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Planning of the course

Online course (30h, 3 ECTS)

First week : March 23-27

Second week : March 30 - April 3

Third week : April 6-10

Fourth week : April 13-17

holidays : April 20-24

holidays : April 27-30

Fifth week : May 4-8 (Exam on thursday∗)

∗ there could be modifications due to the covid-19 epidemic



Online platform

The course material and all official communications are uploaded

on the Moodle platform

Community

In particular, we are going to use the following online tools

Forum – to post questions/answers, students are encour-

aged to use it

BBB (BigBlueBotton) – for exam and some real-time classes

Devoir – to send solutions to the exercise sheets

https://community-sciences.unilim.fr/course/view.php?id=3007


Grades

The final grade (over 20) is given by the formula

4
10TP + 1

10P + 5
10E

where

TP = exercise sheets (due on the 3rd and the 5th weeks)

P = class participation through Community

E = written exam (5th week)

http://www.pantheonsorbonne.fr/fileadmin/Relation_international/1-Fichiers-textes/3-Etudiants/3-3-Etudiants-en-echange/3-3-3-Echanges-Partants/20150212b-tableau-de-conversion-des-notes.pdf
https://community-sciences.unilim.fr/course/view.php?id=3007


References for LP

Barvinok “A course in convexity”

Vol. 54. American Mathematical Soc., 2002.

Matousek-Gartner “Understanding and using Linear Program-

ming” Springer-Verlag, Berlin Heidelberg 2007

Jansen “Theory of LP” Vol. 6, Applied Optimization

My slides available on Community or on my web page

https://community-sciences.unilim.fr/course/view.php?id=3007
https://www.unilim.fr/pages_perso/simone.naldi/


References for SDP

Boyd-Vanderberghe “Semidefinite Programming”

SIAM Review – Vol. 38, No. 1, pp. 49-95, March 1996

De Klerk “Aspects of Semidefinite Programming: Interior Point

Algorithms and Selected Applications” Springer, 2006

Anjos, Lasserre “Handbook on Semidefinite, Conic and Polyno-

mial Optimization” Springer Science & Business Media – Vol.

166, 2011

My slides available on Community or on my web page

https://community-sciences.unilim.fr/course/view.php?id=3007
https://www.unilim.fr/pages_perso/simone.naldi/


Outline of the course

1st week : Recaps and intro to LP

2nd week : Simplex and IPM for LP

3rd week : Preliminaries and intro to SDP

4th week : Algorithms for SDP



This course in a nutshell/1

Linear and Semidefinite Optimization (aka Linear and Semidef-

inite Programming or simply LP, SDP) are convex conic opti-

mization problems. They model include several important classes

of opt. problems (such as quadratic programs).

Several problems in mathematics can be cast exactly as LP or

SDP. There are countless applications of such problems e.g. in:

control theory, (combinatorial) optimization, quantum informa-

tion . . .



This course in a nutshell/2

On the other hand, many classes of problems can be relaxed to (a

sequence of) LP or SDP. For instance polynomial optimization

(minimize a polynomial function over polynomial inequalities)

or many combinatorial optimization problems (e.g. the MAX-

CUT).

Barrier functions and IP methods are known for LP/SDP. Whereas

LP can be solved in polynomial time, for SDP an approximate

solution can be computed in polynomial time but, on the other

hand, the complexity status of SDP in exact models (e.g. Tur-

ing) is still unknown.



A hierarchy of optimization problems

[courtesy of meboo.convexoptimization.com]

https://meboo.convexoptimization.com/access.html


General notation

Q,R,C : usual fields of rational, real and complex numbers.

R≥,R> : nonnegative/positive real numbers

Sd = Sd(R) : vector space of d× d real symmetric matrices

K is typically a (convex) cone (ex K = Rn≥ : nonn. orthant)



PART I

Recaps on linear algebra and convex geometry

and introduction to linear programming



Vector spaces

Basic objects of linear algebra are vector spaces V over a field

F (for instance F = R or F = C). A non-empty set V is a vector

space if it satisfies the properties

α ∈ F, v ∈ V ⇒ αv ∈ V
v1, v2 ∈ V ⇒ v1 + v2 ∈ V

Elements v1, . . . , vn are linearly independent if

λ1v1 + · · ·+ λnvn = 0 ⇒ λ1 = · · · = λn = 0

The supremum of all n for which there exist n linearly indepen-

dent vectors in V is called the dimension of V (it can be +∞).

Lines, planes, hyperplanes are examples of vector spaces.



Finite dimension

A real vector space V of dimension n is isomorphic to Rn, but

the isomorphism is non-canonical, that is, it depends on a choice

of basis B = {v1, . . . , vn} ⊂ V :

ϕ : V → Rn
vi 7→ ei

and extended linearly ϕ(
∑
aivi) :=

∑
aiei, where e1, . . . , en is the

“canonical basis” of Rn (ei has i-th coordinate equal to 1 and 0

otherwise).

We will only consider real vector spaces, and often assume that

a choice of a basis is done, hence we will consider that V is

presented as Rn through some isomorphism ϕ.



Dual vector space

Let V ≈ Rn be a fin.-dim real vector space. Its dual vector space

is defined as the set of R-linear forms defined on V , that is:

V ∨ = {` : V → R : ` linear}

V ∨ is n-dimensional, hence (non-canonically) isomorphic to V .

Each element ` of V ∨ can be associated to the null space

`⊥ = {x ∈ V : `(x) = 0} = {x ∈ V : vT` x = 0}

which is the hyperplane in V orthogonal to v`. We use this dual

point of view to define objects in the primal vector space V (e.g.

hyperplanes, subspaces, convex sets...)



Subspaces

Each vector subspace U ⊂ V ≈ Rn has a primal/image definition

and a dual/kernel) definition, as follows:

Primal/image : U = {My : y ∈ V } = span(M(1), . . . ,M(n))

Dual/kernel : U = {x : Nx = 0} = N⊥(1) ∩ · · · ∩N
⊥
(n)

where M,N ∈ Rn×n are matrices, that is linear maps V → V .

Compactly this means that U = im(M) = ker(N).

Sets of type p + U where p ∈ V and U ⊂ V vec subspace, are

called affine subspaces.



Theorem of the alternative in linear algebra

This result was proved by Gauss (1809) and represents an ex-

ample of “theorem of the alternative”

Theorem. Let A ∈ Rm×n and b ∈ Rm×n. The system Ax = b has

a solution if and only if

(*) yTA = 0 ⇒ yT b = 0

proof. If b = Ax for some x, then yT b = (yTA)x, hence (*) holds trivially.

For the converse, let U = {Ax : x ∈ Rn} = im(A) ⊂ Rm be given in its primal

representation. Then there exists B ∈ Rn×m such that U = {y ∈ Rm : By =

0} = ker(B). Thus BA = 0 (the null matrix). If (*) holds, then Bb = 0,

hence b ∈ ker(B) = im(A).

