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Abstract

In general, there is no method for finding closed form first
integrals or solutions of ordinary differential equations with
non-constant coefficients. Thus, one usually performs heuris-
tics, but this involves fastidious computations. The aim of
this paper is to propose strategies that computerize such
heuristics to help the analysis.

In section 1, we formulate our questions in terms of dif-
ferential algebra. Then, we are able to derive algebraic con-
structive criteria for the search for closed form solutions of
differential equations of the type s(z,y,...,y" ")y +
t(x,y,...,y("_l)) = 0 (sections 2 and 3). In particular,
we focus on the so-called Special polynomials (or Darboux
curves). In Section 4, we show how our tools link the ex-
pression of the solutions to that of the first integrals, and
how it gives a strategy to compute them. Then, in section 5,
we show how these techniques permit to derive algorithmic
methods to find solutions of order n—1 for linear differential
equations of order n; we specifically detail the second order
case.

1 Preliminaries

To study differential equations in a computable way, we shall
use differential algebra, a generalization of commutative al-
gebra to differential equations.

In this section, we recall its outlines. For a complete expo-
sition, the reader is referred to [10], [4], [11], or [5].

1.1 Differential algebra

Let k be an ordinary differential field, that is a field equipped
with a derivation, a linear operation ' such that k is stable
under ' and Va,b € k, (ab)’ = a’b+ab’ (Leibniz’s rule). The
constant field C of k is the subfield of elements ¢ of k such
that ¢’ = 0. As an example, one may check that C(z) (with
the usual derivation % that sends any element of C to 0
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and z to 1) is a differential field. In order to understand
better what follows, the unfamiliar reader may think of k£ as
a field of meromorphic functions on some given regions of
the complex numbers that are closed under differentiation
(see [11]). Unless stated otherwise, we assume in the sequel
that C is algebraically closed.

Consider a countable set Y(¥) of indeterminates; if we
impose Y011 = Y(i)’, then we can consider the differential
ring k{Y'} = k[Y,Y’,Y" ...] of differential polynomials and
Y is called a differential indeterminate. In that setting, a
(ordinary) differential equation may be viewed as an equa-
tion between differential polynomials.

An ideal of k{Y} is said to be differential if it is stable
under . Let y be an element of a differential extension of
k (an extension with a derivation that extends ’); the set
I(k; y) of all differential polynomials in k{Y} that vanish at
y 1s a prime differential ideal. Conversely, given I a prime
differential ideal of k{Y}, we may find y in an extension of
k (namely, the coset of Y in k{Y}/I) such that I = I(k;y));
such a y is called a generic zero of I.

Let Q = Q(Y,Y’,...,Y(") be an algebraically irreducible
differential polynomial over k, and [@] the differential ideal
generated by Q. The separant Sep(Q) is defined as ﬁﬂ;

if @ is of order » and of degree m in Y("), then the initial
In(Q) is the coefficient of Y™™,

If we call H the multiplicative semi-group generated by
(Sep(Q@),In(Q)), then the ideal I(Q) := [Q] : H = {P €
k{Y} st Inr,ns € N : In(Q)" Sep(Q)"S P € [Q]} is prime.
The converse is true: if I is prime, then there exists a @
such that I = [@]: H. For proofs, one may consult [10] pp
30,31,45,57 and [5] lemma 2 pp 167.

1.2 Zeroes of differential polynomials

The notion of zero of a differential polynomial can be con-
fusing, so let us explain what we search for and settle alge-
braically what we mean by closed form solution.

We say that an element 5 of a differential extension of k&
is a zeroof Q if @ € I(k;n); a generic zero y of 1(Q) is called
a generic zero of @ (roughly, a zero of @ that is not a zero of
any lower polynomial). Any zero of @ is a specialization of
y: any (differential) relation satisfied by y will be satisfied
by any zero of Q.

