^2$

best known theoretical guarantees: (until recently)

statistical: $\Theta(\log k)$ (exponential time) [Regev-Vijayaraghavan'17]

computational: $O(k^{1/2})$ (polynomial time) [Vempala-Wang]

inherent gap between statistical and computational error?

given: matrix $Y \in \mathbb{R}^{d imes n}$ with $Y = X^* + W$, where

- ullet W has iid standard Gaussian entries
- X^* has $\leq k$ different columns

goal: recover X^*

desired: estimator $\hat{X}(Y)$ with small error $\frac{1}{n}\|\hat{X}(Y) - X^*\|_{\mathrm{F}}^2$

best known theoretical guarantees: (until recently)

statistical: $\Theta(\log k)$ (exponential time) [Regev-Vijayaraghavan'17]

computational: $O(k^{1/2})$ (polynomial time) [Vempala-Wang]

inherent gap between statistical and computational error?

what about gap for other estimation problems, e.g., tensor PCA?

meta-algorithm: sum-of-squares (sos)

• applies in canonical way to wide range of est. problems

meta-algorithm: sum-of-squares (sos)

• applies in canonical way to wide range of est. problems

clustering via sos:

[Hopkins-Li, Kothari-Steinhardt-S., Diakonikolas-Kane-Stewart]

- achieve improved computational error to nearly match optimal statistical error
- technique: proof-to-algorithm paradigm

meta-algorithm: sum-of-squares (sos)

• applies in canonical way to wide range of est. problems

clustering via sos:

[Hopkins-Li, Kothari-Steinhardt-S., Diakonikolas-Kane-Stewart]

- achieve improved computational error to nearly match optimal statistical error
- technique: proof-to-algorithm paradigm

strong limitations of sos:

[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin, Hopkins-Kothari-Potechin-R.-Schramm-S.]

- concrete evidence for inherent gap between statistical and computational error for some est. problems, e.g., tensor PCA
- technique: pseudo-calibration

let $\Omega \subseteq \mathbb{R}^N$ be set of possible signals (e.g., set of matrices with $\leq k$ different columns or set of rank-1 tensors of order 3)

let $\Omega \subseteq \mathbb{R}^N$ be set of possible signals (e.g., set of matrices with $\leqslant k$ different columns or set of rank-1 tensors of order 3)

given: $Y = X^* + W$ for $X^* \in \Omega$ and std. Gaussian W

goal: estimate X^*

let $\Omega \subseteq \mathbb{R}^N$ be set of possible signals (e.g., set of matrices with $\leqslant k$ different columns or set of rank-1 tensors of order 3)

given: $Y = X^* + W$ for $X^* \in \Omega$ and std. Gaussian W goal: estimate X^*

starting point: low-deg. polynomial constraints $\{\vec{p}(X,Y)\geqslant 0\}$;

given: $Y = X^* + W$ for $X^* \in \Omega$ and std. Gaussian W

goal: estimate X^*

starting point: low-deg. polynomial constraints $\{\vec{p}(X,Y)\geqslant 0\}$; for all $X^*\in\Omega$ and most measurements $Y=X^*+W$:

given: $Y=X^*+W$ for $X^*\in\Omega$ and std. Gaussian W

goal: estimate X^*

starting point: low-deg. polynomial constraints $\{ ec{p}(X,Y) \geqslant 0 \}$;

for all $X^* \in \Omega$ and most measurements $Y = X^* + W$:

1. signal-measurement pair satisfies $ec{p}(X^*,Y)\geqslant 0$

given: $Y=X^*+W$ for $X^*\in\Omega$ and std. Gaussian W

goal: estimate X^*

starting point: low-deg. polynomial constraints $\{\vec{p}(X,Y)\geqslant 0\}$; for all $X^*\in\Omega$ and most measurements $Y=X^*+W$:

- 1. signal-measurement pair satisfies $ec{p}(X^*,Y)\geqslant 0$
- 2. constraints are " ε -identifying":

$$\forall X. \ \vec{p}(X,Y) \geqslant 0 \Rightarrow \|X - X^*\|^2 \leqslant \varepsilon$$

given: $Y=X^*+W$ for $X^*\in\Omega$ and std. Gaussian W

goal: estimate X^*

starting point: low-deg. polynomial constraints $\{\vec{p}(X,Y)\geqslant 0\}$; for all $X^*\in\Omega$ and most measurements $Y=X^*+W$:

- 1. signal-measurement pair satisfies $ec{p}(X^*,Y)\geqslant 0$
- 2. constraints are " ε -identifying":

$$\forall X. \ \vec{p}(X,Y) \geqslant 0 \Rightarrow \|X - X^*\|^2 \leqslant \varepsilon$$

solutions to this polynomial system are estimates with error $\leqslant \varepsilon$ \odot

given: $Y=X^*+W$ for $X^*\in\Omega$ and std. Gaussian W

goal: estimate X^*

starting point: low-deg. polynomial constraints $\{ ec{p}(X,Y) \geqslant 0 \}$;

for all $X^* \in \Omega$ and most measurements $Y = X^* + W$:

- 1. signal-measurement pair satisfies $ec{p}(X^*,Y)\geqslant 0$
- 2. constraints are " ε -identifying":

$$\forall X. \ \vec{p}(X,Y) \geqslant 0 \Rightarrow \|X - X^*\|^2 \leqslant \varepsilon$$

solutions to this polynomial system are estimates with error $\leqslant \varepsilon$ \odot

estimates a-priori **not efficiently computable** because polynomial systems are NP-hard to solve in worst-case 🙁

given: $Y=X^*+W$ for $X^*\in\Omega$ and std. Gaussian W

goal: estimate X^*

starting point: low-deg. polynomial constraints $\{\vec{p}(X,Y)\geqslant 0\}$; for all $X^*\in\Omega$ and most measurements $Y=X^*+W$:

- 1. signal-measurement pair satisfies $ec{p}(X^*,Y)\geqslant 0$
- 2. constraints are " ε -identifying":

$$\forall X. \ ec{p}(X,Y)\geqslant 0\Rightarrow \|X-X^*\|^2\leqslant arepsilon$$

many classical estimation algorithms can be viewed as specialized solvers to exploit structure of polynomial system; often notoriously hard to analyze

given: $Y=X^*+W$ for $X^*\in\Omega$ and std. Gaussian W

goal: estimate X^*

starting point: low-deg. polynomial constraints $\{\vec{p}(X,Y)\geqslant 0\}$; for all $X^*\in\Omega$ and most measurements $Y=X^*+W$:

- 1. signal-measurement pair satisfies $ec{p}(X^*,Y)\geqslant 0$
- 2. constraints are " ε -identifying":

$$orall X. \ ec{p}(X,Y)\geqslant 0 \Rightarrow \|X-X^*\|^2\leqslant arepsilon \qquad (*)$$

many classical estimation algorithms can be viewed as specialized solvers to exploit structure of polynomial system; often notoriously hard to analyze

emerging approach: often proof of (*) can be turned systematically into efficient estimation algorithm

given: $Y = X^* + W$ for $X^* \in \Omega$ and std. Gaussian W

goal: estimate X^*

starting point: low-deg. polynomial constraints $\{\vec{p}(X,Y)\geqslant 0\}$;

- for all $X^* \in \Omega$ and most measurements $Y = X^* + W$:
 - 1. signal-measurement pair satisfies $ec{p}(X^*,Y)\geqslant 0$
 - 2. constraints are " ε -identifying":

$$orall X. \; ec{p}(X,Y)\geqslant 0 \Rightarrow \|X-X^*\|^2\leqslant arepsilon \qquad (*)$$

sum-of-squares meta-algorithm: computationally-efficient estimator with error $\leq \varepsilon$ whenever \exists "low-degree proof" for (*)

$$\mathsf{let}\, S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

$$\mathsf{let}\, S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

definition: degree-\ell sum-of-squares proof of the statement

$$\forall X \in S. \ q(X) \geqslant 0$$

$$\operatorname{\mathsf{let}} S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