If Ax = b is feasible, then there is a solution y to the alternative

system : yTA = 0, yT b 6= 0, that “separates” b from im(A).



Metric spaces

One can define norms and distances on finite-dimensional vector

spaces. On V = Rn the Euclidean inner product is given by

v, w ∈ Rn : 〈v, w〉 :=
∑
i viwi

and the corresponding Euclidean norms and distances

||v|| =
√
〈v, v〉 and d(v, w) = ||v − w|| .

Different norms can be defined over Rn, all are asymptotically

equivalent in the sense that for two norms || · ||1 and || · ||2 there

are two constants c1, c2 s.t.

c1||v||1 ≤ ||v||2 ≤ c2||v||2, for all v ∈ Rn.



Convexity

A set C ⊂ Rn is convex if

∀x, y ∈ C, ∀t ∈ [0,1] one has tx+ (1− t)y ∈ C

– closed under intersection, not closed under union

– closed under Minkowski sum: C1 + C2 = {x+ y : x ∈ C1, y ∈ C2}

– A ⊂ V convex, and f : V →W linear, then f(A) is convex

– linear, affine subspaces, disks, segments, balls ... are convex

The smallest (for inclusion) convex set containing a set S is

called the convex hull of S and denoted by conv(S).



Separation

In convex geometry there are several results that yield “separa-

tion properties” for pairs of (convex) sets. The main question

is, given two (convex) sets S1, S2, can we “separate” them by

providing a (elementary) function f that is positive on S1 and

negative on S2 ?

For an affine hyperplane H0 = {x ∈ Rn : `(x) = a}, we denote by

H+
0 = {x ∈ Rn : `(x) > a} H−0 = {x ∈ Rn : `(x) < a}.

Isolation theorem. Let S ⊂ Rn be a non-empty convex set, and

let a 6∈ S. Then there is an affine hyperplane H0 ⊂ Rn which

contains a (H0 = a+H where H is a hyperspace) and such that

S belongs to H+
0 or H−0 .



Geometry of convex sets

We work with the Euclidean topology (a base is given by open

balls). The interior of a convex set is convex, which comes as a

corollary of the following

Theorem. Let S ⊂ Rn be convex, and u ∈ Int(S). Then for all

v ∈ S, and for all λ ∈ [0,1), one has (1− λ)u+ λv ∈ Int(S).

If a set S has empty interior, one can a priori find an affine

space that contains S and such that the “relative” interior is

non-empty.

Theorem. Let S ⊂ Rn be convex, and assume Int(S) = ∅. Then

there is a proper affine space L ⊂ Rn such that S ⊂ L.

The dimension of a (convex) set S is the dimension of its affine

hull, that is, the smallest affine space that contains it.



Cones

A set K ⊂ Rn is a (convex) cone if

a, b ∈ K and α, β ∈ R≥0 ⇒ αa+ βb ∈ K

The smallest cone containing S is called its conical hull and
denoted by cone(S). Interesting examples of cones :

the nonnegative orthant : Rn≥ = {x ∈ Rn : xi ≥ 0, ∀ i}

polyhedral cones : cone({v1, . . . , vs})

the second-order cone : L n = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t}



Dual cones

Let K ⊂ V be a convex cone in a R−vector space V . Let V ∨ be
the dual vector space of V (space of R−linear functionals on V ).

The dual cone of K is the set of those R−linear functionals that
take nonnegative values on K :

K∗ = {` ∈ V ∨ : `(x) ≥ 0, ∀x ∈ K} ⊂ V ∨

A cone K is self-dual whenever K = K∗ under isomorphism.



Faces

Let S ⊂ V be a convex set. A convex subset F ⊂ C is called a

face of C if for every x ∈ F and y, z ∈ C one has

if x ∈ (y, z) := {ty + (1− t)z : t ∈ (0,1)}, then y, z ∈ F.

A face is exposed if there exists an affine space L ⊂ V such that

F = S ∩ L. For C = Rn≥ (and polyhedral cones), S+
d and L n

every face is exposed.



Extreme points

Let C ⊂ Rn be a convex set. A point x ∈ C is called an extreme

point if the following holds

if x ∈ (y, z) := {ty + (1− t)z : t ∈ (0,1)}, then y = z = x.

Two crucial theorems :

Krein-Milman theorem. A compact convex set is the convex hull

of the set of its extreme points.

Theorem (Minima of linear functions). Let C ⊂ V be convex

and f : V → R be linear (f ∈ V ∨). Let c∗ = minC f(x), and let

F∗ = {x ∈ C : f(x) = c∗}. Let u ∈ F∗ an extreme point of F∗.
Then u is an extreme point of C.



Polyhedra

Polyhedra are the simplest example of convex sets after linear

spaces. In a nutshell, a polyhedron P ⊂ Rn is a finite intersection

of half spaces:

P = {x ∈ Rn : Ax ≤ b}

where A ∈ Rm×n, b ∈ Rm, and “Ax ≤ b” means that b−Ax ∈ Rm≥ .

This is a dual definition because it uses linear inequalities on Rn.

For m = 1 one gets hyperspaces (which are special cases of

polyhedra). More generally one has intersections of hyperspaces.

Polyhedra can be unbounded, but are convex and their faces are

exposed. Very interesting combinatorial objects (cf. the book

by Ziegler, out of scope of this course).



A polytope

If the polyhedron is compact (in which case it is also called a

polytope) there is a primal definition through convex hulls:

P = conv({a1, . . . , ak})

for fixed a1, . . . , ak ∈ Rn.

Representation theorem. A set P ⊂ Rn is a polyhedron if and

only if P = Q + C where Q ⊂ Rn is a polytope and C ⊂ Rn is a

polyhedral cone.



Example: Platonic solids



Vertices

The extreme points of polyhedra are called vertices. They are

characterized by the following theorem.

Theorem. Let P = {x ∈ Rn : 〈ai, x〉 ≤ bi, i = 1, . . . ,m} be a

polyhedron. For p ∈ P , let

I(p) = {i : 〈ai, p〉 = bi}

be the set of active constraints at p. Then p is a vertex if and

only if {ai : i ∈ I(p)} spans Rn.



Slack variables/1

Every polyhedron can be seen as a section of the nonnegative

orthant Rm≥ . This is done by adding what we call slack variables,

that is, additional variables that allow to write the polyhedron P

in a special form.

We have seen that

P = {x ∈ Rn : Ax ≤ b} = {x ∈ Rn : b−Ax ∈ Rm≥}.

Let s = (s1, . . . , sm) be new variables. Then one has

b−Ax ∈ Rm≥ ⇔ b−Ax = s and s ∈ Rm≥



Slack variables/2

Hence the original x variables are now free from conical con-

straints, but have to satisfy some linear equations, and the con-

ical constraint is pushed to variables s.