In the sequel, the notation P will stand for a quasi-linear
differential polynomial, which means that it is linear in its
highest derivative:

P=s(¥,...,YOTOYO 4oy, vy,



A zero 5 of P will be said to be of order r if the lowest
order differential polynomial @ such that Q(n,5’,...) = 0
is of order r. For example, if k = C(z) and P =Y" 4+ 7Y,
then the generic zero will be of order 2 whereas sin z will be
of order 1, for it is a transcendental zero of Y? 4+VY?-1.
Conversely, sin z is a generic zero of Y +Y? — 1 but not
of Y/ 4+Y.

Now, to solve a differential equation means to character-
ize the zeroes of the associated differential polynomial. In
some sense, this means that we want to classify the zeroes
of P by their order over k.

The link with the classical notion of solution of a dif-
ferential equation is the following. A function f is usually
characterized by the property of being a zero of some prime
differential ideal I and a set of initial conditions. Now, given
some differential polynomial @, to check if Q(f) = 0, one
has to consider the composition of the two successive mor-
phisms: k{Y} 2N E{Y}/I R F, with F some functional
space which f belongs to. We will not consider the mor-
phism @2, but we focus on the kernel of ¢;.

A method due to Ritt for testing if a differential poly-
nomial @ belongs to Ker(¢1) is applied in section 2. In the
remaining sections, we deal with the inverse problem, that
is: given Q, find a prime differential ideal I properly con-
taining I(Q) (so @ € Ker(¢1)). Suppose such an [ exists;
then, there is an R such that I = I(R) (see previous section)
and @ is said to be soluble in closed form. This is equivalent
to saying that there exists R € k{Y} whose generic zero is
a zero of Q.

For example, the Airy polynomial Y —zY is not soluble
in closed form over C(z), whereas V" + Y is (e.g take I =
[Y' +1Y], with P +1 = 0). This motivates the following
definition:

Definition 1.1 We say that a differential polynomial Q is
r-soluble over k if there exists R € k{Y'} of order r such
that a generic zero of R is a zero of Q.

2 The singular zeroes

For further considerations, we shall need an order on the
monomials of k{Y}. In the sequel, we consider the lexico-
graphic order with : > j = Y > v Two monomials
m; and mo which just differ by multiplication by some ele-
ment of k are called equivalent (m1 ~ mg). Then, we extend
this order to the differential polynomials: any polynomials
@, R € k{Y} have leading monomials Im(Q) and Im(R) and
we say that @ > R if Im(Q) > Im(R).

If we are given two differential polynomials @ > R with
ord(@) = n, ord(R) = r and n > r, then we can re-
duce @ with respect to R as follows (see [10]): We have
R(»=7) = Sep(R)Y(")—}-lower terms. So, we get Sep(R)Q =
an_rR("_r) + terms in Y (=1 and lower ones (with ap_r €
k{y}). Proceeding repeatedly, we reduce again until the re-
mainder is of order r. Then we perform an algebraic reduc-
tion, to obtain the following relation:

i=n—r

In(R)"Sep(R)" Q= > aiRY + R,

=0

with @ > R > Ry and m some integer. The polynomial Ry
is the reductum of @ by R.

Though simple, this reduction process will prove power-
ful on the two forthcoming results. A zero of a differential

polynomial @ is said to be singular if it is also a zero of

Sep(Q) or n(Q).

Theorem 2.1 Suppose we take P = s(Y,. .., Y("_l))Y(")+
ty,..., Y(”_J)). Then one can, in a finite number of steps,
decide if P has singular zeroes and produce their minimum
polynomial.

Proof. - Due to the form of P, the question is just to
decide whether s and ¢ have a zero in common, which can be
done the following way. Suppose s > ¢ (else, switch them);
reducing s with respect to t, we get another polynomial ¢:.
A key point is that a common zero of s and tis still a zero of
t1. We reduce s and ¢ with respect to t1 and produce again
other polynomials. If the process produces 1 (or any element
of k), then s and ¢ have no zero in common; if not, as the
reductums are always lower and lower, the process stops at
some point. Set ¢ to be the lowest among our collection of
polynomials. By minimality of ¢o, s and ¢ reduce to 0 by to.
So a non-singular zero of ¢y is a common zero to s and ¢ of
minimal order. If all zeroes of o are singular, then ¢g is not
algebraically irreducible, so we reduce s and ¢ with respect
to each factor of to and iterate the process. []

This being settled, we can focus our attention on the
non-singular zeroes of P.

