
FBComplex

Complex number library for FreeBasic

Jean Debord

January 18, 2012

Welcome to FBComplex. This library allows to handle complex numbers
and functions in FreeBASIC. It is based on the Delphi library Complex-
Math by E. F. Glynn (http://www.efg2.com/Lab/Mathematics/Complex/
index.html).

1 Installation and compilation

1.1 Windows installation

The archive contains a precompiled library libfbcomplex.a for Windows.
This file should be placed in the lib\win32 subdirectory of the FreeBASIC
directory. Accordingly, the header file fbcomplex.bi should be placed in the
inc subdirectory.

1.2 Linux installation

The library can be created with the following commands:

fbc -c fbcomplex.bas

ar r libfbcomplex.a fbcomplex.o

Then the library and header files can be installed in their respectives
subdirectories, as for Windows.

1

2 Using the library

In order to use the library, place the following statement at the beginning of
the program:

#INCLUDE "fbcomplex.bi"

FBComplex can be used with FBMath (http://sourceforge.net/projects/
fbmath/) but fbmath.bi must be included before fbcomplex.bi:

#INCLUDE "fbmath.bi"

#INCLUDE "fbcomplex.bi"

3 Introduction to complex numbers

3.1 Definitions

A complex number Z is a pair of real numbers:

Z = (X, Y)

It is related to the coordinates of a point M in the plane (called the
complex plane in this case).

Complex addition and subtraction are defined as for vectors:

Z1 = (X1, Y1)

Z2 = (X2, Y2)

Z1 + Z2 = (X1 +X2, Y1 + Y2)

Z1 − Z2 = (X1 −X2, Y1 − Y2)
A complex number may also be written as Z = X + iY where i is the

number (0,1). This notation defines the rectangular form of the complex.
The coordinates X and Y are often called the real part and the imaginary
part, noted respectively <(Z) and =(Z).

The complex product is defined as:

Z1 · Z2 = (X1X2 − Y1Y2, X1Y2 + Y1X2)

It is related to the rotation of vectors in the plane.

The complex product is commutative, i. e. Z1Z2 = Z2Z1

The number i is such that i2 = (0, 1) · (0, 1) = (−1, 0) = −1

Every complex Z 6= 0 has an inverse Z−1 for the multiplication.

2

3.2 Polar form

A complex number Z = X + iY can also be written as R(cos θ + i sin θ),
where:

• R is the norm of the vector
−−→
OM , also called the modulus or the absolute

value of the complex number and noted |Z|

• θ is the angle between the Ox axis and the vector
−−→
OM , counted in the

interval] − π, π]. It is often called the argument or the phase of the
complex number.

This notation defines the polar form of the complex number.

We have the following relationships:

R =
√
X2 + Y 2 θ = arctan

Y

X
X = R cos θ Y = R sin θ

3.3 Exponential form

It has been shown that the exponential function can be extended to complex
numbers, and that:

exp(iθ) = cos θ + i sin θ

So, the notation R(cos θ + i sin θ) is equivalent to R exp(iθ), where all the
classical properties of the exponential apply, for instance:

Z1 = R1 exp(iθ1) , Z2 = R2 exp(iθ2) ⇒ Z1Z2 = R1R2 exp[i(θ1 + θ2)]

4 Type definition

Type Complex is defined as:

TYPE Complex

X AS DOUBLE

Y AS DOUBLE

END TYPE

So, a complex variable Z is declared as follows:

DIM AS Complex Z

Its real and imaginary parts are then Z.X and Z.Y

The complex variables can be initialized, for instance:

3

DIM AS Complex A = (1, 1), B = (SQR(3), -1)

sets A = 1 + i and B =
√

3− i

You can also declare arrays of complexes and initialize them, for instance:

DIM AS Complex Mat(1 TO 2, 1 TO 2) = {{(0,0), (1,0)}, _

{(0,1), (1,1)}}

5 Error handling

The function CMathErr() returns the error code from the last function eval-
uation. It must be checked immediately after a function call:

ExpZ = CExp(Z)

if CMathErr() = FOk then ...