Geometrically this corresponds to lifting P to a second poly-

hedron P ∗ ⊂ Rn+m so that P is the image of P ∗ through the

projection on variables x:

P ∗ = {(x, s) ∈ Rn × Rm : b−Ax− s = 0, s ∈ Rm≥}

P = P ∗ ∩ Rn = {x ∈ Rn : ∃ s ∈ Rm : b−Ax− s = 0, s ∈ Rm≥}



Back to faces of polyhedra

For a system of inequalities Ax ≤ b, we say that A′x ≤ b′ is a

subsystem whenever A′ is obtaining from A by eliminating some

rows, and the same for b′ (corresponding rows).

Characterization of faces. Let P be a polyhedron defined by

Ax ≤ b, and F ⊂ P . Then F is a face of P if and only if one of

the following (equivalent) properties hold :

– there exists a subsystem A′x ≤ b′ of P such that

F = {x ∈ P : A′x = b′}

– there exists a vector c ∈ Rn for which F is the set of points

in P where maxP cTx is attained, that is

F = arg maxP cTx



Conic optimization (settings) /1

Let (V, V ∨) be a dual pair with a duality pairing 〈 · , · 〉V , namely

a non-degenerate bilinear map

〈 · , · 〉V : V ∨ × V → R

that formally acts as follows:

〈`, v〉V := `(v).

For V ≈ Rn ≈ V ∨ this is just the standard inner product
∑
i `ivi.

Let K ⊂ V be a convex cone in V , and let K∗ ⊂ V ∨ be its dual

cone, with respect to 〈 · , · 〉V , meaning that

K∗ = {c ∈ V : 〈c, x〉V ≥ 0, ∀x ∈ K}



Conic optimization (settings) /2

Let now W be a second real vector space.

Let A : V → W be a linear map to a vector space W , and let

〈 · , · 〉W a duality pairing for (W,W∨). Let A ∗ : W∨ → V ∨ be an

adjoint of A , that is an operator satisfying

〈A (x), y〉W = 〈x,A ∗(y)〉V for all x ∈ V , y ∈W∨.

This is unique when dimR(V ) <∞. For instance in LP, A (x) =

Ax (matrix-vector multiplication) and A ∗(y) = ATy.

In finite dimension, A is matrix-vector multiplication and A ∗ is

its adjoint (transpose for real v.s.).



Primal conic program

The primal conic program in standard form reads as follows:

p∗ := inf 〈c, x〉V
s.t. A (x) = b

x ∈ K

Recall that A is linear hence A (x) = (〈a1, x〉V , . . . , 〈am, x〉V ).

In other words, CP is the problem of minimizing a linear function

over affine sections of convex cones, in a given real v.s. V . Every

such problem can be written in the form above for a cone K.



Examples

Conic programming includes classical optimization problems :

– K = Rn≥ (non-negative orthant, linear programming)

– K = L n (Lorentz cone, second-order cone programming)

– K = S+
d (psd cone, semidefinite programming)

– Finite products : K =×iR
ni
≥ ××j L nj ××` S

+
d`

– The cone of nonnegative (multivariate) polynomials and the

cone of sum-of-squares (multivariate) polynomials



Lagrangian function

Define the Lagrangian function (y is a Lagrange multiplier) :

L (y) := infx∈K 〈c, x〉V + 〈b−A (x), y〉W
= 〈b, y〉W + infx∈K 〈c, x〉V − 〈A (x), y〉W
= 〈b, y〉W + infx∈K 〈c−A ∗(y), x〉V

Denote s := c − A ∗(y), so that L (y) = 〈b, y〉W + infx∈K 〈s, x〉V .

Remark that :

If s ∈ K∗ then the above inf is equal to 0, whereas

if s 6∈ K∗, then the above inf is equal to −∞.



Lagrangian dual conic program

The Lagrangian dual problem asks to maximize the Lagrangian

function over its domain :

d∗ := sup 〈b, y〉W
s.t. c−A ∗(y) = s

s ∈ K∗

The dual variables are (y, s) – we use s as a slack variable in order

to have linear (c − A ∗(y) = s) and conical constraints (s ∈ K∗)
so that the dual of a conic program is still a conic program.



Feasibility and attainability

The following sets can be defined from primal input data :

P := {x ∈ V : x ∈ K and A (x) = b} is the primal feasible set

D :=
{
y ∈W∨ : c−A ∗(y) ∈ K∗

}
is the dual feasible set

Let L = {x ∈ V : A (x) = b} (so that P = K ∩ L) and suppose

that Int(K) 6= ∅. We say the primal conic program is feasible if

K ∩ L 6= ∅ and in particular

strongly feasible if Int(K) ∩ L 6= ∅

weakly feasible if feasible but Int(K) ∩ L = ∅

We say it is infeasible if K ∩ L = ∅ and in particular

strongly infeasible if d(K, L) > 0

weakly infeasible if infeasible but d(K, L) = 0

We say the infimum is attained if ∃x ∈ P s.t. p∗ = 〈c, x〉V



Weak and strong duality

Suppose that P 6= ∅ and D 6= ∅ (primal and dual feasibility), and

let x ∈ P and y ∈ D. We know that s = c − A ∗(y) ∈ K∗, hence

〈s, x〉V ≥ 0. Hence one gets

〈c, x〉V = 〈A ∗(y) + s, x〉V = 〈y,A (x)〉W + 〈s, x〉V = 〈y, b〉W + 〈s, x〉V ≥ 〈y, b〉W

which implies that the following weak duality always holds :

p∗ = inf
x∈P
〈c, x〉V ≥ sup

y∈D
〈y, b〉W = d∗

Conclusion : the dual optimal value d∗ gives the best lower bound

for the primal optimal value, and viceversa p∗ gives the best upper

bound for d∗.

We say that strong duality holds whenever p∗ = d∗.



Example : absence of strong duality

In LP strong duality always holds, but this is false in general

conic programs, as shown by this example.

Let K = L 2 × R≥. One has K = K∗, as product of self-dual

cones. Consider the primal-dual conic program

p∗ = inf −x1 : x1 + x4 = 1, x2 + x3 = 0, x ∈ K

d∗ = sup y1 : y1+s1 = −1, y2+s2 = y2+s3 = y1+s4 = 0, s ∈ K∗

Remark that p∗ = 0 since for (x, y, z, w) ∈ K : x2
1 ≤ x

2
3− x

2
2 = 0,

and (0,0,0,1) is an optimal primal solution. The dual can be

rewritten equivalently

d∗ = sup y1 : −(1 + y1, y2, y2, y1) ∈ K∗

and since K = K∗ one gets (1 + y1)2 ≤ y2
2 − y

2
2 = 0 hence

d∗ = −1



Sufficient conditions for strong duality

Theorem (Slater’s condition)

� If the primal program is strongly feasible and the dual is

feasible, then p∗ = d∗ and the dual supremum is attained.