3 The non-singular zeroes

3.1 A general criterion

Use of the method of the previous section allows for a general
(theoretical) criterion for testing if P is soluble.

Lemma 3.1 The polynomial P is r-soluble if and only if
there is an algebraically irreducible differential polynomial
R of order r, an integer m, and some elements a; € k{Y},
1 =0,...,n —r such that

i=n—r

In(R)"Sep(R)""P = > aiR" (1)

Proof. - The identity (1) clearly implies that a generic
zero of R is a zero of P (because In(R) and Sep(R) are lower
than R). Conversely, suppose that P is r-reducible. Then,
there exists some minimum R € k{Y} of order r such that
the generic zero p of R is a zero of P. The minimality of R
implies that it is algebraically irreducible. Reduce P by R:
we obtain In(R)™Sep(R)"™"P = 3.2 a; R 4+ @ with
Q lower than R. But Q(p) = 0; so, as p is generic for R, we
get @ = 0. |:|

Note that this is just a rewriting of the properties that
we recalled in section 1.

At this point, it would be illusory to hope to directly
extract from this criterion a practical algorithm for finding
a candidate for the polynomial R. So, in the sequel, we
particularly study a specific case of this lemma, that is the
case when r =n — 1.

3.2 The special semi-group

Consider P = s(Y,..., YD)y L y(y,..., Y("V) and
let y be as usual a generic zero of P. We introduce a conve-
nient notational abuse: we shall write k{y} := k{Y}/I(P).
This is a non-integral algebraic extension of k[y, ..., y("_l)].

n)

So, every time that y( appears in a computation, we will



multiply it by s(y,..., y("_l)) and replace that product by
ty, ..., y("_l)). This way, we always reduce computations
with y to computations in k[y,...,y" V). As y is generic
for P, this latter ring behaves as an algebraic ring in n in-
dependent indeterminates.

As theorem 3.1 will soon show, applying criterion 1 for
r = n — 1 motivates the study of the set Sp of all the poly-
nomials f in k{y} such that f formally divides sf’.

Lemma 3.2 If f,g € Sp, then fg € Sp. Moreover, if we
have f € Sp, then any irreducible factor of f is in Sp

Proof. - These are easy consequences of Leibniz’s rule.
Up to immediate rewriting, the proofs (and additional prop-
erties) at order 1 of [2] or [9] apply here. []

Therefore, it follows that we may focus on the irreducible
elements of Sp. Note that they are at most of order n — 1.

Definition 3.3 The set Sp is called the special semi-group
associated with P. An element f of Sp satisfyingsf = af is
called special for P with factor a. We will omit the mention
“for P” when the context is clear. Furthermore, f will be
said to be trivial if it belongs to k.

Remark. - The terminology “special” was introduced by
Bronstein ([2]) to understand how the theory of integration
in finite terms extends to extensions of type y' = H(y), H €
k[y] (see [9] for extensions of type s(y)y’ = #(y)). However,
the concept is rather classic; such polynomials are also called
“Darboux curves” in the literature (see [13, 7]). They were
(up to my knowledge) mainly used in the search for first
integrals

Lemma 3.4 Suppose f € Sp is an irreducible special poly-
nomial. Then, either f divides s, or f is of order n — 1.

Proof. - The elements in Sp are of order at most n — 1.
Suppose f is of order 1 < n—1; then, f’is a true polynomial
(no terms in y(")). Consider the identity sf’ = o f between
algebraic polynomials in n variables; then the irreducibility
of f implies that it divides s or f'. Suppose that f divides
f'; then, as f' is order ¢ + 1 (multiplication by s doesn’t

change anything in that case), f must divide 2L ey ( y- Since f
is of higher degree in y(i), this is impossible. So f divides
s.

