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Abstract

There exists algorithms to find Liouvillian solutions of second order
homogeneous differential equations (see [5, 9]). In this paper, we note
that, by carefully combining the techniques of those algorithms, one can
find the liouvillian zeroes of an irreducible second order linear differential
equation by computing only rational solutions of some associated linear
differential equations. If the equation is reducible, then one can either fac-
tor the equation or prove that the Galois group is completely reducible by
also computing only rational solutions of an associated linear differential
equation. The result is an easy-to-implement reformulation of the Ko-
vacic algorithm for second order equations where in the irreducible case
no algebraic extensions of the field of constants of the coefficient field is
necessary.

1 Introduction

Let k be a differential field with derivation 6 denoted éy = ¥, 6%y = ¢,...The
field of constants {¢ € k|¢’ = 0} is denoted Cr. Let L(y) = 0 be a linear
differential equation with coefficients in k. We consider 3 classes of solutions of
L(y) = 0: the rational, resp. exponential, resp. Liouvillian solutions/zeros (over
k) are the solutions of L(y) = 0 are those which are in &, resp. whose logarithmic
derivative belong to k, resp. which can be written using [, exponentials and
algebraic functions (cf. [5, 6, 9]). We assume in the following that, when needed,
differential fields come equipped with two algorithms: one that finds exponential
zeroes and one that finds rational zeroes of linear operators (see e.g. [1, 2, 7]).
The existing algorithms [5, 6, 9] which compute Liouvillian solutions of
L(y) = 0 are based on differential Galois theory and assume that the coeffi-
cients L(y) = 0 belong to a differential field K whose field of constants Cg is
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algebraically closed of characteristic 0. In this paper we always assume that

such a field K exists and contains k (e.g. k = Q(z) C K = Q(2)).

Theorem 1 (cf. [6], Theorem 2.4) If L(y) = 0 with coefficients in K has a
Liouvillian solution, then there is a solution z whose logarithmic derivative z' [z
(a solution of the associated Riccati equation) is algebraic over K of degree
bounded by a function depending only on the order of L(y) = 0 (not on the
particular equation).

The output of the algorithms is a minimal polynomial P(u) of an algebraic
logarithmic derivative z’/z. One proceeds in two steps:

1. Bound the degree of P(u) (cf. [5, 6, 9]).
2. Compute the coefficients of P(u).

In general, the computation of the coefficients of P(u) is based on the com-
putation of exponential solutions of some associated differential equations. The
algorithm presented in this note is an easy-to-implement reformulation of Ko-
vacic’s algorithm for second order equations presented in [5]; in the sequel, the
computation of exponential solutions is as much as possible (always for the ir-
reducible case) replaced by the usually easier computation of rational solutions.

For k = Q(A)(2) C K = Q(z) one also has that the computation of rational so-
lution can be done over k, i.e. no new algebraic constants need to be introduced
(cf. [2] for details and further references).

2 Algebraic degree of a solution of the Riccati
equation

In the algorithms [5, 6] one computes the minimal polynomial of an algebraic
solution of minimal algebraic degree over K of the Riccati equation associated
with a second order linear differential equation. In this note we show that
there are some advantages in also considering algebraic solutions of the Riccati
equation which are not of minimal degree.

We will use the fact that to a linear differential equation L(y) = 0 of order
n and with coefficients in K one can associate a differential Galois group G(L)
which is a linear algebraic group with a faithful action on the Cx-vector space
of solutions V(L) of L(y) = 0. Thus, after choosing a basis of V(L), we have
G(L) C GL(n,Ck).

Theorem 2 ([4], p. 41) The differential Galois group G(L) of a differential
equation of the form

Ly) =y + anoiy™ ™+t ary +aoy=0  (a; € K)

is a unimodular group (i.e. G(L) C SL(n,Cx)) if and only if AW € K, such
that W/ /W = ap_1.



Using the variable transformation y = z - exp

fan—l o, .
—=—— ] it is always pos-
n

sible to transform a given differential equation into one where the coefficient
of y»=1) is zero and thus whose differential Galois group is unimodular. The
transformation does not alter the Liouvillian character of a solution. This will
allow us to always assume, after transformation if necessary, that the differential
Galois group is unimodular.

A group G C GL(n,Ck) is either reducible (i.e. has a non trivial invariant
subspace), or imprimitive (i.e. C" is a direct sum of non trivial subspaces that are
permuted transitively by G, or primitive (i.e. irreducible but not imprimitive).
Also, we say that L is completely reducible if it is the least common left multiple
of a set of irreducible operators; in the second order case, this is equivalent to
say that the Galois group admits a basis of eigenvectors. According to that, the
linear algebraic subgroups of SL(2,Ck) can be classified as follows (cf. [5, 9]:

1. The reducible but not completely reducible groups (/i.e. the non-trivial
G-invariant subspace has no complementary G-invariant subspace)

2. The completely reducible groups, in which the group is one of the fol-
lowing:

(a) A reducible linear algebraic subgroups of SL(2,Ck) (i.e. a diagonal
group)

(b) Animprimitive subgroups of SL(2,Ck ) which is either a finite groups
D3Iz of order 4n (a central extensions of the dihedral groups D)

and generated by:
e 0 0
(o )me (35

or the infinite group Dy, = Cx™ x Z /27.