� If the dual program is strongly feasible and the primal is

feasible, then p∗ = d∗ and the primal infimum is attained.

In the example above, the primal and dual feasible sets do not

contain interior points of the primal and dual cones, hence Slater’s

condition does not hold and strong duality cannot be guaranteed

(indeed, it fails).



PART II

Linear programming, simplex and interior-point methods



Goals of this part/week

• Give a precise description of LP, and of its duality

• Simplex method: construction

• Interior-point algorithms, barrier functions, central path...



The primal linear program

A linear program is the minimization of a linear function over

linear inequalities in Rn : for c ∈ Rn, b ∈ Rm, A ∈ Rm×n solve

p∗ := inf cTx := c1x1 + · · ·+ cnxn
s.t. Ax = b (or equiv. Ax ≤ b)

xi ≥ 0 i = 1, . . . , n

Remark that A defines a linear map Rn → Rm, and that the last

constraint can be cast as x ∈ Rn≥0 , the nonnegative orthant.



The dual linear program

The Lagrangian dual of a linear program (as for the general conic

program) reads as follows:

d∗ := sup bTy := b1y1 + · · ·+ bmym
s.t. c−ATy = s (slack vars)

si ≥ 0 i = 1, . . . ,m

Now the linear map is the transpose AT : (Rm)∨ → (Rn)∨, and

the constraint on the slack variables can be cast as

s ∈ (Rn≥0)∗ ≈ Rn≥0.



Image from Schrijver’s book “Theory of LP and IP”



Farkas lemma

A powerful result, a theorem of the alternative for polyhedra:

either a system of linear inequalities is feasible, or a second one

is feasible and certifies the infeasibility of the first one.

Theorem (Farkas, Minkowski). Let b ∈ Rm and A ∈ Rm×n. One

of the two following systems is feasible

� There exists x ∈ Rn such that Ax = b and x ∈ Rn≥

� There exists y ∈ Rm such that ATy ∈ Rn≥ and yT b < 0

Its natural generalization to CP (already in SDP) is false.

By the way there exist versions for the general conic program.



Absence of weak infeasibility

Theorem. An infeasible LP Ax = b, x ≥ 0 is strongly infeasible.

proof. This essentially comes from Farkas lemma. Let C = cone(A(1), . . . , A(n))

is the (polyhedral) cone generated by the columns A(1), . . . , A(n) of A. Then

if the program Ax = b, x ≥ 0 is infeasible, it means that b 6∈ C. By Farkas

lemma, there is a vector y such that ATy ≥ 0 and yT b < 0. The first condition

means that pTy ≥ 0 for all p ∈ C (since C is generated by the columns of A)

and the second condition implies hence that b is strongly separated from C.



Strong duality in LP

As for every conic program, weak duality holds and implies that

if the primal and dual programs are feasible, p∗ ≥ d∗.

It happens that LP is a “regular” conic program in the sense

that strong duality always holds (with feasibility assumption).

Theorem (Strong duality). Let c ∈ Rn, b ∈ Rm and A ∈ Rm×n.

Then strong duality holds for the corresponding LP, that is

d∗ = sup{bTy : ATy ≤ c} = inf{cTx : x ≥ 0, Ax = b} = p∗

provided both sets are feasible.



Equivalent formulations of LP

One can represent linear programs in different settings, essen-

tially varying equalities and inequalities, and membership to non-

negative orthant.

In particular the following systems are admissible formats for a

(dual) linear program:

sup bTy subject to ATy ≤ c

sup bTy subject to ATy ≤ c, y ≥ 0

sup bTy subject to ATy = c, y ≥ 0

sup bTy subject to ATy ≥ c

sup bTy subject to ATy ≥ c, y ≥ 0

sup bTy subject to ATy ≥ c, y ≥ 0



Complementary slackness

Important duality property for linear programs.

Recall that strong duality holds:

p∗ = inf
Ax=b,x≥0

cTx = sup
ATy≤c

bTy = d∗.

The following are equivalent for two feasible points x0, y0:

(i) x0 and y0 are solutions to the primal-dual LP

(ii) cTx0 = bTy0

(iii) complementary slackness for each component of x0, either

it is 0 or the corresponding inequality in ATy ≤ c is 0, that is

xT0 (c−ATy0) = 0



Switching format of a LP

Often it can be useful to change format for a LP.

1. From inequalities to equalities:

a1x1 + a2x2 ≤ b⇔ a1(x11 − x12) + a2(x21 − x22) ≤ b
with x11, x12, x21, x22 ≥ 0

⇔ a1x1 + a2x2 ≤ b
⇔ a1(x11 − x12) + a2(x21 − x22) + s = b

with x11, x12, x21, x22, s ≥ 0

2. From equalities to inequalities:

Ax = b, x ≥ 0⇔ Ax ≤ b,−Ax ≤ −b,−x ≥ 0

⇔ [A | −A| − I]x ≤ [b| − b|0].



[from Matousek’s book]



Geometry of polyhedra

Recall these basic facts:

Every face of a polyhedron is the optimal face of some LP

Extreme pts of faces are extr. pts of the whole polyhedron

Extreme points of polyhedra are exactly the vertices

Vertices are defined by maximal subsystems A′x ≤ b′ of Ax ≤ b
(A′ is an invertible submatrix of A).



The simplex method

We are going to give a simple description of the simplex method,

which consists of drawing a path over the polyhedron, starting

from a given vertex, and along the edges (1-dimensional faces):

Suppose our goal is to solve the (dual) linear program

d∗ = max{bTy : ATy ≤ c}

where the feasible set is the polyhedron P = {y ∈ Rm : ATy ≤ c}.
Assume that a vertex y0 ∈ P is known.



The simplex method (continued)

1. Let AT0y ≤ c0 be a subsystem of ATy ≤ c, such that

AT0y0 = c0 and AT0 is non-singular

2. Compute u ∈ Rn such that Au = b and u is 0 at components

not corresponding to the rows selected by AT0 . So one computes

(A−1
0 )b and adds 0s on the rest of the components to get u ∈ Rn.

3. If u ≥ 0, we are done. Indeed, this means that y0 is optimal:

d∗ ≥ bTy0 = uTATy0 = uT c ≥ min
Ax=b,x≥0

cTx = p∗≥ d∗ -

If u is not primal feasible (/), there is some work to do.

Here comes the core part of the simplex method: we are going to trace a path

on the boundary, along edges, and improve (increase) the objective value.





The simplex method (continued)

4. Let i be the smallest component for which ui < 0. Let x ∈ Rm

be such that aTx = 0 for all rows a of AT0 except the i-th, that

satisfies aT
i
x = −1. [that is, x is the i-th column of −(AT0 )−1]

Remark that the half-line {y0 + λx : λ ≥ 0} either traverses an

edge of P , or it is outside P for all λ ≥ 0. Moreover bTx =

uTATx = −ui > 0.