Let us take an example: let P =YY" — nY'?. We then
have two special polynomials: fi = y’ (because s = y and
sfi = ny'f1), and fo = y" (because sf; = ny'f>). Note
that, in that case, fi and f, have the same factor, so &L is a
(new) constant in the fraction field of k{y} (see section 4).

Theorem 3.1 Suppose f is a special polynomial of order
n — 1. Then any non-singular zero n of f is a zero of P.

Conversely, if P admits a zero ) of order n — 1, then the
mentmum polynomial f of n is special for P.

Proof. - An identity between polynomials in y of order
n—1 or less is still valid for Y. Let fo := s(f'—y(™ 69(" 7 )—

t—ay(n i f2is of order n — 1. As f € Sp, fo = af; now,
sf'(Y) = f2(Y) + ooy (V) x (sY™) 4 1) in k{Y}. But,

as fo = af as polynomlals of order » — 1, this implies that
sfl —af = ay(an—f_l)(Y) x P in k{Y}; thus, a non-singular
zero n of f is a zero of P.

To prove the converse, we reduce sf’ (which is of order
n—1) by f. We get that, for some integer m and 8 € k{y},

In(f)"sf'— Bf = g with g < f. But f is minimum for 7 so
g has to be identically zero. Thus, In(f)™sf' = 8f. But f
is irreducible, so In(f)™ divides # and f € Sp []

Up to now, the computation of the special polynomials
is in general an open problem. The first difficult step is to
bound the degree m of the possible candidates. Secondly,
given m, pick a (differential) polynomial f of degree m with
unknown coefficients. Reducing sf’ by f, we get a first or-
der differential system for the coefficients of f (with as many
equations as coefficients). But, the process of reduction in-
duces non-linear terms in the system, so finding its rational
solutions is in general a matter of skill. Yet, it appears to be
an interesting heuristics for low orders and degrees. Prelle
and Singer have proposed a method for n = 1 (see [8], and
[7],[13] for references to alternative approaches) that is im-
plemented (at least) in MACSYMA.

In the next section, we show how the knowledge of only
one element of Sp helps finding first integrals. Then, in
section 5, she show how (modulo the question of the degree)
one can compute elements of the special semi-group.

4 Generic constants

It is classic, when studying differential equations, to search
for first integrals in order to integrate the differential equa-
tion. Following the previous formalism, we will concentrate
on a special kind of first integrals.

We say that the pair f,g € k{y} is in canonical form if
ged(f,g) =1, g is monic, and f > g.

Definition 4.1 The polynomial P is said to admit a generic
constant if there is a pair f,g € k{y} in canonical form such

that s(f'g — fg') =

This definition is equivalent to saying that there are new
constants in the fraction field of k{y}; it is also equivalent to
saying that the polynomial P admits a rational first integral:
for any zero 5 of P, %(17) is a constant. Note that, again,
we cannot cancel the multiplication by s if we want to keep
a polynomial equality to zero.

Lemma 4.2 If the polynomial P admits a generic constant
(f,9) in canonical form, then the order of f isn —1. Thus,
for any constant ¢, any non-singular zero of f —cg is also a
zero of P.

Proof. - This result is a consequence of theorem 3.1. As
f is prime with g, s(f'g — f¢') = 0 implies that f divides
sf’. So, f and ¢ are both special with the same factor; this
remains true for f — cg (in fact, the generic constants of P
form a C-algebra).

Theorem 3.1 applies if f—cg is of order n — 1, so suppose
f and g were factors of s, both of order < n — 1. Then we
would have f'g — fg' = 0; as f could not divide f' (it is
of higher order), it would have to have a factor in common
with ¢, a contradiction. Therefore, the order of f is n — 1
and we are done. []

It follows from this lemma that techniques for finding
special polynomials can bring us two things. First, they
show the link between rational first integrals and zeroes,
and secondly they provide a technique for finding rational
first integrals. To do that, the key point will be the following
simple lemma:

Lemma 4.3 Let m be an integer and o € k{y}. Then, one
can decide in a finite number of steps if there exists f € k{y}
of degree m such that sf' = af. If so, the decision procedure
provides the coefficients of f.