(¢) An primitive finite subgroups of SL(2,Cx) which is isomorphic to
central extensions of one of the permutation groups A4, Si or As
and which we denote respectively A:sz, SfL2 and AE?LZ.

(d) The group SL(2,Ck).

The degree of the minimal polynomial of the logarithmic derivative z’/z of
a solution z equals the index of the stabiliser H of the Cx spann of z (cf. [9],
Lemma 3.1). The group H has a one dimensional invariant subspace. The
following counting process was used in [14]:

Lemma 1 Let L(y) = 0 be a second order equation over K whose differential
Galois group G is a finite unimodular group. Let Z(G) be the center of G.
Then, the number of irreducible minimal polynomials of degree m < [G : Z(G)]
of algebraic solutions of the Riccati equation is equal to 2/m times the number of



mazimal cyclic subgroups (i.e. not contained in a cyclic subgroups) of index m
of G. In particular, this number is always finite. All other zeroes of the Riccati
are algebraic of degree |G : Z(G)].

Proof. - Suppose w is an algebraic solution of the Ricatti equation; then, the
degree m of the minimum polynomial of w equals the index [G : Hi] of the
stabilizer Hy = Stabg(w) of w in G. Let y; be a corresponding solution of L
(i.e. ¥} = vy1). The solution y; is an eigenvector for all elements of H;. Note
that Stabg(w) always contains Z(G).

If m < [G: Z(G)], then Hj in not central. By Maschke’s theorem, there are up
to scalar multiples exactly two common eigenvectors y; and y» to all elements of
Hy. Tt follows that H; is abelian and, as it is unimodular, it is cyclic. Note that
Hy = Stabg(yh/y2) contains Hy and is also a cyclic subgroup of G with y2 as an
eigenvector. There is (up to scalar multiples) a unique basis of eigenvectors for
Hj in which H; will also be diagonal. Up to scalar the basis must be {y1,y2}
and H, stabilizes 3} /y1. Thus H, = Hs and H; is a maximal cyclic subgroup.
In particular y/y1 and y5/y» have the same algebraic degree m = [G : H4]
over K. Thus, each maximal cyclic subgroup of index m provides two different
logarithmic derivatives which are algebraic of degree m. Gathering them by
groups of m, we get the number of irreducible minimal polynomials of degree
m of algebraic solutions of the Riccati equation. []

For later reference we summarise the numbers obtained by computation in
the group theory system CAYLEY for some finite groups needed later:

Corollary 2 Let L(y) = 0 be a second order equation over K whose differential
Galois group G is an irreducible subgroup of SL(2,Ck). For the possible minimal
polynomials of an algebraic solution of the Riccati equation we get:

o If G = DzsL2 (i.e., G is the quaternion group), there are exactly three
minimal polynomials of degree 2 and all the others are of degree 4.

o IfG = AELQ, there are exactly two minimal polynomials of degree 4, one
of degree 6, and all the others are of degree 12.

o IfG= Ssz, there is exactly one minimal polynomial of degree 6, one of
degree 8, one of degree 12, and all the others are of degree 24.

o IfG = A?Lz, there is exactly one minimal polynomual of degree 12, one of
degree 20, one of degree 30, and all the others are of degree 60.

Proof. - We exibit the reasoning for the Tcosahedral group AS%2. There are
15 maximal cyclic subgroups of order 4 (index 30), 10 of order 6 (index 20)
and 6 of order 10 (index 12). This gives 2 - 15 solutions of the Riccati equation
associated with L(y) = 0 which are algebraic of degree 30, 2 - 10 which are
algebraic of degree 20 and 2 - 6 which are algebraic of degree 12. Thus there
exists exactly one minimal polynomial of an algebraic solution of the Riccati



equation of degre 30, 20 and 12. All other solutions of the Riccati are algebraic
of degree 60.
The proof for the other groups is along the same lines. []

In the following we will need differential equations associated to L(y) = 0:

Definition 3 Let L(y) = 0 be a linear differential equation of degree n and
fundamental system of solutions {y1, -,y }; the differential equation LO™ (y)
whose solution space is spanned by the homogeneous forms of degree m in
Y1, Yn 18 called the m-th symmetric power of L(y) = 0.

In [10] an algorithm to construct the equation L®™(y), which is of order at
most ("";L”_ll_l), is given. For second order equations (i.e. n = 2) the order of
LO®™(y) is exactly m + 1 and universal formulaes for LO™(y) can be derived
in this case (cf. [10], Lemma 3.5). In particular for second order equations the
homorphism ®,, given in [9] p. 42 is an isomorphism which gives a bijection
between rational solution (resp. exponential solutions) of L&™(y) = 0 and in-
variants (resp. semi-invariants) of degree m of G(L) C GL(n,Ck). The character
Ym of g(L®m) can be computed from the character of G(L) according to the
formula given in [10] p. 15.

