
The AmsGraph library

INTRODUCTION

The AmsGraph library is a FreeBASIC library giving access to the graphic functions of the old
Amstrad CPC computers. Most functions are implemented, sometimes with extended features, and
some new functions are provided.

INSTALLATION

The library is provided as source code in the src subdirectory. It must be compiled with
FreeBASIC into a static library :

 fbc amsgraph.bas -lib

Then, place the resulting file libamsgraph.a in the appropriate subdirectory of your FreeBASIC
installation (e. g. lib\win32), and the header file amsgraph.bi in the inc subdirectory.

Some functions need the FBImage library by D. J. Peters. You should therefore install this one, too.

There are 15 sample programs, placed in the examples subdirectory.

NOTATION

In what follows, we have used suffixes to indicate the types of the function parameters : % for
integers (long), $ for strings and none for real numbers (double) .

GRAPHIC MODES

The Amstrad CPC computer has 3 graphic modes: 0, 1 and 2.

All 3 modes have the same resolution (640 × 400 pixels) and can display 25 lines of 20, 40 or 80
characters respectively.

Since the total width of the screen is constant, the character size must adapt: 32 ×16 pixels in mode
0, 16 × 16 in mode 1 and 8 ×16 in mode 2.

The AmsGraph library provides the following extensions:

1. An optional parameter: the title of the graphic window

 MODE 1, "Graphics in mode 1"

1

http://shiny3d.de/public/libs/FBImage.zip

2. A custom mode: mode 3 (or higher) which allows to choose the sizes of the screen and
characters:

 MODE 3, Title$, w%, h%, w1%, h1%

with :

(w, h) = width and height of the window in pixels

(w1, h1) = width and height of a character element in pixels (each character consists of 8 ×
8 elements)

Example:

 MODE 3, "Custom mode", 850, 100, 4, 10

These parameters are optional, their default values being those of mode 1 (640, 400, 2, 2)

WRITING TEXT

The following statements have been renamed to avoid confusion with the FreeBASIC statements :

• GCLS (Graphic CLS) clears the graphic screen

• CRLOCATE (Column/Row LOCATE) places the cursor at a given position

• APRINT (Amstrad PRINT) displays a text, using the Amstrad font :

 APRINT txt$, x%, y%

txt is the text to be written; (x, y) is the position of the text (upper left corner) in pixels.

The last two parameters are optional; if they are absent, the position defined by CRLOCATE
will be used.

• FBPRINT (FreeBASIC PRINT) displays a text, using the FreeBASIC font.

The syntax is similar to that of the APRINT statement, but the position of the text must be
defined in pixels, as the CRLOCATE statement concerns only the Amstrad font.

The FB font is always 8 × 16 and is not affected by character redefinitions or control
characters.

The Amstrad font has 256 characters corresponding to ASCII codes 0 to 255. The example program
caract.bas displays all these characters. By scrolling through the table with the arrow key, the
code of the chosen character is obtained.

2

ALPHABETICAL INKEY FUNCTION

The AINKEY function is an alternative to the FreeBASIC INKEY function. It returns a string of
characters corresponding to the keystroke. Alphanumeric characters are returned as is, for example :

 if ainkey() = "A" then ...

For "special" keys (function keys, arrows etc.) the returned string is the description of the key :

 if ainkey() = "F1" then ... ' Function key
 if ainkey() = "DOWN" then ... ' Down arrow
 if ainkey() = "ESCAPE" then ... ' Escape key

The predefined strings are :

 "CTRL+A" ... "CTRL+F", "CTRL+J" ... "CTRL+L", "CTRL+N" ... "CTRL+Z"

 "F1" ... "F12"

 "BACKSPACE", "TAB", "ENTER", "ESCAPE", "HOME", "END"

 "UP", "DOWN", "LEFT", "RIGHT" (Arrows)

 "PAGEUP", "PAGEDOWN"

 "INSERT", "DELETE"

3

Note: The function reads the keyboard continuously and returns the empty string if no key is
pressed. It can therefore be used to make waiting loops:

 while ainkey() = "" : wend

COLOR SYSTEMS

Colors are usually expressed in ARGB format, just like in FreeBASIC.

The HSV (Hue, Saturation, Value) system is another way of representing colors that is often more
effective than the classic RGB system.

The following statements allow the conversion between the two systems :

 RGBtoHSV R%, G%, B%, H, S, V

 HSVtoRGB H, S, V, R%, G%, B%

where R, G, B are integer numbers (0 .. 255), H is a real angle (0 .. 360°), S and V are real numbers in (0 .. 1)

PREDEFINED COLORS

The library has a palette of 256 predefined colors, adapted from FreeBASIC and displayed on this
image generated by the example program palette.bas (the values of S and V are noted here in
percentages):

Each color has a code, from 0 to 255.

