Constantes et polynômes de Darboux en algèbre différentielle : application aux systèmes différentiels linéaires.

JACQUES-ARTHUR WEIL

15 Septembre 95 2

Plan de l'exposé

I. Constantes et polynômes de Darboux

Polynômes de Darboux des champs de vecteurs nonautonomes.

Chapitre

I.4,6

Polynômes de Darboux et solutions d'équations différentielles quasi-linéaires.

Chapitre I.1,2,4 ; ISSAC'94

Remarques de calcul.

Chapitre I.3,4,5

II. Application aux systèmes différentiels linéaires

Intégrales premières : caractérisation et calcul à degré donné.

Chapitre II.1-5 ; AAECC'11

Systèmes à deux variables : degré et variation sur Kovačic Chapitre III, J.S.C avec F. Ulmer

Systèmes à trois variables : constructeurs de Darboux et solutions liouvilliennes.

Chapitre II.6

Systèmes à *n* variables : décider l'existence ou non d'intégrales premières.

Chapitre II.7

I. (Chapitre I)

La méthode de Darboux

Darboux : $P(x,y)y' = Q(x,y), D = P\frac{\partial}{\partial x} + Q\frac{\partial}{\partial y}$.

Trouver $F \in C[x, y]$ to $DF = \alpha F$ avec $\alpha \in C[x, y]$.

- F Darboux ssi ses facteurs irréd. sont Darboux
- F Darboux et $F(x,y) = 0 \rightarrow P(x,y)y' = Q(x,y)$.
- IP rationelle \Leftrightarrow suffisament de Darboux.
- Darboux irréductibles de degré borné (théoriquement).

$$\begin{cases} Y_1' = Q_1(Y_1, \dots, Y_n) \\ \vdots & \text{où } Q_i \in k[Y_1, \dots, Y_n] \\ Y_n' = Q_n(Y_1, \dots, Y_n) \end{cases}$$
$$D = \partial_k + \sum_i Q_i \frac{\partial}{\partial y_i}$$

<u>Définition</u>: $F \in k[y_1, \ldots, y_n]$ polynôme de Darboux s'il existe $\alpha \in k[y_1, \ldots, y_n]$ tel que $DF = \alpha F$

Champs de vecteurs, E.D.O quasi-linéaires? lien avec les solutions? calcul (degré des Darboux irréductibles)?

I. (Chapitre I)

Trois résultats généraux

$$D = \sum_{i=1}^{n} Q_i \frac{\partial}{\partial y_i} \qquad (i.e \ k = C).$$

Proposition 25 (JAW, p. 29):

Soit $d = \max(\deg(Q_i))$. La dérivation D admet $\binom{n+d-1}{n} + n$ polynômes de Darboux premiers entre eux si et seulement si D admet une intégrale première rationelle.

Mais degré NON borné contre-exemple page 67.

$$P = s(y, \dots, y^{(n-1)})y^{(n)} + t(y, \dots, y^{(n-1)}), \qquad k \text{ différentiel}$$

Théorème 17 (JAW, p.22):

si F Darboux d'ordre n-1, alors : F(y)=0 non singulier $\Rightarrow P(y)=0$.

Si P(y) = 0 et ord(y) = n - 1, alors le polynôme minimal de F est de Darboux.

I. (Chapitre I) 5

D'autres propriétés utiles

Proposition 15 (Moulin Ollagnier & JAW, p. 21):

 $K \supset k$ extension algébrique finie de k. Alors, D_K admet un Darboux non-trivial dans $K[y_1, \ldots, y_n]$ ssi D admet un Darboux non-trivial dans $k[y_1, \ldots, y_n]$.

Lemme 13:

D une dérivation de $k[y_1, \ldots, y_n]$, homogène de degré p. Si $DF = \alpha F$ alors α est homogène de degré p et toutes les composantes homogènes F_i de F vérifient aussi $DF_i = \alpha F_i$.

En particulier, si D est homogène de degré 0, alors $\alpha \in k$.