The goal of the next section is to reformulate for arbitrary second order equa-
tions a result given in [5] for differential equations of the form y" —ry (r € C(z)):
There is a bijection between polynomials P(u) of degree m whose roots are so-
lutions of the Riccati equation and exponential solutions of LO™(y) = 0 (i.e.
semi-invariants of order m of G(L)).

3 Computing the coefficients of the minimal
polynomial

The main reason for the efficiency of the Kovacic algorithm is a recursion for
the coefficients of the minimal polynomial P(u) of an algebraic solution of the
Riccati equation Ri(u) := ' — r+ u? = 0. In this section, we briefly recall
the recursion by showing how it applies to Ri(u) := v’ — lp — lju + u? = 0, the
Riccati equation corresponding to y” + iy + loy.

We now introduce the property of P that induces the recursion. If we dif-
ferentiate P(u), we get P(u) = 8KP+U’% = 8KP+(IO+11u—u%%—}—Ri(u)%,
where Jg P denotes the polynomial obtained from P by taking the derivative of
all the coefficients. Thus, at a zero of Ri, we can introduce the derivative modulo
Ri as Og; = Ox + (Io + liu — u%%. Now, if P is the minimum polynomial for
a solution of Ri, we have P(u) = P(u)'=0, and thus 0gr; P(u) = 0. As Or; P(u)
is a polynomial in u, the minimality of P implies that P divides dg; P. We will
say that a polynomial is special if P divides dgr;P. This property is crucial, as
shown in the next lemma:



Lemma 4 The set of polynomials P(u) such that all their zeroes are zeroes of
the Ricatti equation is exactly the set of special polynomuials.

Proof. - Suppose P is special. It is easilly seen (see e.g [15]) that all its
factors are themselves special (and, conversely, the product of two specials is
special) so we may assume that P is irreducible. Now, a zero of P is a zero of
ORi P; thus, if P(u)=0, we get that 0 = P(u)’ = dg; P(u) + Ri(u)g—i. As P is
irreducible, it is prime with 2—5, and so Ri(u) = 0. Conversely, if all zeroes of
P are zeroes of the Ricatti equation, we get that all zeroes of P are zeroes of

Ori P, and so P divides Og; P. []

Now, pick a polynomial P(U) = U™ + b,,_1U™~! + ...+ by with unknown
coefficients and suppose it is special: then, dividing dgr; P by P, one gets that
Ori P = (—mu+mly +by_1)P. Writing down that the remainder of this division
shows that P is special if and only if the b; satisfy the following system (adapted
from [5, 3]):

by, = +1
_H . y . ; .
(ﬁ)m bi_l _ bz + bm—lbz l]_(l m)bz lo(l + 1)b2+1 m 2 i 2 0 (1)
m—1+1
b_]_ =0

So, the b; are all determined from the knowledge of a suitable b,,_1. Now,
let uy, -, um be the zeroes of P in some algebraic closure of K; then, b,,_1 =
—(uy+ -t uy) = —(5—1 + 4 z—:) = —%L, $0 b1 is the logarithmic

derivative of a solution of LO™(y) = 0, which is the key to the following theorem,
adapted from Kovacic:

Theorem 3 (after [5]) Let L(y) = ¢ — liy' — loy be a second order equation
with l; € k, then P(U) = U™ + Z;n:?)l b;U® is a (not necessary irreducible)
polynomial with coefficients in K whose roots are all solution of the associated
Riccati equation of L(y) = 0 if and only if by—1 is an exponential solution (over
K) of LO™(y) = 0 (i.e. 2, such that LO™(2) =0 and ')z = by_1 € K).

Proof. - That b,,_; is the logarithmic derivative of a solution of LO&™(y) = 0
is clear from the above, and from (#),, we see that the coefficients b; belong to
K if and only if b,,_1 does.

We now show that the logarithmic derivative of any solution of L&™ (y) = 0 will
give a special polynomial (over K). The exponential solutions of LO™(y) = 0
will be those corresponding to special polynomials with coefficients in K. Con-
sider a form of degree m in y1,...,y, over Cx. Since this is also a homoge-
neous form in two variables in terms of a fundamental system of solutions of
L(y) = 0, one can factor this form into linear factors over Cx. Since the product
of special polynomials is special, we only need to prove that the logarithmic



derivative u; of a forms of degree one, i.e. any zero of Ri, gives a special poly-
nomial. But clearly u — uy is special, since Og;(u—u1) = —u} +1lo + lLu—u? =
(I —u—up)(u—u). [J

This gives a bijection between monic polynomials of degree m over K whose
roots are solutions of the Riccati equation and exponential solutions of L&™(y) =
0, or in other terms between semi-invariants of degree m of G(L). In the next
section we will look for special polynomials corresponding to invariants. The
bijection no longer exists for higher order linear differential equations:

FEzample. - Let L(y) = 0 be a third order equation with G(L) C SL(3,Ck)
an irreducible 3 dimensional representation of A4 (unique up to equivalence).
An example of such an equation is H®?(y), where H(y) = 0 is a second order
differential equation with G(H) = A$"* (e.g. [5], p. 23). Since A4 has no
subgroups of index 2, G(L) has no 1-reducible subgroups of index 2. Thus there
are no minimal polynomials of degree 2 of algebraic solutions of the associated
Riccati equation. But from the decomposition of the character of G (L®2) (cf.
[10]) which has 3 summand of degree one, one get that LO?(y) = 0 has at least 2
non-trivial exponential solutions (cf. [10], Lemma 3.5 ) which do not correspond
to the minimal polynomial of an exponential solution. ¢

Remark. - For third order equation the minimum polynomial of an algebraic
solution of the Riccati equation is no longer special, and so the previous con-
struction does not hold any more. However, it is shown in [15] (section 5) that
the relation still holds between the first coefficient of a monic special polynomial
and the exponential solutions of LO®™(y) = 0. ¢

4 The algorithm

In this section we will always assume that L(y) is a second order equation
with a differential Galois group G(L) which is a subgroup of SL(2,Ck). The
previous section shows that there is a bijection between exponential solutions
of LO®™(y) = 0 and polynomials of degree m whose zeros are solutions of the
Riccati. We now propose an algorithm where rational solutions of L®™(y) = 0
are used as much as possible.

We summarize the result of this section in the following:

Theorem 4 Let L(y) be a second order equation with G(L) C SL(2,Cxk), then

1. L(y) =0 as a two dimensional rational solution space if and only if G(L)
1s the identity.

2. L(y) =0 as a one dimensional rational solution space if and only if G(L)

15 conjugate to
1 b



3. If LO2(y) = 0 has a non trivial rational solution, then G(L) C SL(2,Cxk)
is reducible. Assuming that L(y) as no non trivial rational solution we
get:

(a) The rational solution space of LO?(y) is three dimensional if and
only if G(L) = ( (1) (1) , _01 _01 )} The special polynomial
of order two associated with the logarithmic derivative of any rational
solution of LO%(y) = 0 is a square.

(b) If the rational solution space of LO?(y) is one dimensional and the
special polynomial of order two associated with the logarithmic deriva-
tive of a rational solution of L©%(y) = 0 is a square, then G(L) is
congugated to a subgroup of

{5 0)Irecka==1}

(c) If the rational solution space of LO2(y) is one dimensional and the
special polynomial of order two associated with the logarithmic deriva-
tive of a rational solution of L®2(y) = 0 factors over K but is not a
square, then G(L) C SL(2,Ck) is completely reducible. A factoriza-
tion, and thus a Liouwvillian solution, of L(y) = 0 can be obiained
by factoring the special polynomial of order two associated with the
logarithmic derivative of a rational solution of LO%(y) = 0.

4. If L9%(y) = 0 has no non trivial rational solution, then

(o) If G(L) C SL(2,Ck) is reducible, then G(L) C SL(2,Ck) is not
completely reducible. There will be a unique right factor of order one
of L(y) = 0, and thus a unique rational solution of the Riccati.

(b) If G(L) C SL(2,Ck) is irreducible, then

i. If L®* has a rational solution q, then G(L) is an imprimitive
subgroup of SL(2,Ck ). For the special polynomial P, obtained
from the logarithmic derivative of q the following holds:

A. If L©* has a one dimensional rational solution space, then
P, is the square of a unique special polynomial of order 2. In
this case (L) is not the group of quaternions.

B. If L®* has a two dimensional rational solution space, then
P, s either the square of a special polynomial of order 2 or
it is irreducible. In this case G(L) is the quaternion group.
ii. If LO® has a one dimensional rational solution space and LO*
has no non-trivial rational solution, then the special polynomial
obtained from the logarithmic derivative of a rational solution of
LOC is irreducible. In this case G(L) is the tetrahedral group.



iti. If LO® has a one dimensional rational solution space and LO°
and LO* have no non-trivial rational solution, then the special
polynomial obtained from the logarithmic derivative of a rational
solution of LO® is irreducible. In this case G(L) is the Octahedral
group.

w. If L9112 has a one dimensional rational solution space and LO8,
LO% gnd LO* have no non-trivial rational solution, then the
special polynomial obtained from the logarithmic derivative of a
rational solution of LO? is irreducible. In this case G(L) is the
Icosahedral group.

v. If LO™ has no rational solution form € {4,6,8,12}, then G(L) =
SL(2,Ck).

The proof of the above Theorem follows from the results of the following
subsections. The proposed algorithm can be outlined as follows:

1.

6.

Compute the non trivial rational solutions of L(y). This gives two Liou-
villian solutions of L(y) (e.g. by d’Alembert’s method if only one rational
solution is found).

Compute the a non trivial rational solutions of L®? and test if the special
polynomial of order two associated with the logarithmic derivative of a
rational solution factors over K. If this is the case, this gives a factorization
of L(y) and two Liouvillian solutions (e.g. by d’Alembert’s method if the
special polynomial is a square). One only has to consider this case if the
solution space of L©? is either one or three dimensional (in which case the
special polynomial always factors), so that at most one special polynomial
has to be considered.

. Test if L(y) has a non trivial exponential solution. Such a solution must

be unique and gives a factorization of L(y) and (e.g. by d’Alembert’s
method) two Liouvillian solutions of L(y).