4

https://documentation.help/FreeBASIC/GfxDefPalettes.html

Codes 0 to 26 correspond to the 27 colors of the Amstrad CPC, displayed on the following image,
generated by the example program colors.bas :

These colors are generated by taking 3 levels (0%, 50% and 100%) of each R, G, B color, resulting
in 33 = 27 colors.

Codes 27 to 242 are defined by :

• 24 shades (H) at 15° intervals on the color wheel

• 3 values for saturation (S) and brightness (V)

Codes 243 to 255 correspond to grey levels.

COLOR MANAGEMENT

The PAPER and PEN statements allow to change the background and foreground colors. For
example, to have a dark red background, you can use one of the following syntaxes:

 PAPER CL_RED PAPER &hFF800000 PAPER RGB(128, 0, 0)

The INK statement allows to change one of the predefined colors:

 INK 10, &hFF00FF00 ' color 10 becomes a bright green

The GET_INK function returns an integer corresponding to one of the predefined colors.

 GET_INK(1) ' returns 4278190208
 HEX(GET_INK(1)) ' returns FF000080

5

REDEFINITION OF CHARACTERS

The SYMBOL statement allows to redefine a character, according to the syntax :

 SYMBOL code%, n1%, n2%, n3%, n4%, n5%, n6%, n7%, n8%.

where code is the ASCII code of the character to be modified, n1 to n8 are integers corresponding
to the binary encodings of the 8 lines constituting the character.

The example program symbol.bas redefines the letter i (code 105) with :

 n1 = 255 ' 11111111 in binary
 n2 = 129 ' 10000001 in binary
 n3 = 189 ' 10111101 in binary
 n4 = 153 ' 10011001 in binary
 n5 = 153 ' 10011001 in binary
 n6 = 189 ' 10111101 in binary
 n7 = 129 ' 10000001 in binary
 n8 = 255 ' 11111111 in binary

The character then takes on the following appearance:

 * *
 * **** *
 * ** *
 * ** *
 * **** *
 * *

MULTICOLORED CHARACTERS

The SYMBOL statement creates only monochrome characters. To have multicolored characters,
AmsGraph adds the SYMBCOL statement whose syntax is the following:

 SYMBCOL code%, colstr$

where colstr is a string whose ASCII codes represent the entries in the color palette.

For example, to create the following character with the default Amstrad palette :

6

we need the colors:

• CL_BLUE (entry 1)

• CL_BRIGHT_BLUE (entry 2)

• CL_MAGENTA (entry 4)

• CL_BRIGHT_RED (entry 6)

• CL_PINK (entry 16)

• CL_BRIGHT_WHITE (entry 26)

If we agree to represent the background color by a space (ASCII 32), the string will be of the form :

 colstr = chr(32, 32, 32, 32, 32, 32, 32, 32) + _
 chr(32, 4, 4, 4, 4, 4, 32, 32) + _
 chr(4, 4, 4, 4, 16, 4, 4, 32) + _
 chr(4, 16, 1, 16, 16, 1, 4, 32) + _
 chr(4, 16, 16, 16, 16, 16, 4, 32) + _
 chr(4, 4, 2, 2, 2, 4, 32, 32) + _
 chr(32, 32, 26, 26, 26, 32, 32, 32) + _
 chr(32, 32, 6, 32, 6, 32, 32, 32)

We have split the string into 8 segments to show the structure of the graph. Note that the
FreeBASIC CHR function seems limited to 32 parameters.

The creation of the character (e.g. code 200) and its display will be done by :

 SYMBCOL 200, colstr
 APRINT chr(200)

The colors can also be assigned to alphanumeric characters, which simplifies the writing of the
string. For example :

 INK ASC("B"), CL_BLUE
 INK ASC("L"), CL_BRIGHT_BLUE
 INK ASC("M"), CL_MAGENTA
 INK ASC("P"), CL_PINK
 INK ASC("R"), CL_BRIGHT_RED
 INK ASC("W"), CL_BRIGHT_WHITE

 colstr = " " _
 " MMMMM " _
 "MMMMPMM " _
 "MPBPPBM " _
 "MPPPPPM " _
 "MMLLLM " _
 " WWW " _
 " R R "

The example program symbcol.bas shows this possibility.

7

GRAPHIC CHARACTER EDITOR

The program caredit.bas allows to modify and colorize the graphic characters (codes ≥ 127).

The 16-color palette is the one used by the PICO-8 software but you can change it.

The strings that make up the parameters of the SYMBCOL statement are stored in the random access
file caredit.dat, each string consisting of 64 characters.