5a. If aTx ≤ 0 for each row a of AT , then

AT (y0 + λx) = ATy0 + λATx ≤ ATy0 ≤ c, for all λ ≥ 0

that is, y0+λx ∈ P for all λ. Thus bT (y0+λx) = bTy0−λui 7→ +∞
for λ 7→ +∞, hence the max is unbounded. We are done -



The simplex method (continued)

5b. Otherwise, aTx > 0 for some row a of AT . Now we compute

the largest λ (call it λ0) such that y0 + λx ∈ P , which is

λ0 = min
j,aTj x>0

bj − aTj y0

aTj x
.

Let j be the smallest index j attaining the minimum above, and

let y1 = y0+λ0x (the new vertex). Let AT1 be the matrix obtained

from AT0 replacing ai by aj.

Now start again the process (go to point 1) with AT1 and y1.



An example

Problem: we aim at maximizing the function y1 + y2 (that is,

b = (1,1)) over the following square (pictured below)

P = conv((0,0), (1,0), (0,1), (1,1)) ⊂ R2



An example /2

The cube is defined by the dual inequalities: ATy ≤ c, where

A =

[
−1 0 1 0
0 −1 0 1

]
and cT = [0 0 1 1]

1. We start with the vertex (0,0), defined by AT0y = c0 with

A0 =

[
−1 0
0 −1

]
and cT0 = [0 0]

2. Next we look for u = (u1, u2,0,0) ∈ R4 such that Au = (1,1).

This yields u = (−1,−1,0,0). We expected this result, since

(0,0) is not optimal, and indeed u is not ≥ 0 (actually, it is

the worst vertex, indeed all non-zero components are negative).

Hence we go to Step 4.



An example /3

4. Here i = 1. We get that x ∈ R2 must satisfy x2 = 0 and

x1 = 1, hence x = (1,0) : this is the direction where the simplex

method is moving to, that is, it is going east !

5. We get that y0 + λx = (λ,0) and the maximum λ for which

this is still in P is λ0 = 1, yielding the new vertex y1 = (1,0).

One then iterates, using this y1 and its defining subsystem:

AT1 =

[
0 −1
1 0

]
, c1 = (0,1)



Complexity of the simplex method

The simplex method, as many algorithms in mathematics, suffers

of the following paradox:

Practice. It works WELL in almost every instance (in prac-

tice, in a linear number of steps). By the way such efficiency

depends on the pivoting rule (Step 4). [What we used is Bland’s

pivoting rule, which is not the most efficient, but prevents from cycling,

that is, to visit the same vertex more times]

Theory. It is NOT polynomial-time, at least for some choice

of pivoting rule (see example of Klee-Minty, next slide). It

is average polynomial-time, within a certain (natural) prob-

abilistic setting, and through the pivoting rule called Schat-

teneckenalgorithmus.



Klee-Minty cube

Example of a LP for which the simplex method reaches its worst

behaviour (exponential number of visits to vertices before opti-

mality, with Bland’s pivoting rule).

For n ∈ N, the simplex method applied to the following linear

program performs exponentially many visits before optimality

d∗ := max 2n−1x1 + 2n−2x2 + · · ·+ 2xn−1 + xn
s.t. x1 ≤ 5

4x1 + x2 ≤ 25
8x1 + 4x2 + x3 ≤ 125
...
2nx1 + 2n−1x2 + · · ·+ 4xn−1 + xn ≤ 5n

x1, x2, . . . , xn ≥ 0

[The simplex method (with Bland’s pivoting rule) is not polynomial time]



The Klee-Minty cube (from Matousek)



Ellipsoid method

Invented by Shor, Nemirovski, Yudin (1970’s).

First polynomial time for LP (Khachyian, 1979).

Not interesting in practice, since less efficient than simplex.



Interior point methods

We now introduce a third class of algorithms that can solve linear

programming problems: interior-point methods.

Contrarily to ellipsoid (outer approximations) and simplex (bound-

ary path), IPM work in the interior of the feasible set.

Developed since the 50’s for nonlinear optimization.



Logarithmic barrier function for LP

We consider the LP minP cTx with P = {x ∈ Rn : Ax ≤ b}.

Remark that the polynomial p(x) =
∏
i(bi− aTi x) vanishes on the

boundary of P , and is strictly positive on the interior.

The function log p(x) is called a logarithmic barrier, and

fµ(x) = cTx+ µ log p(x) = cTx+ µ
∑
i

log (bi − aTi x)

has the following properties:

for µ > 0, fµ(x)→ −∞ whenever x→ ∂P (boundary of P )

fµ(x) is concave in int(P ) (the interior of P )

for µ > 0, P bounded, fµ(x) has a unique max in int(P )



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 100



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 100



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 10



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 1



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 0.8



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 0.5



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 0.2



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 0.1



Logarithmic barrier for the unit square

cTx = x1 + x2 µ = 0.05



Central path for LP

The curve {x∗(µ) ∈ Rn : µ > 0} parametrized by µ is called the

central path. It is an algebraic curve (zero set of some polynomial

equations).

The interior-point method (generally speaking, since there are

many variants, here we stress on the path-following IPM) then

consists of starting with a strictly feasible point x∗(µ) with µ� 0,

and follow the path.

Actually, what one does in practice is to numerically trace the

path using Newton approximation or similar numerical methods.



PART III

The geometry of the psd cone and introduction to SDP



Positive semidefinite matrices

X ∈ Sd is positive semidefinite (psd), resp. definite (pd), if:

v 7→ vTXv is globally nonnegative, (positive) v ∈ Rd (\{0})

The following conditions are equivalent (resp. blue ones) :

1. X is psd (resp. pd)

2. The eigenvalues of X are nonnegative (resp. positive)

3. X = LLT for some full-rank L ∈ Rd×r (resp. L ∈ Rd×d)

4. The (leading) principal minors of X are ≥ 0 (resp. > 0)

The positive semidefiniteness induces the Löwner order on Sd:

X � Y if and only if X − Y is psd



Useful properties of (psd) symmetric matrices

• Spectral dec. for X ∈ Sd : X = QTΛQ =
∑
i λi(X)qiq

T
i

• for X � 0 and v ∈ Rn : vTXv = 0 if and only if v ∈ kerX

• S invertible : X � 0 (� 0) if and only if STXS � 0 (� 0)

• (Schur complement) Let A � 0, and C ∈ Se. Then

[
A B

BT C

]
� 0 (resp. � 0) iff C −BTA−1B � 0 (resp. � 0)



A metric on Sd

The (Euclidean) inner product on Sd is given by

X,Y ∈ Sd : 〈X,Y 〉Sd := Trace(XY )

where Trace(XY ) =
∑
XijYij is the usual trace function on XY .