Test if LO* has non trivial rational solutions and conclude depending from
the dimension of this rational solution space as stated in the theorem.

Test for increasing m € {6, 8,12} if LO™ as a non trivial rational solution
and conclude as stated in the theorem.

Conclude that L(y) = 0 has no Liouvillian solution.

The steps have to be performed in the given order and the algorithm termi-
nates as soon as a solution is found in one of the cases. The third step is the only
one where instead of some rational solution one has to compute an exponential
solution of L(y) which is however known to be unique. This case corresponds
to a reducible but non completely reducible group G(L) C SL(2,Cxk).



4.1

The reducible case

From [10] Proposition 4.2 one gets that if L(y) has a rational solution, then

1.

2.

if G(L) C SL(2,Ck) is completely reducible, then L(y) will have two
rational solution and thus G(L) is the identity.

if G(L) C SL(2,Ck) is not completely reducible, then G(L) is conjugate

m o

Lemma 5 Let L(y) be a second order equation with G(L) C SL(2,Ck) having
no non trivial rational solutions, then

1.

If the rational solution space of LO%(y) is one dimensional and the special
polynomial of order two associated with the logarithmic derivative of a
rational solution of L®%(y) = 0 is a square, then G(L) is conjugated to

b
(5 &) eamo=s)

If the rational solution space of LO%(y) is one dimensional and the special
polynomial of order two associated with the logarithmic derivative of a
rational solution of L®%(y) = 0 factors over K but is not a square, then
G(L) C SL(2,Ck) is completely reducible. A factorization, and thus a
Liouvillian solution, of L(y) = 0 can be obtained by factoring the special
polynomial of order two associated with the logarithmic derivative of a
rational solution of L®%(y) = 0.

If LO%(y) = 0 has no non trivial rational solution and G(L) C SL(2,Cx)
is reducible, then G(L) C SL(2,Ck) is not completely reducible. There
will be a unique right factor of order one of L(y) = 0, and thus a unique
rational solution of the Riccati.

Proof. - We first note that if G(L) C SL(2,Ck) is irreducible (i.e. primitive

or imprimitive), then LO? has no non trivial rational solution. This follows for
the primitive case from [10], Proposition 2.4 and Table 1, and for the imprimitive
case from the proof of the next section, since the smallest invariant is of degree
4 in this case. It follows that if L®%(y) = 0 has a non trivial rational solution,
then G(L) C SL(2,Ck) is reducible.
Also, if the special polynomial of order two associated with the logarithmic
derivative of a rational solution of L&? factors into two distinct factors over K,
then the Riccati equation has two distinct solution and thus G(L) C SL(2,Ck)
has a basis of eigenvectors and must be completely reducible.

10



Conversely, if G(L) C SL(2,Ck) is reducible and completely reducible, then
there exists a basis {y1, y2} of eigenvectors for G(L),1.e. Yo € G(L),0(y1) = coth
and o(y2) = ¢; 1yz; thus, yiys is an invariant of degree 2 of G(L).

e If this invariant is unique up to multiples, then the special polynomial of
order two associated with its logarithmic derivative must be the product
of the special polynomials associated with the logarithmic derivative of the
exponential solutions y; and yo. In particular, it can not be the square of
a semi-invariant, i.e. the associated special polynomial is not a square.

o If this invariant of degree 2 is not unique. Then, computation in the basis
{1, y2} shows immediately that G(L) C SL(2,Cxk) can have an invariant
which is not a multiple of y;ys if and only if G consist only of scalar
multiplication and thus, since L(y) has no non trivial rational solution,
G is of order 2. In this case any linear combination of y; and ys is a
semi-invariant. Using this fact and the fact that a homogeneous form in
two variables over an algebraic closed field factors into linear forms, we
get that in this case the special polynomial of order two associated with
the logarithmic derivative of any rational solution of L&? must factor.

If G(L) C SL(2,Ck) is not completely reducible and the special polynomial
associated with a rational solution of L®? is a square, then the unique semi
invariant of order one of G(L) has a character of order 2 and we get the result
in this case from [10] Proposition 4.2. []

Remark. - The fact that factorization of differential operators is easier in
the completely reducible case is used by Singer in [8]. The above results shows
that by computing a non trivial rational solution q of L®?(y) = 0 and factoring
the associated special polynomial one either gets a right first order factor of
L(y) (if the special polynomial associated to the logarithmic derivative of ¢ is a
square) or, if the special polynomial factors, a proof that G(L) C SL(2,Ck) is
completely reducible and reducible. ¢

Erzample. - Let L(y)=y"' +

power, we get

T 5y. Computing the second symmetric
x

3 3
®2 o ’
LP ) =y"+ 4z2Y T 4p3?