Proof. - Let f have unknown coeflicients; as y is generic
for P, the relation sf’ — of = 0 implies that all coefficients
of the (differential) polynomial sf’ — o f are equal to zero; as
we know s and «, this yields a first order linear differential
system for the coefficients of f. Finding rational solutions
(and deciding their existence) of such a system is algorithmi-
cally well-known, (see, for example, proposition 3.2 pp 669
n [12]): this gives the coefficients of f. []

Remark. - Suppose we are given a polynomial g € Sp
with factor o and we want to find f such that f/g is a
generic constant. In some cases, one can retrieve from g a
bound on the degree of f; in this case, the above heuristics is
transformed into an algorithm (see proposition 5.6 below).

This is the method that we used in the example follow-
ing lemma 3.4. Here is another example (provided by Bob
Caviness). Consider the first order differential equation over

Q(=):
P=zQ2y+rs-1)y —yy+2z+1)=0.

We have an obvious solution y=0, so y € Sp. In fact, sy’ =
ay with o« =y + 22+ 1. So, to find a generic constant, we
pick a degree m, take a generic polynomial f := Efiy’ of
degree m in y, and consider the relation sf' —af = 0.

One may check that there are no candidates for m = 1
or m = 2. For m = 3, we get the following first order linear
differential system in the coefficients of f:

a
z(z — l)gfo(x) —
d d
Eﬁ(z) +2 zEfO(ﬂﬁ) -

fola) (22 +1) =

z(z — 1)
z(z - 1>if2<z)+zz%f1(x)+<zz+1)f2(x) E
P (2= 1) o fo(n) +

2 fa(z) + 2x£f3(13) =

We easily find the rational solutions of this linear differ-
ential differential system, so:

—coy® + 3(z — 1)coy® + ((—3z

fO(z) = O;

(47 +2) fa(e) + fo(= )+2z—fz( ) =0,

—3)co + zcl) y+(z—1)co

f =
z
where cg and ¢; are arbitrary constants, and f/y is a generic
constant for P. In particular, for ¢1 = 6¢0, we find the first
integral that MACSYMA provides (type USAGE(ODEFI) under
MACSYMA):
(—y+z—1)°
Ty '

This example shows that, to compute an f € Sp such
that sf’ = af, one should first focus on finding candidates
for the factor . Note that, then, our method works at any
order (whereas MACSYMA seems to treat only the first order
case).

An interest of these results lies in the fact that the study
of the constant field of a differential extension provides in-
formations on the extension itself ([16]).

We now turn to a case where we can explicitly compute
elements of Sp.

5 The case of linear differential equations

In this section, we suppose that & = C(z), where C is some

computable number field. Let L(Y) = Y 4, YD 4

.4+ aY = 0 be a linear differential equation on k (it
can always be reduced to this form, see e.g [14]), and y
a generic zero of L. The extension k{y} can be identi-
fied with k[y,y’,..., 3" ™V] with the derivative of y("~
being — 22:02 aiy(i). The main feature of these linear equa-
tions that we shall use here is the fact that the derivation
on k[y,v',..., y("_l)] is homogeneous of degree zero, which
means that the derivative of a monomial of degree m is a
homogeneous polynomial of the same degree m.

5.1 Computing the special semigroup

Lemma 5.1 Suppose L admits a special polynomial f with
factor a (f' = af). Then, a € k and each homogeneous
component of f is itself a special polynomial with same factor
a.

fi with each f; homogeneous.