Remarkable properties :

( · , · ) 7→ 〈 · , · 〉Sd is indeed an inner product on Sd

If X � 0, Y � 0 then 〈X,Y 〉Sd ≥ 0

(stronger) : If X � 0 then : Y � 0 if and only if 〈X,Y 〉Sd ≥ 0

If U is orthogonal then
〈
U−1XU,U−1Y U

〉
Sd

= 〈X,Y 〉Sd

Quadratic forms : v 7→ vTXv =
〈
X, vvT

〉
Sd



Semialgebraic sets

A basic semialgebraic set is a set S ⊂ Rn defined by (multivariate)

polynomial inequalities:

S = {x ∈ Rn : f1(x) ≥ 0, . . . , fs(x) ≥ 0}

Examples: linear spaces, circles, algebraic curves, polyhedra . . .

Being psd is a semialgebraic condition on Sd, that is S+
d is a

(basic) semialgebraic set. Ex (d = 3): X = (xij)i,j≤3 is psd iff

detX ≥ 0 (minors of order 3)

x11x22 − x2
12 ≥ 0

x11x33 − x2
13 ≥ 0

x22x33 − x2
23 ≥ 0

(minors of order 2)

x11 ≥ 0, x22 ≥ 0, x33 ≥ 0 (minors of order 1)



The psd cone

The set S+
d = {X ∈ Sd : X � 0} , called the psd cone, satisfies

the following properties:

It is a convex cone, with non-empty (Euclidean) interior

It is a basic semialgebraic set, it induces the Löwner order

Every face of S+
d is isomorphic to some S+

e , with e ≤ d

Here’s the picture of S+
2 as a subset of R3 ≈ S2:



A 3-dim affine section of S+
3

K = S+
3 has dimension 6 (full-dimensional in S+

3 ≈ R6), and
taking the following section one gets the figure below

E3 =


 xy
z

 ∈ R3 : A =

 1 x y
x 1 z
y z 1

 � 0

 ≈
⊂ K

E3 {(x, y, z) ∈ R3 : det(A) = 0}



Faces of the psd cone

We want to characterize the faces of the psd cone S+
d .

Remark that for all M ∈ S+
d , there is a unique minimal face of

S+
d containing M (take the intersection of all faces containing

M), call it FM .

Theorem. For all M ∈ S+
d , then:

• M belongs to the relative interior of FM

• FM = LM ∩ S
+
d , where LM = {U ∈ Sd : ker(M) ⊂ ker(U)}



The psd cone is self-dual /1

As for LP, the cone for SDP is self-dual, which will imply that

one can exploit duality for designing efficient methods.

Theorem. (S+
d )∗ = S+

d .

proof. First, let us identify S∨d with Sd, which is possible since Sd has finite
dimension (what is this dimension?).

First, we claim that S+
d is generated by rank-one psd matrices, that is S+

d =
cone({vvT : v ∈ Rd}): indeed, this comes from the spectral decomposition
X = QTΛQ =

∑
i λi(X)qiqTi , and by the fact that λi(X) ≥ 0.

Recall that Trace(ABC) = Trace(BCA). For all X ∈ S+
d and v ∈ Rd, one has〈

X, vvT
〉
Sd

= Trace(XvvT) = Trace(vTXv) = vTXv ≥ 0



The psd cone is self-dual /2

This implies that if Y =
∑

j vjv
T
j ∈ S

+
d , one has 〈X,Y 〉Sd =

∑
j

〈
X, vjvTj

〉
Sd
≥ 0,

and hence that S+
d ⊂ (S+

d )∗.

To prove that (S+
d )∗ ⊂ S+

d , the idea is the same. Indeed, if Y ∈ (S+
d )∗, then

by definition the scalar product 〈X,Y 〉Sd is nonnegative, for all X ∈ S+
d .

In particular, for every v ∈ Rd

0 ≤
〈
vvT , Y

〉
Sd

= vTY v

which proves that Y ∈ S+
d . We conclude the equality (S+

d )∗ = S+
d .



LP as optimization over diagonal matrices

Consider the natural diagonal embedding of Rd into the space of

symmetric matrices

diag : Rd → Sd, diag(x1, . . . , xd) =

 x1
. . .

xd


Remark that x ∈ Rd≥ if and only if diag(x) ∈ S+

d and that the

standard primal LP reads as follows

p∗ := inf 〈c, x〉
s.t. Ax = b

diag(x) ∈ S+
d

How about optimizing over the whole psd cone, instead of just

the diagonal embedding of the nonnegative orthant ?

This is the idea behind the definition of SDP.



The primal SDP ...

Let A1, . . . , An ∈ Sd, and define the linear map

A : Sd → Rn

X 7→
(
〈A1, X〉Sd , . . . , 〈An, X〉Sd

)
where we stress on the index 〉Sd for the trace inner product on

Sd. The primal SDP in standard form reads as follows:

p∗ := inf 〈C,X〉Sd
s.t. A (X) = b

X � 0

In other words, SDP is the problem of minimizing a linear func-

tion on Sd, subject to affine-linear constraints (A (X) = b) and

conical contraints given by the membership to the psd cone S+
d .



... and its Lagrangian dual

Remark that for the previous linear operator A one has

〈A (X), y〉Rn =
∑
i yi 〈Ai, X〉Sd = 〈X,

∑
i yiAi〉Sd ∀X ∈ Sd, y ∈ Rn

which gives the (unique) adjoint map A ∗(y) =
∑
iAiyi.

The Lagrangian conic dual of a semidefinite program is hence

the semidefinite program

d∗ := sup 〈b, y〉Rn
s.t. C −

∑
iAiyi = S

S � 0

As above, the symmetric matrix S plays the role of a slack matrix,

allowing us to separate the affine and the semidefinite (dual)

constraints.



Spectrahedra and Linear matrix inequalities (LMI)

Both the primal and the dual feasible sets of a semidefinite pro-

gram are called spectrahedra, that is a set defined by a linear

matrix inequality :

SM = {x ∈ Rs : M(x) := M0 +M1x1 + · · ·+Msxs � 0}

The name comes from the fact that a spectrahedron is a polyhedron

in the space of eigenvalues, that is the spectrum, of a real sym-

metric matrix.

The matrix M(x) = M0 + M1x1 + · · · + Msxs is called a linear

matrix, it defines the affine space

L = M0 + 〈M1, . . . ,Ms〉R ⊂ Sd



Properties and examples

Let M be a linear matrix and SM it associated spectrahedron:

SM is a basic closed semialgebraic set

It is a convex set, as pre-image of S+
d under M : Rs → Sd

It is non-polyhedral in general, but its faces are exposed

Examples :

The n−dim disk: {x ∈ Rn : ‖x‖ ≤ 1} = SM with M =

[
In x

xT 1

]
The SOS cone Σn,2d is a (projection of a) spectrahedron, while

its dual cone Σ∗n,2d is a spectrahedron.



Degenerate SDP /1

If A and B are two linear matrices, we denote by A⊕B the block-

diagonal matrix with blocks A,B. Then it is easy to see∗ that

SA⊕B = SA ∩ SB.