The characters thus modified can be used in any program. The following example reads the 4
characters of ASCII codes 248 to 251 from the file and displays them on the screen.

 open "caredit.dat" for random as #1 len=64

 dim as string car
 dim as long i

 mode 1

 LoadPalette

 for i = 0 to 3
 car = read_char(248 + i)
 crlocate 2 * i + 2, 2
 aprint car
 next i

 while ainkey() = "" : wend

 close #1

 end

8

https://www.lexaloffle.com/pico-8.php

 sub LoadPalette ()
 ' Insert the color definitions here
 ' as in the LoadPalette subroutine
 ' of the caredit.bas program

 ink asc("R"), &hFF004D ' Red
 ...
 end sub

 function read_char (nchar as long) as string
 dim as string*64 ch
 get #1, nchar - 127, ch
 symbcol nchar, ch
 return chr(nchar)
 end function

Note that in the read_char function the ch variable that reads a record must be 64 characters long.

CONVERTING IMAGES TO CHARACTERS

The PICtoCHAR statement converts an image into a sequence of characters that can be displayed by
APRINT. The syntax is:

 PICtoCHAR filename$, code%

where filename is the name of the graphics file and code is the ASCII code of the first character.

The example programs pictochar.bas and maze.bas show this usage.

The characters are read line by line, up to the maximum code of 255.

The limitations are as follows:

• The image dimensions must be multiples of 8

• The graphic mode must correspond to the size of the characters. For example, for characters of
24 × 32 pixels, we will choose the custom mode (mode 3), the last two parameters of the MODE
statement being equal to 3 and 4 (i.e. 24/8 and 32/8).

CONTROL CODES

The character codes 0 to 31 can be interpreted as control characters:

 APRINT CHR(0) Allows control characters (default)
 APRINT CHR(1) Print control characters

 APRINT CHR(7) Ring the bell (equivalent to BEEP)
 APRINT CHR(8) Shift cursor to the left
 APRINT CHR(9) Shift cursor to the right

9

 APRINT CHR(10) Move cursor down one line
 APRINT CHR(11) Move cursor up one line
 APRINT CHR(12) Clear the screen
 APRINT CHR(13) Return to line
 APRINT CHR(14, n) Equivalent of PAPER with n = color index
 APRINT CHR(15, n) Equivalent of PEN with n = color index

 APRINT CHR(17) Erase the line until the last character
 APRINT CHR(18) Erase the line from the last character
 APRINT CHR(19) Erase from the screen top to the last character
 APRINT CHR(20) Clear from the last character to the screen bottom

 APRINT CHR(22, n) Set interaction with background ("bit blit"):

 n = 0 ==> PSET mode (normal)
 n = 1 ==> XOR mode
 n = 2 ==> AND mode
 n = 3 ==> OR mode
 n = 4 ==> ALPHA mode, with transparency = A of RGBA
 n = 5 ==> TRANS mode, with transparency = &hFF00FF (magenta)

 APRINT CHR(30) Equivalent of CRLOCATE 1, 1
 APRINT CHR(31,x,y) Equivalent of CRLOCATE x, y

The example program graffiti.bas is adapted from a series of articles published in the french
magazine Amstrad magazine under the title Amstradian graffitis. It shows how to create sprites by
combining 4 characters in a 2 x 2 matrix. The code characters 251, 252, 253, 254 are redefined by
the SYMBOL statement. We use control characters : 31 to place the sprite, then 8 and 10 to position
the second row of characters. A simple APRINT statement is sufficient to display the sprite:

 APRINT CHR(31, x%, y%, 251, 252, 8, 8, 10, 253, 254)

The example program transpar.bas shows the writing of a text at different transparency levels,
set by the RGBA function after activating the transparent mode by the control character (code 22).

PLOTTING AREA

The ORIGIN statement sets the origin of the axes and defines a rectangular graphics area (viewport)
inside the window. All subsequent plots will be limited to this area: points outside it will not be
plotted (clipping).

The syntax of this statement is:

 ORIGIN x%, y%, lft%, rgt%, top%, bottom%, fill_color%, border_color%

10

• x, y define the position of the origin (coordinates 0, 0)

• lft, rgt, top, bottom are the coordinates of the rectangle delimiting the drawing area.

• fill_color is the fill color

• border_color is the color of the frame

The parameters lft, rgt, top, bottom are optional; if they are absent the plot will use the entire
graphics window

The coloring parameters are also optional; if they are absent, the corresponding graphic elements
will not be drawn.

For example, the two instructions :

 MODE 1

 ORIGIN 320, 200, 100, 540, 350, 50, CL_BLACK, CL_BRIGHT_GREEN

generate the following image:

The origin (0,0) is placed in the centre. The scale goes from -220 to 220 on Ox and from -150 to
150 on Oy (the Oy axis points upwards, according to the Amstrad convention).