Proof. - Write f = E;’;O
As f is special, we have:

dof=ad s (2)

As the derivation is homogeneous, f/ is still homogeneous
and has the same degree as fi;. Suppose a has a term a4 of
degree superior to 0. Then, comparing degrees on the two
sides of (2), we get that ay fr, = 0. As fr, # 0, ay =0
and a € k. Now, comparing the terms in (2) at each total
degree, we get that for all i, f/ = afi. []

It follows that we may focus our study of SL to the study
of its monic homogeneous elements, which is the key to the
following:

Theorem 5.1 Given any integer m, one can decide in a
finite number of steps if L admits a special polynomial of
degree m.

Proof. - For this proof, let us write y; in place of y(i).
buppose f = yno1 + fo- 1y,7?_11yn 2 4+ ..., where the fi,
1=0,. 1/ — 1 are the coefﬁments of f. differentiating, we
get f’ 2+ v st 6yl

So, f' = (— :.;02 a,yz)aynf_1 + fu—1y7_ 1 + lower terms.
A term in y;' ; can only come from differentiating a term in
Yn—2: as there is no term in y,—1 in L, differentiating with
respect to yn—1 strictly lowers the degree in yn—_1. Thus,
f' = fo_1y™, + lower terms. So, equating to zero the
coefficients of f' — fu—1f produces the conditions for f to
be special. If V is a vector in k¥ whose entries are the
unknown f;, then these conditions can be rewritten as the
system (N L) in the lemma just below. So, the proof the
following lemma yields the desired algorithm.

Lemma 5.2 Let V = (fu_1,..., fo)" be a column vector
of unknowns in k¥, B a known column vector of k¥ and
A € M, (k) a square v x v matriz of known elements of k.
Then, one can compute the rational solutions of the (slightly)
non-linear system

(NL):  V'=f,1V+ AV +B.

Proof. - Let § be some unknown verifying 6’ = —fu—16.
The idea will be to express the f; linearly in terms of § (and
its derivatives) and then find conditions on é for the system
to have a rational solution.



We have 8" = (—f,_1 + f2_1)é; if we replace f,_; by its
expression in (N L), the term f7_, is canceled and we get:

8" = (—fim1 + foo1)8 = (—MV — B1)s

where A; (resp Bp) denotes the first row in A (resp B). The
recursion is now easy. Suppose that §(9) = (AsV +¢;)8, with
A; a row vector in k¥ and ¢; € k. Then:

ST = (AIV + AV +¢f = fumt AV — fu_ici) §
= (AV+AAV + A Bt ci —cifym1) b

and so we get recurrence formulas:

Aipr = AL A A - (ci,0,...,0)
Cit1 = AZB-FC:

Now, there is a number v of f;, and so the expressions
A1V, ..., Ap;1V are linearly dependent. Performing Gaus-
sian elimination, we find the lowest integer vo such that
A1V,...,A,, are linearly dependent. Then, the 50 — ¢6
(i=1,...,v0) are linearly dependent, and § satisfies a sys-
tem (CC) of homogeneous linear differential equations L,
of orders vy, ...,v+1: these are the compatibility conditions
for the linear system in the f; to have solutions.

At this point, finding rational solutions to (N L) is equiv-
alent to finding a solution of (C'C') whose logarithmic deriva-
tive is rational. Making successive reductions as in section 2
between the L,,, one easily finds a single linear differential
equation L,, of order v1 < vy such that (CC) has a solution
8 if and only if L,, (6§)=0.

So, our problem is reduced to finding a zero 6 of L.,
whose logarithmic derivative is in k. This problem is al-
gorithmically well-known; for example, we may use the al-
gorithm that Bronstein ([3]) has implemented in AXIOM to
solve it. Knowing 6, we know f,,—1 and we solve the re-
maining linear system to find the other coefficients. []

Remark. - A rationality result follows from lemma 4.1
of [15]: if C is not algebraically closed and our problem has
a solution in E(m), then it has a solution in C;(z) where C;
is an extension of C of degree at most v1; however, it is not
clear yet whether the algorithm in [3] will produce such a
solution.