definition: degree-ℓ sum-of-squares proof of the statement

$$\forall X \in S. \ q(X) \geqslant 0$$

expresses q(X) as sum of nonnegative polynomials over S with degree $\leqslant \ell$ of the form

$$\mathsf{let}\, S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

definition: degree-\ell sum-of-squares proof of the statement

$$\forall X \in S. \ q(X) \geqslant 0$$

expresses q(X) as sum of nonnegative polynomials over S with degree $\leqslant \ell$ of the form

$$r(X)^2 \cdot p_1(X)^{b_1} \cdot \cdot \cdot p_m(X)^{b_m},$$

where r(X) is polynomial and $b_1, \ldots, b_m \in \{0,1\}$

$$\mathsf{let}\, S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

definition: degree-\ell sum-of-squares proof of the statement

$$\forall X \in S. \ q(X) \geqslant 0$$

expresses q(X) as sum of nonnegative polynomials over S with degree $\leqslant \ell$ of the form

$$r(X)^2 \cdot p_1(X)^{b_1} \cdots p_m(X)^{b_m},$$

where r(X) is polynomial and $b_1, \ldots, b_m \in \{0,1\}$

assuming compactness of S, every true statement has sum-of-squares proof (of potentially large degree)

$$\operatorname{\mathsf{let}} S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

definition: degree-\ell sum-of-squares proof of the statement

$$\forall X \in S. \ q(X) \geqslant 0$$

expresses q(X) as sum of nonnegative polynomials over S with degree $\leqslant \ell$ of the form

$$r(X)^2 \cdot p_1(X)^{b_1} \cdots p_m(X)^{b_m},$$

where r(X) is polynomial and $b_1, \ldots, b_m \in \{0, 1\}$

assuming compactness of S, every true statement has sum-of-squares proof (of potentially large degree)

related to:

- Hilbert's 17th problem (expressing positive polynomials as sum of squares of rational functions) [Artin]
- Positivstellensatz in real algebraic geometry [Krivine, Stengle]

$$\operatorname{\mathsf{let}} S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

definition: degree-\ell sum-of-squares proof of the statement

$$\forall X \in S. \ q(X) \geqslant 0$$

expresses q(X) as sum of nonnegative polynomials over S with degree $\leqslant \ell$ of the form

$$r(X)^2 \cdot p_1(X)^{b_1} \cdots p_m(X)^{b_m},$$

where r(X) is polynomial and $b_1, \ldots, b_m \in \{0,1\}$

assuming compactness of S, every true statement has sum-of-squares proof (of potentially large degree)

key property: many "useful" statements require only low degree (independent of dimension N)

$$\operatorname{\mathsf{let}} S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

definition: degree-\ell sum-of-squares proof of the statement

$$\forall X \in S. \ q(X) \geqslant 0$$

expresses q(X) as sum of nonnegative polynomials over S with degree $\leqslant \ell$ of the form

$$r(X)^2 \cdot p_1(X)^{b_1} \cdots p_m(X)^{b_m},$$

where r(X) is polynomial and $b_1, \ldots, b_m \in \{0,1\}$

key property: [Grötschel-Lovász-Schrijver and Shor, Parrilo, Lasserre] given $p_1(X),\ldots,p_m(X),q(X)$, if degree- ℓ proof exists, can find it efficiently by convex optimization in time $N^{O(\ell)}$

$$\mathsf{let}\, S = \{X \in \mathbb{R}^N \mid p_1(X) \geqslant 0, ..., p_m(X) \geqslant 0\}$$

definition: degree-\ell sum-of-squares proof of the statement

$$\forall X \in S. \ q(X) \geqslant 0$$

expresses q(X) as sum of nonnegative polynomials over S with degree $\leqslant \ell$ of the form

$$r(X)^2 \cdot p_1(X)^{b_1} \cdots p_m(X)^{b_m},$$

where r(X) is polynomial and $b_1, \ldots, b_m \in \{0,1\}$

key property: [Grötschel-Lovász-Schrijver and Shor, Parrilo, Lasserre] given $p_1(X),\ldots,p_m(X),q(X)$, if degree- ℓ proof exists, can find it efficiently by convex optimization in time $N^{O(\ell)}$

