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ABSTRACT
We consider an analytic vector field ẋ = X (x) and study, via
a variational approach, whether it may possess analytic first
integrals. We assume one solution Γ is known and we study
the successive variational equations along Γ. Constructions
in [MRRS07] show that Taylor expansion coefficients of first
integrals appear as rational solutions of the dual linearized
variational equations. We show that they also satisfy linear
“filter” conditions. Using this, we adapt the algorithms from
[Bar99, vHW97] to design new ones optimized to this effect
and demonstrate their use. Part of this work stems from the
first author’s Ph.D. thesis1 [AM10].
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1. INTRODUCTION
Consider an analytic differential vector field

ẋ = X (x) . (1)

Let us recall that a first integral of (1) is a complex-valued
function F defined on a domain U ⊂ Cn such that

DXF = 0 where DX :=

nX
i=1

Xi
∂

∂xi
.

This is equivalent to F being constant along every solution
of system (1).

The existence of first integrals (meromorphic, rational,
polynomial...) is relevant to the study of the integrabil-
ity of complex analytic vector fields. Since the direct com-
putation of first integrals is in general an open problem,
only indirect techniques are available. Among those, the
approach we suggest here is variational: assuming one solu-
tion of (1) is known, we consider the variational equations
along it.Whenever the solution is an equilibrium point, a
wide battery of normal form theories is available for us to
characterize the behavior of (1) along the solution. No such
local tools exist, though, to characterize formal first inte-
grals along a non-equilibrium solution φ.

The aim of our paper is to start filling this gap by means
of an algorithmic answer to the following question. Assume
the vector field (1) has a first integral which is holomorphic,
at least, along a solution φ: how would we compute, or re-
cover, its Taylor expansion along φ? We first recall that
the coefficients of such an expansion are rational solutions
of linear differential systems (namely, the linearized varia-
tional equations LVEmφ ). We prove they are also solutions of
linear (algebraic) systems: the filter equations (see Section
3.1). We then adapt the algorithms of [Bar99, vHW97] to
design an efficient algorithm for computing such Taylor ex-
pansions of (unknown) holomorphic first integrals.

We wish to thank J. J Morales-Ruiz and J.-P. Ramis for
fruitful discussions during the preparation of this paper.
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2. BACKGROUND

2.1 Taylor Expansions
The modulus |i| of a multi-index i = (i1, . . . , in) ∈ Nn is

defined as the sum of its entries. Multi-index addition is
defined (i1, . . . , in) + (j1 . . . jn) := (i1 + j1, . . . , in + jn). We
use the standard lexicographic order, denoted by <lex, where
(i1, . . . , in) <lex (j1, . . . , jn) means i1 = j1, . . . , ik−1 = jk−1

and ik < jk for some k ≥ 1.

Definition 1. Let F : U ⊂ Cn → C be a complex an-
alytic function over the open set U . We define the lexico-
graphically sifted differential of F of order m as the row
vector

F (m) (x) := lex

„
∂mF

∂xi11 . . . ∂xinn

«
i1+...+in=m

,

where entries are ordered as per <lex on multi-indices.

Let F : U ⊂ Cn → C be a holomorphic function and
let φ : I ⊂ C → U be a parametrization of a Riemann
surface Γ ⊂ U . Then F admits a Taylor expansion along φ,
F (φ+ y) = F (φ) +

∞X
m=1

1

m!

X
i1+...+in=m

 
m

i1, . . . , in

!
∂mF

∂xi11 . . . ∂xinn
(φ) yi11 . . . yinn

where y is a vector of n formal variables. Using symmetric
powers of vectors (see [AM10], Chapter 2), a compact form
is

Lemma 2. The Taylor expansion of F along φ is

F (φ+ y) = F (φ) +

∞X
m=1

1

m!

D
F (m) (φ) , Symmy

E
Proof. By construction ([AM10, Ch. 2]), the entry cor-

responding to multi-index (i1, . . . , in) in Symmy is exactly`
m

i1,...,in

´
yi11 . . . yinn . Vectors F (m) (φ) and Symmy have the

same dimension

dm,n :=

 
n+m− 1

m

!