This last equation has a one dimensional space of rational solutions generated
by z. From the proposition, we get that G(L) C SL(2,Ck) is a reducible group
and that L(y) = 0 factors as a differential operator. The special polynomial
obtained from the logarithmic derivative 1/z of z is

1 3

2__
u xU 1622

11



1

which factors into <U — 4—) <U — 4i> This gives two Liouvillian solutions
x z

of L(y) = 0:

1 3
Y e o
Yy =¢€ y Y2 =€
; 1
The equation L(y) = 0 is the least common left multiple of y' — P and
T
7 / i' 0
) 43331-

Ezample. - The following example illustrates the fact that a quadratic
extension of the constant field is sometimes necessary to factor the special poly-

nomial obtained. Let now L(y) =y’ + 1 ! y. Again, z is a generator of the

2
z
one-dimensional space of rational solutions of L&? and we get the special poly-
nomial

U 7
U2 - — 4 —
x + 16 22
2—1 241
which factors into | U — 42\/3 U— —21\/5) (but does not factor on
x x

Q(x) which was our base field). This provides again two Liouvillian solutions

of L(y) = 0:
f(2—4;\/§) f(2 +4;‘;/§)
Yy1 =¢€ ) Ya = €

Note that, in such a case, we can always avoid the algebraic number i (but not
\/?;) by transforming the conjugated exponentials into sines and cosines; in our

case, this gives the solutions /z cos(\/Tg log z) and \/Esim(\/T5 logz) ©

Now, the two following examples show cases when the operator is reducible
but not completely reducible (i.e, there is exactly one rational solution of the
Ricatti equation).

z2 .
Ezample. - Consider L(y) = y"'—(14+2?)y. One easily checks that y; = ¢ is
2
asolution. Now, d’Alembert’s substitution yields the other solution ys = ¢’z / e

So, if there was another rational solution to the Ricatti equation, e=*" would

be elementary, a contradiction. Of course, this can also be found by checking
that LO? has no rational solution (and finding a unique exponential solution).
o

3 1 1
- . Th
1627 T2z =1y 4x(x—l))y e
L®2 has no rational solution, but the Ricatti equation has the unique rational so-
lution given by 4 2 (x —1) U+1—3 2 = 0. This yields the solution y = 2z — 1

Ezample. - Consider L(y) = y" + <
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for L.

Note that, here, L©* has a one-dimensional solution space generated by z (z —
1)2. This example illustrates the fact that there can be a unique solution to
the Ricatti equation even if there are invariants (of degree higher than 2); also
it shows that, to apply the techniques described in the next section, one must
really test the reducibility of L. ¢

4.2 The imprimitive case

In this case we show that the computation of a Liouvillian solution of a second
order equation L(y) = 0 is reduced to the computation of a rational solution of
LO®* and that the special polynomial associated to the logarithmic derivative is
either a square or irreducible.

Lemma 6 Let L(y) = 0 be an irreducible second order equation over K whose
galois group G(L) is unimodular. Then G(L) is an imprimitive subgroup of
SLa2(Ck) if and only if LO* has a rational solution q. The special polynomial
obtained from the logarithmic derivative of q is then

1. The square of a unique special polynomial of order 2 if LO* has a one
dimensional rational solution space.

2. Either the square of a special polynomial of order 2 or is irreducible if L©*
has a two dimensional rational solution space, in which case G(L) = Dy*2.

Proof. - In [10] Theorem 4.1 it is shown that the differential Galois group of
a second order linear differential equation with unimodular group is imprimitive
if and only if L©? has an exponential solution whose square is in k, i.e. whose
square is a rational solution of L®*, Since L®* has no rational solution if G(L)
is a finite primitive subgroups of SL(2,Ck) (cf. character decompositions in the
next subsection), we get the fist assertion.
If the space of rational solutions of L®* is one dimensional, then, up to a con-
stant, this rational solution is the square of the exponential solution of L©?2,
Thus, the (unique) minimal polynomial corresponding to the (unique) logarith-
mic derivative of a rational solution of L®* will be the square of the minimal
polynomial associated with the exponential solution of L&2. Since there is a
bijection between rational solutions and invariants, we look at the ring of in-
variants. The ring of invariants of D512 is generated by (cf. [12], p. 95)

L=yl L=y" +(-1)"y¥3" Iz = yiya(yi" — (= 1)"y3")

where {y1,y2} is a basis of the representation module of D3 %2 (i.e. of the solution
space). While D, has clearly only the invariant y?yZ which must be the square
of a unique semi-invariant. Thus, for G(L) not isomorphic to D5** (the group
of quaternions), the special polynomial associated with a logarithmic derivative
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of a rational solution of LO* will be a square. For D3%? the space of rational
solutions of LO* is of dimension 2 (cf. also the character x4 given below). The
group DESL2 has 4 irreducible characters, the trivial one denoted 1, 3 characters
C1,1, (1,2, C1,3 of degree one and one character (3 of degree two. The non trivial
characters of degree one have the property that the product ¢y ;¢; jis1fore=j
and different from 1 otherwise. If a second order equation L(y) = 0 has Galois
group G(L) = D25L2, then the corresponding character of G(L) will be (5. The
character y,, of G(L®™) can be computed according to the formula given in

[10] p. 15:

X2=C,1+ 2+ s, X3 = 2(a, Xa=2-14+CG1+CG2+03

this shows that there are 3 semi invariants I; associated to the characters (i ;
(7 € {1,2,3}) whose square is rational. The products I I2, I Is and I3 I3 are not
invariants (i.e. do not correspond to a rational solution) since the products of
the associated characters are not the trivial character. Thus a rational solution
is either the square of a semi-invariant of order 2, in which case the special
polynomial associated will be a square, or it is not the product of semi-invariants
and the special polynomial associated will be irreducible. []

Ezample. - Consider the irreducible equation

7 3 2 2 y=
Lly) =y" ~ <_16;p2 B 9(x—1)2+9r(£—1)>y_0

The equation L©* has a one dimensional space of rational solutions generated

by z(z —1)?. The special polynomial associated with the logarithmic derivative
Jz—1 .
5 is

i Bzl 232166427
z(z —1) T22%(x — 1)?
(3z — 1)(812% — 58z + 9) (8122 — 58z + 9)?

B 14423(z — 1)3 U+ 20736z4(x — 1)4

U2

which is the square of:

3z—1 8122 — 58z +9

U?—
2z(x — 1) + 14422 (z — 1)?

Since LOS also has a rational solution z?(z — 1)?, we get from the above proof
that G(L) is D3%* o

For G(L) = D§L2 one can also use the above approach to compute the spe-
cial polynomial of minimal degree two. Let .Jo and J; be generators of the space
of rational solutions of L%, Either the special polynomial associated with J;
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(or Jo) is a square, or we set Jyx = Jo+AJy and construct the special polynomial
Py(u) associated with Jy. Call R, the resultant in u of Py(u) and 2 Pi(u);
then, we must have R, = 0, which gives equations for A. For k C Q(z) this
resultant R, is a polynomial in 2 and A; the gcd G(X) of the coefficients of
R (viewed as a polynomial in z) will have 3 distinct solutions® corresponding
to the three special polynomials of lowest degree. If one does not look for the
minimal polynomial of lowest degree but rather for a solution defined in the
same field as the coefficients, one could look for an integer which is not a zero
of G(X). Here at most four integers have to be chosen, since there are at most
3 zeros.

FEzxample. - Consider the irreducible equation

3 3 3
L — _ =0
W) =y < 1627 16(z—17 162 (2= 1)) Y
The fourth symmetric power has a two dimensional rational solution space
generated by Jo = z — 2% and J; = 2? — 2. Thus, G(L) is the quaternion
group and we get the following two special polynomials:
Py, = 256(z—1)*'2*U* 256 (22— 1)(z—1)32°U3
+32 (112 — 11z +3) (z — 1)? 22 U?
—16z(z—1)(2z2-1) (322 =32+ 1)U
+ (327 —32+1)
and
Py, = 256(z—1)*(z+1)2*U* - 256 (327 — 1) (2 — 1)*2° U®
+962° (92° — 82" + 1) (z — 1)° U?
—16 (272" —452° + 222 — 2 — 1) (= 1)z U + 32
—1892* + 1572 — 512>+ 812° + 1
Then for any constants a and 3, the polynomial a Py, + P, is special. Let us
now use the methods described above.
First, we check that Pj, is not a square (by computing the ged of Py, and

its derivative w.r.t U). Then, we set Py := Py, + APj,, we compute Ry, the
resultant in U/ of Py and? %PA. There, we have (at least) two possible strategies

Method 1 If we want to find an irreducible special polynomial without increasing the
constant field, we search for one of degree 4. Here, P;, is not a square so

LIf the solutions are not rational then new constants have to be introduced. The rationality
problem is discussed for example in [13, 14]

2in factored form, the resultant is 17592186044416 22 (z— 1)22 A2 (1+2 /\)2 (1+ )\)2 (z A+
A+ 1), but we don’t need that form for the actual computation

15



it is irreducible and we are done. If it had been a square, then we would
have had to try 3 values for A that do not annul Ry, one at least would
work .

Method 2 We compute the square-free part of the ged G(X) of the coefficients of Ry;
this gives A + 3 A2 4+ 223, which obviously factors into A (1 + ) (1 4+ 2X).
Thus, P is irreducible unless A € [0, —1, —1/2]; performing a square-free
decomposition on Py, we get that the corresponding polynomials are:

_(2z-1U 322 -3z +1

_ g2
@ = U 2r(z—1) 1622 (z - 1)
0., = UQ_(3x—2)U+9x2—llx+3
20 (z—1) 16 22 (z — 1)2
0 72 Bz-1HU 922 —-Tz+1
-1/2 = -

2 — Dz + 16 22 (2 — 1)?

In these three polynomials, the reader will easily check that the coefficients
of U are the logarithmic derivative of the square root of rational functions

(ve(z — 1), z/x — 1, (x — 1)y/z) respectively). o

4.3 The primitive case

The following shows that for the primitive case it is always possible to look only
for rational solutions of symmetric powers. However the algebraic solution of

the Riccati found this way will not be of lowest algebraic degree for AfL2 and
S5t

Lemma 7 Let L(y) = 0 be a second order equation whose differential Galois
group G is a finite primitive subgroup of SL(2,Ck).

o IfG = AfLQ, then the special polynomial obtained from the logarithmic
derivative of the unique rational solution of L©% is irreducible.

o IfG = S:fLEJ then the special polynomial obtained from the logarithmic
derivative of the unique rational solution of L% is irreducible.

o IfG = A?LQ, then the special polynomial obtained from the logarithmic
derivative of the unique rational solution of LO'? is irreducible.