underlies computational efficiency of sum-of-squares meta-algorithm

polynomial constraints: $\vec{p}(X,Y) \geqslant 0$ holds if and only if

polynomial constraints: $\vec{p}(X,Y)\geqslant 0$ holds if and only if

1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns

polynomial constraints: $\vec{p}(X,Y) \geqslant 0$ holds if and only if

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W = Y X \in \mathbb{R}^{d imes n}$ "looks Gaussian"

polynomial constraints: $\vec{p}(X,Y)\geqslant 0$ holds if and only if

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W = Y X \in \mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t \leqslant \ell$,

$$rac{1}{n} \sum_{i=1}^n w_i^{\otimes t} pprox \mathbb{E}_{w \sim N(0, \mathrm{Id})} w^{\otimes t}$$

polynomial constraints: $\vec{p}(X,Y) \geqslant 0$ holds if and only if

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W = Y X \in \mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t \leqslant \ell$,

$$rac{1}{n} \sum_{i=1}^n w_i^{\otimes t} pprox \mathbb{E}_{w \sim N(0, \mathrm{Id})} w^{\otimes t}$$

theorem: if $n \geqslant d^{\ell}$, constraints are $\ell \cdot k^{1/\ell}$ -identifying and the proof requires only degree ℓ

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W = Y X \in \mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t \leqslant \ell$,

$$rac{1}{n} \sum_{i=1}^n w_i^{\otimes t} pprox \mathbb{E}_{w \sim N(0, \mathrm{Id})} w^{\otimes t}$$

theorem: if $n \geqslant d^{\ell}$, constraints are $\ell \cdot k^{1/\ell}$ -identifying and the proof requires only degree ℓ

sum-of-squares meta-algorithm: existence of low-deg. proof directly implies efficient d^{ℓ^2} -time estimator with error $\ell \cdot k^{1/\ell}$

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W = Y X \in \mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t \leqslant \ell$,

$$rac{1}{n} \sum_{i=1}^n w_i^{\otimes t} pprox \mathbb{E}_{w \sim N(0, \mathrm{Id})} w^{\otimes t}$$

theorem: if $n\geqslant d^\ell$, constraints are $\ell\cdot k^{1/\ell}$ -identifying and the proof requires only degree ℓ

sum-of-squares meta-algorithm: existence of low-deg. proof directly implies efficient d^{ℓ^2} -time estimator with error $\ell \cdot k^{1/\ell}$

for $\ell = \log k$, match optimal statistical error (at cost of quasi-polynomial time and sample size)

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W = Y X \in \mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t \leqslant \ell$,

$$rac{1}{n} \sum_{i=1}^n w_i^{\otimes t} pprox \mathbb{E}_{w \sim N(0, \mathrm{Id})} w^{\otimes t}$$

theorem: if $n \geqslant d^{\ell}$, constraints are $\ell \cdot k^{1/\ell}$ -identifying and the proof requires only degree ℓ

strategy: find "regular proof" that constraints are identifying; then, turn this proof step-by-step into low-degree one

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W = Y X \in \mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t \leqslant \ell$,

$$rac{1}{n} \sum_{i=1}^n w_i^{\otimes t} pprox \mathbb{E}_{w \sim N(0, \mathrm{Id})} w^{\otimes t}$$

theorem: if $n \geqslant d^{\ell}$, constraints are $\ell \cdot k^{1/\ell}$ -identifying and the proof requires only degree ℓ

key ingredient: stability of mean of Gaussian $\mathbf{w} \sim N(0, \mathrm{Id}_d)$ under restrictions

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W = Y X \in \mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t \leqslant \ell$,

$$rac{1}{n} \sum_{i=1}^n w_i^{\otimes t} pprox \mathbb{E}_{w \sim N(0, \mathrm{Id})} w^{\otimes t}$$

theorem: if $n \geqslant d^{\ell}$, constraints are $\ell \cdot k^{1/\ell}$ -identifying and the proof requires only degree ℓ

key ingredient: stability of mean of Gaussian $\mathbf{w} \sim N(0, \mathrm{Id}_d)$ under restrictions

$$orall A \subseteq \mathbb{R}^d. \ \left\| \mathbb{E}[\mathbf{w} \mid A]
ight\|^2 \leqslant \log(1/\mathbb{P}(A))$$