Using ORIGIN without parameters restores the initial screen.

The sample program origin.bas shows a more complete example with 2 windows.

POINTS AND LINES

In the following :

• x, y are the coordinates of a point (in pixels)

11

• dx, dy are the displacement from the current point (in pixels)

• col is the color (optional parameter)

The following statements are available:

 MOVE x%, y% ' Move to (x,y)

 PLOT x%, y%, col% ' Plot point (x, y)

 LDRAW x%, y%, col% ' Draw a line from the current point
 to the point (x,y)

 TEST(x%, y%) ' Function: moves the point to (x,y)
 ' and returns the color of the point

Note : The original Amstrad statement DRAW has been renamed as LDRAW (Line Draw) to avoid
confusion with the FreeBASIC DRAW statement.

The variants use the displacement from the current point:

 MOVER dx%, dy%

 PLOTR dx%, dy%, col%

 LDRAWR dx%, dy%, col%

 TESTR(dx%, dy%)

The sample program plotfunc.bas is a function plotter using these statements.

RECTANGLES, CIRCLES AND ELLIPSES

The following statements draw rectangles :

 RECTANGLE x%, y%, w%, h%

 RECTANGLE_FILL x%, y%, w%, h%

where (x, y) are the coordinates of the upper left corner, w and h the width and height of the rectangle. The
second statement fills the rectangle with the foreground color.

The ARC statement draws a circular or elliptical arc:

 ARC xc%, yc%, rx%, ry%, a1%, a2%

The arc is centered at (xc, yc) with radii rx and ry, and is drawn between the angles a1 and a2 (in
degrees)

12

The last 3 parameters are optional, the default values are 0, 0 and 360. The value ry = 0 causes a
circle to be drawn.

To draw a sector, give negative values to the angles, without zero values (use for example -0.01 instead of 0).

The PIE statement draws a circle or ellipse filled with the foreground color:

 PIE xc%, yc%, rx%, ry%

This statement does not accept angular parameters, so it can only draw complete circles or ellipses.

FILLING SURFACES

The FILL statement fills an area with a color. Before using this statement, the pointer must be
placed inside the surface (e. g. with MOVE).

 FILL paint_col%, border_col%

• paint_col is the fill color

• border_col is the color of the line delimiting the surface; this parameter is optional, its
default value is the foreground color

The FILL_PATTERN statement fills with a pattern created by SYMBCOL and assigned to a character :

 FILL_PATTERN numchar%, border_col%

where numchar is the character number ; border_col works as with the FILL statement.

The sample program fill_pattern.bas creates a red cross pattern and uses it to fill a circle.

MOUSE TEST

The GET_MOUSE statement returns the mouse parameters:

 GET_MOUSE x%, y%, btn%, wheel%

• x, y : position of the mouse, expressed in pixels, taking into account if necessary the
coordinates defined by ORIGIN

• btn : button code, according to the table below

• wheel : position of the wheel: 0 at the start of the program, negative if the wheel is turned
towards the user, positive otherwise.

The mouse buttons are denoted by symbolic constants :

13

 BUTTON_LEFT (1)
 BUTTON_RIGHT (2)
 BUTTON_MIDDLE (4)

The sample program get_mouse.bas shows this usage.

GRAPHIC FILES

The following statements load an image in BMP, PNG, JPG, TGA or DDS format (non-interlaced
formats only) :

 IMG_LOAD filename$

 IMG_LOAD_TRANS filename$

where filename is the name of the image file (the extension can be omitted for a BMP file). The image is
displayed in the area defined by the ORIGIN statement.

The second version makes the background of the image transparent. The background color is defined by the
color of the pixel located at the top left of the image.

The sample program img_load.bas shows the loading of an image with or without a transparent
background.

The IMG_SAVE statement saves the image to a BMP or PNG file. Only the area defined by the ORIGIN
statement is saved.

 IMG_SAVE filename$, trans%

where trans is an optional parameter indicating if the transparency information must be saved in
the case of a PNG file (default value = FALSE).

14

	The AmsGraph library
	INTRODUCTION
	INSTALLATION
	NOTATION
	GRAPHIC MODES
	WRITING TEXT
	ALPHABETICAL INKEY FUNCTION
	COLOR SYSTEMS
	PREDEFINED COLORS
	COLOR MANAGEMENT
	REDEFINITION OF CHARACTERS
	MULTICOLORED CHARACTERS
	GRAPHIC CHARACTER EDITOR
	CONVERTING IMAGES TO CHARACTERS
	CONTROL CODES
	PLOTTING AREA
	POINTS AND LINES
	RECTANGLES, CIRCLES AND ELLIPSES
	FILLING SURFACES
	MOUSE TEST
	GRAPHIC FILES