Écrire une dérivation comme somme d'homogènes/isobares: donne C.N. d'existence $(D = D_{min} + \ldots + D_{max})$.

Collins-Christopher: soit $D = P(x, y) \frac{\partial}{\partial x} + Q(x, y) \frac{\partial}{\partial y}$ homogène et W = xQ - yP. W est Darboux et tout Darboux irréductible divise W.

 \rightarrow stratégie pour n=2.

15 Septembre 95

II. Systèmes différentiels linéaires

$$(A):$$
 $Y' = AY$ avec $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ $A \in \mathcal{M}_n(k)$

Espace V de solutions. Extension de Picard-Vessiot K. \rightarrow Groupe de Galois différentiel G.

Même groupe pour une classe de systèmes.

 $G \hookrightarrow GL_n(C)$: envoie solution sur solution.

Décrit les relations différentielles entre les solutions.

Constructions sur $V \leftrightarrow$ Constructions sur A.

Polynômes de Darboux : $DM = \alpha M$

- $\alpha \in k$ et M homogène.
- $k_1 \supset k$ liouvillienne :

 $\exists \operatorname{Darboux} \operatorname{pour} D_{k_1} \iff \exists \operatorname{Darboux} \operatorname{pour} D_k$

II.1 (Chapitre II.1-5)

Darboux et semi-invariants

Proposition 33 (JAW, p. 38):

Polynômes de Darboux, vecteur v de coefficients

$$DM = -\frac{f'}{f}M \iff \begin{cases} (fv)' = (S^m(A)^*)(fv) \\ v \in k^n, \frac{f'}{f} \in k \end{cases}$$

Si f = 1, intégrale première polynomiale.

Déf : Semi-invariants d'une représentation :

$$P \in C[X_1, \dots, X_n]$$
 t.q. $\forall g \in G, g(P) = \chi_g P$.
C'est à dire $\frac{P(y_1, \dots, y_n)'}{P(y_1, \dots, y_n)} \in k$

Théorème 38 (JAW, p. 41):

 $\{\text{Darboux}\} \simeq \{\text{Semi-invariants de } G^*\}$ $\{\text{I.P. polynomiales}\} \simeq \{\text{Invariants de } G^*\}$

Proposition 39 (JAW, p. 42):

Si G réductif, alors :

 $\operatorname{Inv}(G) \simeq \operatorname{Inv}(G^*)$ et Semi- $\operatorname{Inv}(G) \simeq \operatorname{Semi-Inv}(G^*)$.

Le problème du degré est un problème de théorie de la représentation.

II.1 (Chapitre II.1-5)

Algorithme de calcul des Darboux

$$z = \Lambda^t Y \to \begin{cases} Z = PY \\ L(z) = 0 \end{cases}$$

Pour un degré m donné :

- 1. Calculer $S^m(A)^*$ (rapide)
- 2. Choisir un vecteur Λ .
 - (a) Si Λ est cyclique : calculer une équation L_m , calculer ses solutions rationelles/exponentielles, en déduire I.P, Darboux.
 - (b) Si Λ n'est pas cyclique: chance! Construire système plus petit sur ker P, et réappliquer l'étape 2.

Algorithme implanté en Maple

II.2 Équations du second ordre

$$L(y) = y'' + a_1 y' + a_0 y = 0 \longleftrightarrow Ri(u) = u' + a_0 + a_1 u + u^2 = 0$$

Sol. liouvillienne de $L \Leftrightarrow \text{sol.}$ algébrique de Ri

Pb: trouver
$$P = u^m + b_{m-1}u^{m-1} + \dots + b_0 = 0$$

Ingrédients de Kovačic:

- 1. Classifier les sous-groupes de $SL_2(C)$
- 2. b_{m-1} est une solution exponentielle de $L^{\textcircled{s}m}$
- 3. Récurence pour les coefficients de P.

Idées pour améliorer Kovačic:

- 1. Solutions rationelles : plus rapide que les exponentielles, pas d'extensions des constantes.
- 2. Décrire toutes les solutions.
- 3. Kovačic écrit pour y'' ry, $r \in C(x)$, généraliser.