Using this fact, one can cook up examples of spectrahedra SM
which are “doubly exponentially far from the origin”, that is,

such that every point in SM has exponential size with respect to

input size:

Mn =

[
1 2
2 x1

]
⊕
[

1 x1
x1 x2

]
⊕
[

1 x2
x2 x3

]
⊕ · · · ⊕

[
1 xn−1

xn−1 xn

]

Remark that SMn is not contained in a ball of radius 22n.

∗Check it by exercise.



Degenerate SDP /2

Irrational solutions : there are examples of spectrahedra SM de-
fined with rational matrices, such that every point in SM is irra-
tional, for instance∗:{√

2
}

=

{
x ∈ R :

[
1 x
x 2

]
⊕
[
x 2
2 2x

]
� 0

}
Recall that this is not the case for polyhedra (LP) : indeed, if a
polyhedron P ⊂ Rn is defined over Q (with facet inequalities with
rational coefficients), then every vertex of P is in Qn.

The same for a 2× 2 LMI in the following SDP:

√
2 = inf x s.t.

[
1 x
x 2

]
� 0.

∗Indeed, in this case remark that the first LMI

[
1 x
x 2

]
� 0 implies that x2 ≤ 2,

and the second

[
x 2
2 2x

]
� 0 imples that x2 ≥ 2.



Optimality

One has the following general result that ensure strong duality:

Theorem. Suppose that both the primal and the dual semidefi-

nite programs are strongly feasible (existence of primal and dual

feasible positive definite matrices). Then strong duality holds,

there exists a pair of primal-dual optimal solutions (X,S) satis-

fying the following system

X � 0 S � 0 A (X) = b X S = 0

Moreover, both X and S are singular matrices, their ranks satisfy

the relation rank(X) + rank(S) ≤ d (weak complementarity), and

for general data rank(X) + rank(S) = d (strong complem.).



Pataki inequalities

As we have seen, the solution to a SDP is a singular (psd) matrix.

Can we bound its rank?

Pataki inequalities. Under the assumption that strong comple-

mentarity holds for a pair of primal-dual semidefinite programs,

that is rank(S) = r and rank(X) = d− r for some 0 ≤ r ≤ d, then

the following inequalities hold

(d− r + 1

2

)
≤ n and

(r + 1

2

)
+ n ≤

(d+ 1

2

)



A statistical analysis of the optimal rank

courtesy of J. Nie, K. Ranestad, B. Sturmfels “The algebraic de-

gree of Semidefinite Programming”, Math. Prog. 122(2):379–

405 (2010)



PART IV

Applications of SDP and interior-point method



On the power of semidefinite programming

SDP has become a central problem in math. programming:

• It can model a large class of problems, that is, many problems

can be cast directly or indirectly (relaxations) as SDP.

• Applications exist in combinatorial optimization, control the-

ory, mathematical engineering...

• One word about the “complexity”: interior-point algorithms

can solve SDP in polynomial time in finite precision. On the

other hand, the complexity status of SDP is fairly unknown

in Turing or other exact models of computation.



LP and SOCP are SDP

We have already seen that LP is a special case of SDP, indeed
we can re-write it as

p∗ := inf 〈C,X〉Sd
s.t. 〈Ai, X〉Sd = bi, Ai = diag(ai)

C = diag(c), X = diag(x)
X � 0

where ai is the i−th row of the matrix A in the standard LP.

The same holds for the general second-order cone program (SOCP).
Indeed the Lorentz cone L n = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t} is a spec-
trahedron admitting the following LMI representation :

L n =

{
(x, t) ∈ Rn+1 :

[
tIn x

xT t

]
� 0

}

hence the cone constraint (x, t) ∈ L n becomes

[
tIn x

xT t

]
∈ S+

n+1.



QCQP is SDP

A (convex) quadratic programming problem of the form

f∗ := inf f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

where fi(x) = (Aix+ b)T (Aix+ b)− cTi x− di, can be cast directly

as a semidefinite program :

f∗ := inf θ

s.t.

[
I A0x+ bO

(A0x+ bO)T cT0x+ d0 + θ

]
� 0[

I Aix+ bi
(Aix+ bi)

T cTi x+ di

]
� 0, i = 1, . . . ,m

By the way, from an algorithmic viewpoint, one prefers to cast

a convex QCQP as a second-order cone program.



Eigenvalues optimization is SDP

Let A be a symmetric matrix and let λ1 ≤ · · · ≤ λd be its eigenval-

ues. Recall the following well-known inequality in linear algebra

vTAv ≤ λd ‖v‖2 for all v ∈ Rd

This implies for instance that λdI − A is positive semidefinite,

and more precisely the following semidefinite characterization:

λd := inf θ
s.t. θId −A � 0

Remark that one can also solve the same problem for a symmetric

linear matrix M(x) = M0 +
∑
i xiMi, in which case one minimizes

the max.eig. in the affine space L = M0 + 〈M1, . . . ,Ms〉R.

Similarly the sum of the k largest eigenvalues of M(x) is mini-

mized by

p∗ := inf kθ + 〈Id, X〉Sd
s.t. θId +X −M(x) � 0

X � 0



Spectral norm minimization is SDP

The spectral norm of a (possibly rectangular) real matrix M is

the maximum singular value of M , that is the (square root of

the) maximum eigenvalue of the real symmetric matrix MTM .

Let M(x) = M0+
∑
i xiMi be a (possibly rectangular) linear matrix

describing the affine space L = M0 + 〈M1, . . . ,Ms〉R ⊂ Rp×q.

Then the minimum spectral norm of a matrix in the affine space

L can be computed via the following semidefinite program

p∗ := inf θ

s.t.

[
θIp M(x)

M(x)T θIq

]
� 0

of size p+ q in s+ 1 variables.



Lyapunov stability is a LMI/SDP

The linear dynamical system ẋ = Ax for a given real matrix

A, is (exponentially) stable whenever the eigenvalues of A have

negative real part.

This is equivalent to the existence of a quadratic Lyapunov func-

tion that is a state function V (x) = xTPx such that its matrix P

satisfies

P � 0 ATP + PA � 0

which is equivalent to the strong feasibility of a SDP.

More generally one can use LMI to model the design of state-

feedback controllers minimizing the norm of input-output trans-

fer functions.



A general relaxation scheme for quadratic programs

Consider (with Ai ∈ Sd) the quadratic optimization problem

f∗ := inf xTA0x+ bT0x+ c0
s.t. xTAix+ bTi x+ ci ≤ 0, i = 1, . . . ,m

Remark that xTAix = Trace(xTAix) = Trace(Aixx
T ) =

〈
Ai, xx

T
〉
Sd

and that xxT is a rank-one psd matrix. One gets

f∗ = inf 〈A0, X〉Sd + bT0x+ c0
s.t. 〈Ai, X〉Sd + bTi x+ ci ≤ 0, i = 1, . . . ,m

X = xxT

and hence that the original problem can be relaxed by dropping
the rank constraint, obtaining

f∗ ≥ inf 〈A0, X〉Sd + bT0x+ c0
s.t. 〈Ai, X〉Sd + bTi x+ ci ≤ 0, i = 1, . . . ,m[

X x

xT 1

]
� 0

(Remark that the LMI constraint is equivalent to X � xxT ).