If an error occurs, a default value is attributed to the function. The
possible error codes are the following:

Error code Value Meaning
FOk 0 No error

FDomain -1 Argument domain error
FSing -2 Function singularity

FOverflow -3 Overflow range error
FUnderflow -4 Underflow range error

6 Number construction

The following functions create a complex number from either its rectangular
or polar coordinates:

• Function Cmplx(X, Y) returns the complex number X + iY

• Function Polar(R, Theta) returns the complex number R(cos θ +
i sin θ)

The functions CReal(Z) and CImag(Z) return the real part and the imag-
inary part of their complex argument Z.

4

7 Sign and exchange

• Function CSgn(Z) returns the sign of the complex Z, such that:

CSgn(Z) =

{
1 if <(Z) > 0 or <(Z) = 0 and =(Z) > 0
−1 if <(Z) < 0 or <(Z) = 0 and =(Z) < 0

This function is used to determine in which half-plane (‘left’ or ‘right’)
of the complex plane the number Z lies.

• Procedure CSwap(W, Z) exchanges the two complex numbers W and Z.

8 Modulus and argument

The functions CAbs(Z) and CArg(Z) give, respectively, the modulus and the
argument of the complex Z, i. e. the numbers R and θ such that Z =
R exp(iθ) with θ ∈]− π, π].

9 Complex conjugate

The function CConj(Z) returns the conjugate of Z i.e. Z̄ = X − iY

10 Arithmetic operators

The operators = and <> allow to test the equality of two complex numbers.

The operators +, -, * and / accept operands of real (double precision) or
complex type.

The exponentiation operator ^ computes Za. The algorithms used are
the following:

• Z complex, a integer : repeated multiplications with Legendre’s al-
gorithm to minimize the number of operations. For instance, Z8 is
computed as Z2 = Z · Z, Z4 = Z2 · Z2 and Z8 = Z4 · Z4, hence 3
multiplications instead of 7.

• Z complex, a real : DeMoivre’s theorem :

Za = [R exp(iθ)]a = Ra exp(aiθ) = Ra(cos aθ + i sin aθ)

• Z real or complex, a complex : Za = exp(a lnZ)

5

11 Polynomials and rational fractions

Function CPoly(Z, Coef(), Deg) evaluates the polynomial:

P (Z) = Coef(0) + Coef(1) · Z + Coef(2) · Z2 + · · ·+ Coef(Deg) · ZDeg

where Z is complex and the coefficients may be real or complex.

Function CFrac(Z, Coef(), Deg1, Deg2) evaluates the rational frac-
tion:

F (Z) =
Coef(0) + Coef(1) · Z + · · ·+ Coef(Deg1) · ZDeg1

Coef(Deg1 + 1) + Coef(Deg1 + 2) · Z + · · ·+ Coef(Deg1 + Deg2 + 1) · ZDeg2

where Z is complex and the coefficients may be real or complex.

12 Logarithm and exponential

It is obvious from the relationship below that the complex logarithm is a
multi-valued function:

Z = R · exp(iθ) = R · exp [i (θ + 2kπ)] ⇒ lnZ = lnR + i (θ + 2kπ)

The function CLog(Z) returns the principal part of the logarithm, i. e.
the value corresponding to k = 0 and θ ∈]− π, π].

The function CExp(Z) returns the exponential of Z, according to:

exp(X + iY) = eX(cosY + i sinY)

13 Complex roots

According to the following relationship:

Z = R · exp(iθ) = R · exp [i (θ + 2kπ)] ⇒ Z1/n = R1/n · exp

[
i

(
θ

n
+

2kπ

n

)]

a complex number has n distinct n-th roots, corresponding to k = 0 · · · (n−1)

The function CRoot(Z, K, N) returns the K-th N-th root of the complex
number Z (K and N are integers).