Deux résultats utiles

$$P(u) = u^{m} + b_{m-1}u^{m-1} + \dots + b_{0}$$

$$P(u) = 0 \text{ et } Ri(u) = 0 \iff P \text{ est Darboux pour } Ri$$

$$\binom{b_{m} = 1}{b_{i-1} = \frac{-b'_{i} + b_{m-1}b_{i} + a_{1}(i-m)b_{i} + a_{0}(i+1)b_{i+1}}{m-i+1}}, \quad m-1 \ge i \ge 0$$

$$\binom{b_{m-1} = 0}{b_{m-1} = 0}$$

Théorème 73 (Ulmer & JAW, p. 82):

Tous les zéros de P(u) sont des solutions de Ri(u) = 0 ssi $b_{m-1} = -f'/f$ et $L^{\textcircled{s}m}(f) = 0$ (f semi-invariant de $G \subseteq GL_2(C)$).

<u>Lemme 68</u> (Ulmer & JAW, p. 79):

 $G \subset SL_2(C)$ fini, Z centre de G. Le nombre de polynômes minimaux irréductibles de degré m < [G:Z] est égal à 2/m fois le nombre de sous-groupes cycliques maximaux d'indice m. Tous les autres sont de degré [G:Z].

Classifications, décompositions de caractères.

Les sous-groupes de $SL_2(C)$

- 1. Groupe diagonal (réductible et réductif) : $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$
- 2. Groupe non réductif : $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$
- 3. Groupe imprimitif:
 - (a) Diédral $D_n^{SL_2}$ d'ordre 4n:

$$\begin{pmatrix} e^{\frac{\pi i}{n}} & 0\\ 0 & e^{-\frac{\pi i}{n}} \end{pmatrix} \text{ et } \begin{pmatrix} 0 & i\\ i & 0 \end{pmatrix}$$

(b) Diédral infini:

$$D_{\infty} = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \begin{pmatrix} 0 & -a \\ a^{-1} & 0 \end{pmatrix} \right\} \quad \text{où } a \in C^*$$

- 4. Groupe primitif fini:
 - (a) Tétraédral $A_4^{SL_2}$;
 - (b) Octaédral $S_4^{SL_2}$;
 - (c) Icosaédral $A_5^{SL_2}$.
- 5. Le groupe $SL(2, \mathbb{C})$.

L'algorithme

(1). $L^{\circledast 2}$ a une solution rationelle \Rightarrow réductible.

Rationalité

- (2). L a une solution exponentielle unique \Leftrightarrow réductible non-réductif.
- (3). $L^{©4}$ a une solution rationelle \Leftrightarrow imprimitif.
 - Quaternions : $L^{©4}$ a deux solutions rationelles, polynômes minimaux de degré 2 ou 4. Rationalité
 - ullet Autres : $L^{\slashed{S}^4}$ a une solution rationelle, P est le carré d'un polynôme de degré 2 irréductible.
- (4). $L^{\circledcirc m}$ a une solution rationelle pour

• m = 6: tétraédral

Rationalité

- m = 8: octaédral
- m = 12: icosaédral

le polynôme correspondant est toujours irréductible.

(5). $SL_2(C)$: pas de solutions liouvilliennes.

Implanté en Maple.

Plus rapide que Kovačic pour les cas "difficiles". Application : résolution de Riccati par radicaux.