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W=Y-X\in\mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t\leqslant \ell$,

$$rac{1}{n} \sum_{i=1}^n w_i^{\otimes t} pprox \mathbb{E}_{w \sim N(0, \mathrm{Id})} w^{\otimes t}$$

theorem: if $n\geqslant d^\ell$, constraints are $\ell\cdot k^{1/\ell}$ -identifying and the proof requires only degree ℓ

key ingredient: stability of mean of Gaussian $\mathbf{w} \sim N(0, \mathrm{Id}_d)$ under restrictions

$$orall A \subseteq \mathbb{R}^d. \ \left\| \mathbb{E}[\mathbf{w} \mid A]
ight\|^2 \leqslant \log(1/\mathbb{P}(A))$$

get bound $\ell \cdot \mathbb{P}(A)^{1/\ell}$ if just first ℓ moments of \mathbf{w} are Gaussian

- 1. $X \in \mathbb{R}^{d imes n}$ has at most k different columns
- 2. $W=Y-X\in\mathbb{R}^{d imes n}$ "looks Gaussian", that is, $orall t\leqslant \ell$, $rac{1}{n}\sum_{n}w_i^{\otimes t}pprox \mathbb{E}_{w\sim N(0,\mathrm{Id})}w^{\otimes t}$

theorem: if $n\geqslant d^\ell$, constraints are $\ell\cdot k^{1/\ell}$ -identifying and the proof requires only degree ℓ

key ingredient: stability of mean of Gaussian $\mathbf{w} \sim N(0, \mathrm{Id}_d)$ under restrictions

$$orall A \subseteq \mathbb{R}^d. \ \left\| \mathbb{E}[\mathbf{w} \mid A]
ight\|^2 \leqslant \log(1/\mathbb{P}(A))$$

get bound $\ell \cdot \mathbb{P}(A)^{1/\ell}$ if just first ℓ moments of \mathbf{w} are Gaussian this proof has degree $\leqslant 2\ell$ (in indicator function of A)

estimation problem

estimation problem

IJ1

low-degree polynomial constraints

estimation problem

IJ 1

low-degree polynomial constraints

∏ 2

property: constraints are ε -identifying

estimation problem

Ţl

low-degree polynomial constraints

∏ 2

property: constraints are ε -identifying

↓ (direct)

estimation problem

Д1

low-degree polynomial constraints

∏ 2

property: constraints are ε -identifying

 \Rightarrow ³

low-degree proof of this property

↓ (direct)

estimation problem

ſΊ

low-degree polynomial constraints

∏ 2

property: constraints are ε -identifying

 \Rightarrow^3

low-degree proof of this property

↓ (direct)

estimator with error ε (inefficient \odot)

estimation problem

<u>ը</u> 1

low-degree polynomial constraints

∏ 2

property: constraints are ε -identifying

↓ (direct)

 \Rightarrow^3

estimator with error ε (inefficient \odot)

strategy for step 3: turn "regular proof" from step 2 into low-degree proof

low-degree proof of this property

estimation problem

ſΊ

low-degree polynomial constraints

∏ 2

property: constraints are ε -identifying

↓ (direct)

 \Rightarrow ³

estimator with error ε (inefficient \odot)

strategy for step 3: turn "regular proof" from step 2 into low-degree proof growing general toolkit to

carry out this modular task (see www.sumofsquares.org)

low-degree proof of this property

↓ (sos black box)

estimation problem

Дl

low-degree polynomial constraints

∏ 2

property: constraints are ε -identifying

↓ (direct)

estimator with error ε (inefficient \odot)

strategy for step 3: turn "regular proof" from step 2 into low-degree proof

growing general toolkit to carry out this modular task (see www.sumofsquares.org)

Thank you!

 \Rightarrow ³

low-degree proof of this property