In all cases, it is the special polynomial of lowest order one can construct using
rational solutions of symmetric powers of L(y).

Proof. - The (abstract) group AfL2 has 7 irreducible characters, the trivial
one denoted 1, 2 characters (21 and (22 of degree 2 (where the trace of an
element of order 3 is different from one and thus the representation is not in
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SL(2,Ck)), another character (5 of degree two (corresponding to a representa-
tion in SL(2,Cx)) and a character (3 of degree 3. If a second order equation
L(y) = 0 has Galois group G(L) = A3, then the corresponding character of
G(L) will be x = (5. The character Y., of G(L®™) can be computed according
to the formula given in [10] p. 15:

X2 = (3 Xa=Co2+Ca2+¢ xs=14+2C
X3=C1+C2 Xs=C21+C2+(

Since there are no semi-invariants of degree 2 or 3, the unique special polynomial
obtained from the logarithmic derivative of a rational solution of L&6 cannot
be the product of special polynomials of lower order.

The proof in the other cases are similar and can be deduced from the decompo-
sitions that follow:

e The (abstract) group SfL2 has 8 irreducible characters, the trivial one 1,
another characters (11 of degree 1, 1 characters (» of degree 2 which is
not faithful, two (conjugated) character (o and (21 of degree 2 (corre-
sponding to representations in SL(2,Ck)), two character (31 and (32 of
degree 3 and a character (4 of degree 4. For (5 ; weset j =i+ 1 (mod 2)

and get:
X2 = (3,1 X5 = Ca2,j + (4 Xs=14+(+ {1+
X3 = (4 X6 =C1,1+(31+ (32

Xa=C+2 xr1=C,i+C,;+

e The (abstract) group A2%2 has 9 irreducible characters, the trivial one
1, two (conjugated) character (20 and (21 of degree 2 (corresponding to
two representations in SL(2,Cxk)), two character (31 and (3,2 of degree 3,
two character (4,1 and (42 of degree 4, a character (5 of degree 5 and a
character (g of degree 6. For {3, weset j =i+ 1 (mod 2) and get:

X2=0C3; X6=0C3;+C2 X10=0¢31+C2+Cs
X3=Cs1 X7=C;+C  X11=2C2,i+Ca1+C
Xa=C Xs=C2+C x12=14+Ci+C2+(
X5 =C X9 ==C41+Co

Ezample. - Consider the irreducible equation

3 2 3
L — "o _ _
W) =v < 16 22 9(x—1)2+16x(x—1))y
This equation is studied in [5] p. 23, where a minimal polynomial of degree 4 of

an algebraic solution of the Riccati equation is given. This minimal polynomial
corresponds to an exponential solution of L&* which is not rational, but which
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is the square root of a rational function. The same equation is also studied
in [9] p. 68 where the minimal polynomial of a solution (not of a logarithmic
derivative) is computed.

Using our approach, since LO* has no rational solution we know that G(L) is
a primitive subgroup of SL(2,Cf). Since LO® has a rational solution z2(z —
1)? we get that G(L) is the tetrahedral group and that the special polynomial

associated with the logarithmic derivative will be irreducible. This gives

xr
112
the following minimal polynomial for an algebraic solution of the Riccati:
5(642% — 632 + 15) 4
z(z—1) 4822 (z — 1)?
_5(5122° — 7452”4+ 351« — 54) -
43223 (z — 1)3
) (4096 xt — 7840 23 + 5485 22 — 1674z + 189)
+ 691222 (z — 1)°
(36452 — 16254 2% + 35781 2% — 38720 2% + 16384 25 — 324) -
20736 2% (z — 1)
—29889 x + 169209 x2 — 506331 23 + 842008 2* + 262144 2° — 735232 25 + 2187
+ 2985984 2 (z — 1)

2

5 Final remarks

The initial goal of this work was to check for a coefficient field & C C(x) if
one really had to perform an extension of the constant field of k¥ to compute a
Liouvillian solution to a second order differential equation (cf. [14, 13]). This
paper shows that for irreducible second equations no extension of the constant
field of k£ is needed if one not only looks at algebraic solutions of the Riccati
of lowest algebraic degree. The paper also shows that the introduction of new
constants results in the completely reducible case from the factorization of a
special polynomial, which may not be possible over the coefficient field k.

We do not claim that the algorithm presented here is better/faster than the
Kovacic algorithm. However we feel that the formulation via rational solutions
simplifies the presentation and makes the algorithm easier to implement. Also
the algorithm is not limited to the case & = C(z) and holds for any second
order equation with unimodular Galois group (i.e. the special form y" — ry is
not needed).

The result contained in this paper give an overview of all the possible solu-
tions of a second order equation and show how special the second order case is
by exhibiting some of the properties which make it so special.
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