There exists a theoretical bound on the possible degrees
for f. However, it is not constructive (see [7],[13]). So, the
above procedure does not yield a complete algorithm for
computing the whole of Sy,

Remark. - If the degree is one, then the procedure just
described yields the adjoint equation to L (that is the equa-
tion that admits a right factor whenever I, taken as a dif-
ferential operator, admits a left factor, see e.g [12])

5.2 The second order case

Suppose L(Y) = Y" 4+ rY. Tt is classic that the change of
variables Y’ = UY induces the Riccati equation Ri(U) =
U'—r 4+ U? =0. The study of L can therefore be reduced
to that of Rs.

One efficient point in the previous algorithm is that the
knowledge of the first coefficient linearly determines the re-
maining ones. This sheds light on a specificity of the sec-
ond order case when one searches for liouvillian solutions
of differential equations (see e.g [6] or [14]): in that case,
the minimum special polynomials agree with the minimum
polynomials of algebraic solutions to the associated Riccati
equation.

Theorem 3.1 helps us find again the usual classification
of zeroes of I, that is: L admits a non-generic zero if and
only if R: admits an algebraic solution, which is summed up
in the following known lemma:

Lemma 5.3 Suppose f is a non-trivial homogeneous irre-
ducible element of S, and let f(y,y') = y” f(u) then: the
equation Ri(U) = 0 admits an algebraic solution v and the

polynomial f is the minimum polynomeal for v.

Moreover, for any algebraic solution v of Ri(u) = 0 with
minimum polynomial § of degree n, the polynomial g :=
y"ﬁ(%) is special for L.

Proof. - The first part is a direct consequence of lemma
5.1 and theorem 3.1. For the second part, the minimality of
g implies that § is special for R:; then, an immediate change
of variables shows that ¢ is special for L. []

Remark. - We know that the degree m of the minimum
polynomial of a solution of the Riccati equation is to be cho-
sen in the list 1,2,4,6,12 (see [6]). Thus, using the algorithm
following theorem 5.1 for each of these values of m, we ob-
tain an algorithm for solving second order linear differential
equations. It belongs to the same family as the algorithms
in [6] and [14]: in the second order case, the equation that
we produced for § is exactly the m-th symmetric power (see
[12]) of L.

We now turn to generic constants. The previous results
help us refine the link that is shown in [13] between Liouvil-
lian solutions and Liouvillian first integrals:

Lemma 5.4 Suppose Ri(U) = 0 admits an algebraic solu-

tion with minimum polynomial f of degree n > 2, and let
~

A be its discriminant; also, set f(y,y') = y"f(yy—) Then

f2(n=1)
A

18 a generic constant for L.

Proof. - Write f = y'" 4+ a(y’)" 'y + ---. We have
seen that f' = af. Now, the discriminant of f is A =
[, (ui —u;) (recall that A is rational). But, all zeroes of

f are zeroes of R1; so, we have
' o / 22
oy s
A U; — Uy u; — Uy

1#] i#]

Thus, % =-2(n—1)Y ui =2(n—1)a. As f' =af, we get
that £2=1 and A have the same logarithmic derivative. []

Corollary 5.5 L has a liouvillian first integral if and only if
it has liouvillian solutions. In that case, it has a polynomial
first integral unless Ri has a rational solution uo which is
not the logarithmic derivative of an element in k: there, the

first integral is ef “(y' — uoy).

Remark. - The Riccati equation can admit a fraction
as a generic constant, but it cannot admit a polynomial
generic constant: the leading coefficient of a candidate f
would be the leading coefficient of the derivative, so it would
be zero. This remains obviously true for equations of type
s(u)u’ = t(u) with deg,t > 1+ deg, s.

Lemma 5.4 illustrates the following idea: The fact of
being a first integral is much stronger than that of being a
solution, for it defines a whole set of solutions. It is therefore
not too surprising that it algebraically induces higher com-
plexity to find a first integral than to find one corresponding



solution. However, the degrees of the first integrals derived
from lemma 5.4 are highly not sharp (see [14] pp 59-63): we
just mean that the complexity of finding first integrals is at
least that of finding one single solution.