II.3 (Chapitre II.6)

II.3 Calculs d'invariants par les Darboux

En théorie des invariants (Fuchs, Drach, ...) : Hessien H, Hessien bordé HB, et Jacobien J

Proposition 46 (JAW, p. 51):

 $\overline{D(M_i)} = \alpha_i M_i$ (pour i = 1, ..., n) polynômes de Darboux de degré m_i pour Y' = AY.

$$D(H(M_i)) = (n\alpha_i - 2Tr(A)) H(M_i)$$

$$D(HB(M_i, M_j)) = (2\alpha_j + (n-1)\alpha_i - 2Tr(A)) HB(M_i, M_j)$$

$$D(J(M_1, ..., M_n)) = \left(\sum_{i=1}^n \alpha_i - Tr(A)\right) J(M_1, ..., M_n)$$

<u>Théorème 48</u> (JAW, p. 54):

L(y) = 0 d'ordre n, Y' = AY le système associé. Soit $y_{1,1}, \ldots, y_{1,n}$ un système fondamental de solutions de L. Si M est une intégrale première polynomiale de degré m pour (A^*) , alors le coefficient de y_1^m dans M est un polynôme homogène de degré m en les $y_{1,j}$ (solution de $L^{\textcircled{s}m}(y) = 0$).

II.3 (Chapitre II.6)

Accélération de l'algorithme de Singer-Ulmer

Équation de Hurwitz ($G = G_{168}$):

$$L(y) = y''' + \frac{7x - 4}{x(x - 1)}y'' + \frac{72/7x^2 - \frac{2963}{252}x + 20/9}{x^2(x - 1)^2}y' + \frac{\frac{792}{343}x - \frac{40805}{24696}}{x^2(x - 1)^2}y = 0$$

$$I_6 = H(I_4), I_{14} = HB(I_4, I_6), I_{21} = J(I_4, I_6, I_{14}).$$

Difficulté : calcul des invariants ($L^{© 14}$ impossible)

État actuel : conditions nécessaires sur singularités.

Idée: Résoudre un seul système différentiel.

$$f = x^4(x-1)^3$$

On calcule I.P M_4 de degré 4 pour $A^* \longleftrightarrow I_4 = 0$.

Alors
$$M_6 = f^2.H(M_4) \longrightarrow I_6 = \frac{1}{x^4(x-1)^3}$$
.

Puis
$$M_{14} = f^2.HB(M_4, M_6) \longrightarrow I_{14} = \frac{1}{x^9(x-1)^7}.$$

Et enfin
$$M_{21} = f.J(M_4, M_6, M_{14}) \longrightarrow I_{21} = \frac{1}{x^{14}(x-1)^{10}}$$
.

Remarque : on n'a pas besoin de tous les termes de M_4

Pour l'ordre 3, on reprend la classification de Singer-Ulmer.

II.4 (Chapitre II.7)

Degré des I.P. de systèmes irréductibles

Décider l'existence (ou non) d'intégrales premières.

Première idée : bornes générales (invariants).

Deuxième idée : décision autrement. Ingrédient clé :

Lemme 53 (Brownawell, Beukers, Heckmann) $G \subset SL_n(C)$ irréductible, V espace de solutions de Y' = AY. S'il existe m t.q $S^m(V)$ réductible, alors : Soit G/Z(G) est fini ; solution liouvillienne Soit $S^2(V)$ est réductible.

Décision pour n=2,3, solutions liouvilliennes, groupes spécifiques, n premier . . .

MAIS

il y a des "groupes" qui n'ont pas d'invariants

→ classifications.

II.4 (Chapitre II.7)

Systèmes réductibles

Cas réductif :
$$A = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_2 & 0 \\ \vdots & \vdots & \ddots \end{pmatrix}$$
.

 \longrightarrow Critères.

Cas non-réductif :
$$A = \begin{pmatrix} A_1 & 0 & 0 \\ B_1 & A_2 & 0 \\ B_2 & B_3 & \cdots \end{pmatrix}$$
.

→ Plus compliqué 14^{ième} problème de Hilbert $Th\dot{e}se$ 17

En conclusion

Méthode intéressante quand le groupe de Galois est de dimension "petite" (ex : fini) ou "grande" (ex : $SO_n(C)$, $PSL_2(C)$).

Étape vers le théorème de Chevalley, quelles autres constructions utiliser?

Questions algorithmiques:

Solutions rationelles de systèmes sans convertir? Calculs "efficaces" d'invariants?

Systèmes à paramètres?