2.2 Variational equations `VEmφ
´

The subject matter of this section is described in [MR99,
MRRS07, AM10]. Denote by Φ(t, z) the flow of (1), (t, z) ∈
C×U . Consider the Taylor expansion of Φ(t, z) with respect
to the phase variables z at the point (t, x)

Φ(t, z) = Φ(t, x)+Φ(1)(t)(z−x)+ . . .+Φ(m)(t)(z−x)m+ . . .

where Φ(m)(t) := 1
m!

∂m

∂xm
Φ(t, x). Let Γ denote an integral

curve of (1) parametrized by φ(t).

Definition 3. The order-m variational equations of (1)
along an integral curve Γ are the differential system satisfied
by (Φ(1)(t), . . . ,Φ(m)(t)) when x ∈ Γ.

All variational systems are non-linear except for the first-
order one, m = 1, which we express as ξ̇1 = A1ξ1 where

A1 :=

»
∂Xi
∂xj

(φ)

–
i,j

∈ Mat (n,k) ,

with k := C 〈φ〉 = C
“
φ, φ̇, . . .

”
. By means of tensor con-

structions, a linear differential system
`
LVEmφ

´
equivalent

to
`
VEmφ

´
can be built for each m ∈ N: we call it mth order

linearized variational equation along φ.
We denote

`
LVEmφ

´
, m ≥ 2 by Ẏm = AmYm, where

Am :=

»
symmA1 0
Bm Am−1

–
∈ Mat

 
mX
i=1

di,n,k

!
. (2)

and symm stands for the mth symmetric power in the sense
of Lie algebras, implicitly defined for any given linear system
Ẏ = AY , and any fundamental matrix U thereof, by

d

dt
(SymmU) = (symmA) (SymmU),

SymmU standing for the mth symmetric power in the sense
of Lie groups of U . For a precise account on symmetric
powers see [AM10, Ch. 2], or [FH91].

2.3 First integrals

2.3.1 Junior forms
Let φ be a non-constant solution of (1) and F be a first

integral. We henceforth normalize F by assuming F (φ) = 0.
Following [Aud01], we define the valuation of F along φ as
the integer ν ≥ 1 satisfying

F (φ) = 0 , . . . , F (ν−1) (φ) = 0 and F (ν) (φ) 6= 0.

The junior form of F along φ is then defined as

F ◦(y) :=
1

ν!

D
F (ν) (φ) , Symνy

E
;

F ◦ (φ) is the lowest-degree homogeneous polynomial in the
Taylor expansion of F , i.e

F (y + φ) = F ◦(y) +

∞X
i=ν+1

1

i!

D
F (i) (φ) , Symiy

E
Definition 4. A first integral F of (1) of valuation ν

along φ is said to be non-degenerate along φ if ν = 1 (i.e.
F ◦(y) is linear) and degenerate of order ν along φ if ν ≥ 2.

The following Lemmae deal with classical facts about the
valuation of first integrals and junior forms.

Lemma 5. [Aud01] Let F1 and F2 be first integrals of (1)
vanishing along φ and having valuations ν1 and ν2 respec-
tively along φ. We then have

(F1F2)◦(y) = F ◦1 (y) · F ◦2 (y)

and the valuation of F1 · F2 along φ is ν1 + ν2.

The following result (see Chapter 2 of [AM10] for sym-
metric products of vectors) will be useful in the sequel:

Lemma 6. Let φ be a non-constant solution of (1) and
let F1, . . . , Fk be holomorphic first integrals of (1), non-
degenerate and vanishing along φ. Then,

1. (F1 · F2)(2) (φ) = (F
(1)
1 (φ) sF

(1)
2 (φ)),

2. (Fm1 )(m) (φ) = Symm(F
(1)
1 (φ)),

3. (Fm1
1 · . . . · Fmkk )(m1+...+mk) (φ) =

(Symm1(F
(1)
1 (φ)) s . . . s Symmk (F

(1)
k (φ)))



Proof. 1. Since F1 and F2 are non-degenerate, their
product F1 · F2 is a first integral of valuation 2 along

φ. Now ∂2(F1·F2)
∂xi1∂xi2

(φ) is equal to:

∂2F1

∂xi1∂xi2
(φ) · F2 (φ) +

∂F1

∂xi1
(φ) · ∂F2

∂xi2
(φ) +

∂F1

∂xi2
(φ) · ∂F2

∂xi1
(φ) +

∂2F2

∂xi1∂xi2
(φ) · F1 (φ) .