The function CSqrt(Z) returns the first square root of the complex num-
ber Z. It is therefore equivalent to CRoot(Z, 0, 2).

In any case, only the principal part of the function is returned. For
instance, if N is integer, Z^(1/N) is equivalent to CRoot(Z, 0, N).

6

14 Trigonometric functions

The following functions are available (where Z = X + iY):

Function Formula
CSin(Z) sinX coshY + i cosX sinhY

CCos(Z) cosX coshY − i sinX sinhY

CTan(Z) sinX cosX+i sinhY coshY
cos2X+sinh2 Y

Z 6= π
2

+ kπ

CASin(Z)
arcsin(P −Q) + i csgn(Y − iX) ln(P +Q+

√
(P +Q)2 − 1)

P = 1
2

√
X2 + 2X + 1 + Y 2 Q = 1

2

√
X2 − 2X + 1 + Y 2

CACos(Z) π
2
− arcsin(Z)

CATan(Z) 1
2
[arctan(X, 1− Y)− arctan(−X, 1 + Y)] + 1

4
i ln X2+(Y+1)2

X2+(Y−1)2 Z 6= ±i

In addition, subroutine CSinCos(Z, SinZ, CosZ) allows to calculate the
sine and cosine simultaneously, saving some computations if both functions
are needed.

15 Hyperbolic functions

The following functions are available (where Z = X + iY):

Function Formula
CSinh(Z) sinhX cosY + i coshX sinY

CCosh(Z) coshX cosY + i sinhX sinY

CTanh(Z) sinhX coshX+i sinY cosY
sinh2X+cos2 Y

Z 6= i
(
π
2

+ kπ
)

CASinh(Z) −i arcsin(iZ)

CACosh(Z) csgn[Y + i(1−X)] · i arccos(Z)

CATanh(Z) −i arctan(iZ) Z 6= ±1

In addition, subroutine CSinhCosh(Z, SinhZ, CoshZ) allows to calcu-
late the hyperbolic sine and cosine simultaneously, saving some computations
if both functions are needed.

7

16 Gamma function

Function CLnGamma(Z) returns the natural logarithm of the Gamma function
for the complex argument Z.

17 Printing functions

• Subroutine CPrint(Z, Mask) prints the complex Z in rectangular form,
without line feed at the end. Mask is a format string, as defined for
PRINT USING. This parameter is optional, with default value "####.####".
For instance :

DIM AS Complex Z = (SQR(3), -1)

CPrint Z

PRINT

CPrint Z, "##.######"

will print:

1.7321 - 1.0000 * i

1.732051 - 1.000000 * i

• Subroutine CPrintPolar(Z, Mask) works like the previous one, but
uses the exponential notation. For instance :

DIM AS Complex Z = (SQR(3), -1)

CPrintPolar Z

will print: 2.0000 * exp(-0.5236 * i)

18 Demo programs

These programs are located in the demo subdirectory:

• Program testcomp checks the accuracy of the complex functions. It is
a slight modification of a Pascal program written by E. Glynn.

The program defines an array of 20 complex numbers. The tests consist
mostly of applying a function to each number, then applying the recip-
rocal function to the result, in order to retrieve the original number.

8

• Programs polderiv and polderiv1 show how to compute a polynomial
and its derivatives by Horner’s method.

• Program mandel plots the Mandelbrot or Julia sets for the iteration
formula z′ = zp + c where p is a positive real exponent.

19 Contributed programs

These programs, located in the contrib subdirectory, have been written by
‘dodicat’ from the FreeBASIC forum.

• Program matrix.bas computes the determinant and inverse of a com-
plex matrix.

• Program gauss jordan solves a system of linear equations with com-
plex coefficients by the Gauss-Jordan method.

• Program newton plots a fractal figure by applying Newton’s method to
a polynomial with complex coefficients. Each point is colored according
to the number of iterations required for convergence, starting with the
point coordinates. The program prints the number of points for which
the method did not converge (according to the given maximal number
of iterations), and the total elapsed time.

9