Last, we show how we can use lemma 4.3 to find generic
constants for the Ricatti equation:

Proposition 5.6 Suppose we are given a polynomial § that
18 special for Ri. Then, one can decide in a finite number of
steps if it can be the denominator of a generic constant of
Ri. If so, the decision procedure computes the numerator f

Proof. - Suppose deg,, f = n and deg, § = m; the leading
coefficient of f'§ — §'f is (n — m)fngm and it is zero; so
n = m. Thus, as we know §, we know the degree m of f.
Now, defining o by ¢’ = ag, we apply the procedure from
lemma 4.3 to compute f from m and a.

5.3 Example

Consider the equation

Ly):=2*(z =1 5z =25z +4)> (52— 1)%y"
+ (5625 2° — 4500 ° 4 4800 2* — 5160 2 4 1602 «°
—192z +12)y =0

Computing the second symmetric power of L, we get a
rational solution to the Riccati equation and the following
special polynomial for L:

fo=22(z — 1)*(52 — 2)* (52 4 4)* (52 — 1)*U?
— (2502* — 2752% + 352% + 52z — 8)
x (z —1)(5z — 2)(5z + 4)(5z — 1)zU
+12 — 1442 + 12622 4 3360z — 102502*
+38752° + 225002° — 3437527 + 156252°

Note that, in this example, our method is completely
similar to the Kovacik algorithm ([6],[14]).

_ Let us call f the monic polynomial obtained by dividing
f« by its leading coefficient. The discriminant of f is

(—2452)?
22 (5z—1)(z —1)(5z +4)2

Let f(y,y') = y™ f(u); then, by lemma 5.4, f2/A is a poly-
nomial first integral for L.

By lemma 5.4, we can also directly search for rational
solutions of the fourth symmetric power of L; it has two
independent solutions:

25z (647 — 22427 — 540 2° + 200 z* 4 500 2°)
T 64 (52 — 2)°

and

257 (64 — 424 2% — 5965 2° — 1050 z* + 7375 2°)
64 (57 — 2)? ‘

2 =

To each é; corresponds a polynomial f; € §;. Computing
the logarithmic derivatives, one may check that é; f1 and
b2 fo are polynomial first integrals of L. Their expression is

too big to be given here; However, this last method is much
faster than the first one (in our case, the computation took
a few seconds with MAPLE).

Also, applying the algorithm in proposition 5.6, one may
check that f~1 and fg can both be denominators of generic
constants of the Ricatti equation.

6 Conclusion

The missing computer tools to perform the methods and
algorithms described along the paper are being implemented
(in MAPLE at the present time). Thus, even though there
are still no general algorithms to answer the questions that
we posed in the introduction, the ability to handle special
cases should be enhanced.

The main problem on this topic remains to be the knowl-
edge of bounds on the degree of the monic irreducible special
polynomials that we consider (in the same way that it is the
main problem when one searches for liouvillian solutions to
linear differential equations).

Modulo this central problem, the results in sections 4 and
5 seem to indicate a general strategy: to find polynomials
f such that sf’ = af, one should first search for conditions
on a. For example, the a priori knowledge of o is a key
point in the Prelle-Singer method ([8]). Also, a reason why
the linear case works so well is that we know the shape of o
and how to compute candidates for av. Work is in progress
in this direction.

Up to now, the method applies best in the linear case.
There, we hope that the algorithm provided in theorem 5.1
should generalize to find lower order zeroes. Also, we saw
in the second order case that we could sometimes adapt the
last step of the method in 5.1 and search directly for rational
solutions of some linear differential equation. There is a very
fast algorithm to solve this last problem (see [1]), so it may
be an interesting strategy.

The author would like to thank Jean Moulin-Ollagnier,
Michael Singer, Felix Ulmer, and Manuel Bronstein for fruit-
ful conversations during the preparation of this paper.
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