Since F1 (φ) = F2 (φ) = 0, for every i1, i2 = 1, . . . , n

we have
“

(F1 · F2)(2) (φ)
”

(i1,i2)
equal to

Ci1,i2 =
∂F1

∂xi1
(φ) · ∂F2

∂xi2
(φ) +

∂F1

∂xi2
(φ) · ∂F2

∂xi1
(φ) .

Computing (F
(1)
1 (φ) sF

(1)
2 (φ)) in the canonical base

{ei} yields exactly“
F

(1)
1 (φ) sF

(1)
2 (φ)

”
(i1,i2)

=
X

1≤i1≤i2≤n

Ci1,i2ei1 · ei2 ,

hence (F1 · F2)(2) (φ) = F
(1)
1 (φ) sF

(1)
2 (φ).

2. Since F1 is non-degenerate along φ, Fm1 has valuation
m, hence all its partial derivatives of order less than
m vanish at φ. Thus, the entry in (Fm1 )(m) (φ) corre-
sponding to any modulus-m multi-index of exponent
(m1, . . . ,mn) is

∂m(Fm1 )

∂xm1
1 . . . ∂xmnn

(φ) =

 
m

m1, . . . ,mn

!
nY
j=1

„
∂F

∂xj
(φ)

«mj
,

equal to the entry in Symm(F
(1)
1 (φ)) corresponding to

the same modulus-m exponents multi-index.

3. Follows from the two previous items.

2.3.2 Holomorphic first integrals and
`
LVEmφ

´
Let k := C 〈φ〉 denote our base field; if X is rational, the

fact φ̇ = X (φ) implies k = C (φ). Let Am be the matrix of
the order-m variational equations of (1), as written in (2).

The dual (or adjoint) mth order variational equation along

φ, denoted by
`
LVEmφ

´?
, is defined by V̇ = A?mV with

A?m := −tAm ∈ Mat

 
mX
i=1

di,n,k

!
.

Lemma 7. If F is a holomorphic first integral of (1) and
φ is a non-constant solution of (1) then

Vm := t(F (m) (φ) , . . . , F (1) (φ)) ∈ k
Pm
i=1 di,n

is a (rational) solution of
`
LVEmφ

´?
.

Proof. This is a direct consequence of proof in reference
[MRRS07, pp. 859 – 862] which, though originally written in
the context of Hamiltonian systems, is still valid for general
complex analytic differential systems ẋ = X (x).

We denote the set of rational solutions of
`
LVEmφ

´?
by

Solk(
`
LVEmφ

´?
) := {W ∈ k

Pm
i=1 di,n : Ẇ = A?mW}.

An immediate consequence of Lemma 7 is the following:

Corollary 8. Let F be a holomorphic first integral of
(1) with valuation ν along a non-constant solution φ, then

F (ν) (φ) ∈ Solk((symνA1)?).

Proof. Since F has valuation ν along φ, by Lemma 7,
we have Vν = (F (ν) (φ) , 0) ∈ Solk([A?ν ]). More explicitly,
we have that»

d
dt

(tF (ν) (φ))
0

–
=

»
(symνA1)? B?ν

0 A?ν−1

–
·
»
tF (ν) (φ)

0

–
which implies that d

dt
(tF (ν) (φ)) = (symνA1)?·tF (ν) (φ) .

Example 9. Consider the toy example of the anharmonic
oscillator [Aud01]: it is modeled by a two-degree-of-freedom
Hamiltonian

H(q, p) =
1

2
(p2

1 + p2
2) + λq2

2 + (q2
1 + q2

2)2

with (q, p) = (q1, q2, p1, p2) ∈ C4, and the Hamiltonian field
XH is given by the equations:

q̇ = p , ṗ1 = −4q1
`
q2
1 + q2

2

´
, ṗ2 = −2q2

`
2λ+ q2

1 + q2
2

´
This system is integrable, an additional first integral being

K =
1

2
p2

1 +
1

2
(q1p2 − q2p1)2 + q2

1

`
q2
1 + q2

2

´
,

and has a particular solution ψ(t) =
“

i
√

2
2t
, 0,− i

√
2

2t2
, 0
”

for

which H(ψ) ≡ 0. The second-order Taylor expansion of H
along ψ is therefore given by:

H (ψ + y) =

„
− i
√

2

t3
y1 −

i
√

2

2t2
y3

«
+ (3)„

−3y2
1

t2
+

(λt2 − 1)y2
2

t2
+
y2

3

2
+
y2

4

2

«
+ O(y3).