Relaxation for boolean optimization

A boolean or (0,1)-quadratic program is the opt. problem

f∗ := inf xTAx+ bTx

s.t. x2
i = 1, i = 1, . . . , d

whose feasible set is the set of vertices of the hypercube in Rd.

It can be relaxed as a semidefinite program by simply remarking

that if x is feasible, then the diagonal elements of X = xxT are

all equal to one (and, still, X has rank one and is psd).

The following is a semidefinite relaxation of the above boolean

program

f∗ ≥ inf 〈A,X〉Sd + bTx

s.t. Xii = 1, i = 1, . . . , d[
X x

xT 1

]
� 0



MAXCUT and its semidefinite relaxation

Let G = (V,E) be an undirected graph on a set of vertices
V = {v1, . . . , vn}, with edges E. A cut on G is a subset S ⊂ V .
A maximum cut is a cut that maximises the number of crossing
edges (edges linking an element of S and another outside it).
The MAXCUT and its generalizations are NP-complete.

A maximum cut on the Petersen graph

[courtesy of de Klerk “Aspects of semidefinite programming”]



MAXCUT and its semidefinite relaxation

Say xi = 1 if the vi ∈ S, −1 otherwise. Then 1 − xixj = 2 if

(vi, vj) is a crossing edge and = 0 otherwise and

MAXCUT := argsupS⊂V
∑

(vi,vj)∈E

1

2

(
1− xixj

)
, xi = ±1

Its semidefinite relaxation reads as follows

f∗ = sup
∑
i,j

1
2

(
1− Sij

)
s.t. Sii = 1, i = 1, . . . , d

S � 0

where the rank-constrained condition S = xxT has been relaxed

as above to S � xxT . Goemans/Williamson proved that such a

relaxation gives an 87% approximation of the original solution,

in average.



Lovász theta-function /1

One of the most celebrated (as MAXCUT) examples in combina-

torics is the computation of the Lovász θ-function (from Lászláo

Lovász) of a graph G = (V,E).

We denote by:

χ(G) the chromatic number of G, that is, the minimum num-

ber of colours needed to colour the vertices, no two adjacent

of the same one.

ω(G) the clique number of G, that is, the size of a maximum

clique (= subgraph whose vertices are 2-by-2 adjacent).



Lovász theta-function /2

Let e = (1,1, . . . ,1) ∈ Rn and let X be a generic symmetric

matrix. The Lovász θ-function of an undirected graph G = (V,E)

is defined as the maximum value of the following SDP:

θ(G) = sup Trace(eeTX) = eTXe
s.t. xij = 0 for all (i, j) 6∈ E

Trace(X) = 1
X � 0.

It satisfies the following inequalities:

ω(G) ≤ θ(G) ≤ χ(G)

where G is the complement of G (graph with same vertices and

complement edges). Hence it is used to lowerbound χ(G) and

to upperbound ω(G) in polynomial time.



Semidefinite relaxation of polynomial optimization

Let f ∈ R[x1, . . . , xn], and let the global optimization problem be

f∗ = inf f(x) = sup λ
s.t. x ∈ Rn s.t. f − λ ∈ P(Rn)

where P(Rn) is the cone of polynomials nonnegative on Rn.

A classical relaxation of this problem is to consider the subcone
of P(Rn) consisting of sums-of-squares polynomials

Σn,2d =

f ∈ R[x1, . . . , xn] : f =
∑
i

f2
i


which gives a lower bound. By the way such lower bound can
be computed through SDP (whereas the computation of f∗ is
NP-hard in general) :

fsos = sup λ = sup λ

s.t. f − λ ∈ Σn,2d s.t. f − λ = vTXv

X � 0



Interior-point methods in SDP

Interior-point methods for LP have been successfully extended

to the case of SDP:

• Alizadeh’s PhD thesis (1991)

• Nesterov and Nemirovski (1990-1994), developed the general

theory of interior-point algorithms for conic programming

IPM for SDP are based on the logarithmic barrier function:

F (X) = − log detX

defined for non-singular X ∈ Sd.



Central path

The central path can be defined in SDP as the set of solutions

(Xµ, Sµ, yµ), depending on a parameter µ > 0, of the following

system of equations and inequalities:

A (X) = b
A ∗(y) + S = C

XS = µ Idm
X � 0
S � 0.

Theorem. If the primal and the dual semidefinite programs are

strongly feasible, then the central path exists and it is an analytic

curve.



Limit of the central path

Under the assumption of strict complementarity (there are solu-

tions X∗ and S∗ with X∗S∗ = 0 and having complementary rank)

the limit of the central path for µ→ 0+ is a feasible solution.

Lemma. For µ > 0, the set {(Xµ, Sµ) : 0 < µ ≤ µ} is contained

in a compact subset of P ×D (cart. product of primal and dual

sets).

This implies that the limit of the central curve

(X0, S0) = lim
µ→0+

(Xµ, Sµ)

is a (primal-dual) feasible solution. Under some assumptions it

coincides with the analytic center of the optimal face, in which

case it can be computed by maximising the determinant over

suitable sections of the primal or dual feasible set.



Complexity of SDP / finite precision

For the problem d∗ = max{bTy : y ∈ SA}, where Ai ∈ Sd, and
SA = {y ∈ Rn : A(y) := C − y1A1 − · · · − ynAn � 0}, we denote by
L the total input bit-size and

S(A, ε) = SA +B(0, ε) and S(A,−ε) = {y : B(y, ε) ⊂ SA}

• If R > 0 is known such that either SA = ∅ or SA∩B(0, R) 6= ∅,
then there is an algorithm that, for any ε > 0 decides that
S(A,−ε) = ∅ or computes y ∈ S(A, ε) satisfying

bTz ≤ bty + ε, for all z ∈ S(A,−ε).

Its bit complexity is polynomial in d, n, L and log(1
ε).

• There are algorithms that given y such that A(y) � 0, and
R as above, compute z such that A(z) � 0 and cTz ≥ d∗ − ε.
Its arithmetic complexity is polynomial in d, n, L, log(1

ε) and
log(R). No good bounds for intermediate bit size.



Complexity of SDP / exact models

If one is interested in the theoretical complexity of computing

the exact solution of a SDP, it is worth to say that it is an open

problem generally speaking. More precisely:

• In the bit model (Turing), SDP or its feasibility is not known

to be in NP.

• In general, it is known to be in NP if and only if it is in coNP.

• In the real numbers model (Blum, Shub, Smale) it is in NP

and in coNP.