which is the same as writing

H(1)(ψ) =

„
− i
√

2

t3
, 0,− i

√
2

2t2
, 0

«
and

H(2)(ψ) =

„
− 6

t2
, 0, 0, 0,

2(−1 + λt2)

t2
, 0, 0, 1, 0, 1

«
Given the formal vector of variables y := (y1, y2, y3, y4) its
symmetric square Sym2y is easy to compute:

t[y2
1 , 2y1y2, 2y1y3, 2y1y4, y

2
2 , 2y2y3, 2y2y4, y

2
3 , 2y3y4, y

2
4 ].

It is easily checked that we can rewrite (3) as

H(ψ + y) = 〈H(1)(ψ) , y〉+
1

2
〈H(2)(ψ) , Sym2y〉+ O(y3).

Along any solution φ = (q1, q2, p1, p2), the matrices for
VE1

φ and LVE2
φ are, respectively,

A1 =

2664
0 0 1 0
0 0 0 1
a d 0 0
d c 0 0

3775 ,



and A2 :=

»
sym2A1 010×4

X(2)(ψ) A1

–
, explicitly written as

26666666664

0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0
2a d 0 0 0 0 0 2 0 0 0 0 0 0
2d c 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 a 0 0 2d 0 0 0 1 0 0 0 0 0
0 d 0 0 2c 0 0 0 0 2 0 0 0 0
0 0 a 0 0 d 0 0 0 0 0 0 0 0
0 0 d a 0 c d 0 0 0 0 0 0 0
0 0 0 d 0 0 c 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

−24q1 −8q2 0 0 −8q1 0 0 0 0 0 a d 0 0
−8q2 −8q1 0 0 −24q2 0 0 0 0 0 d c 0 0

37777777775
,

where a = −8q2
1 − 4

`
q2
1 + q2

2

´
, b = −8q2

2 − 4
`
q2
1 + q2

2

´
,

c = −2λ+ b and d = −8q1q2.

K◦(y) =
1

2
〈K(2)(ψ) , Sym2y〉 (4)

=

„
(2t− 1)2

4t4
y2

2 +
1

2t3
y2y4 +

1

4

(1 + 2t2)

t2
y2

4

«
and K(2)(ψ) ∈ Solk((sym2A1)?) is equal to

t

„
0, 0, 0, 0, 0,

(2t− 1)2

4t4
, 0,

1

2t3
, 0, 0, 14

(1 + 2t2)

t2

«
.

3. ADMISSIBLE SOLUTIONS OF `
LVEMφ

´?
3.1 A filter condition

We prove the existence of an additional set of linear con-
ditions linking the entries of (F (m) (φ) , . . . , F (1) (φ)) if F is
a first integral of (1).

Let us begin with a very simple case. If F is a holomorphic
first integral then its Taylor expansion along φ reads as

F̂ (y) =
D
F (1) (φ) , y

E
+

1

2

D
F (2) (φ) , Sym2y

E
+ . . .

and tF (1) (φ) is a rational solution of
`
VE1

φ

´?
; but it satisfies

a (non-differential) linear condition as well. Indeed, F being
a first integral is equivalent to d

dt
F (φ(t)) = 0 for any solution

φ of (1). Developing the expression we obtain

d

dt
F (φ(t)) =

nX
i=1

∂F

∂xi
(φ(t)) φ̇i(t) =

D
tφ̇ , tF (1) (φ)

E
.

Thus, among the V ∈ Solk((VEm
φ )?) only those satisfying

the condition
D
tφ̇ , V

E
= 0 may be admissible as possible

gradients of some holomorphic first integral along φ.

Definition 10. Let φ be a non-constant solution of (1),

k := C 〈φ〉 = C
“
φ, φ̇, . . .

”
, V be a k-vector space of finite

dimension n, (ei) be a basis of V and φ̇ =
“
φ̇1, . . . , φ̇n

”
denote the expression φ̇ =

Pn
i=1 φ̇i · ei. Let (fm,j)j=1...dm,n

be the corresponding canonical basis of Symm(V ).

1. We define M1 := tφ̇.

2. We define Mm ∈ Mat
“
dm−1,n × dm,n , C

“
φ̇
””

as the

matrix whose jth row is the symmetric product of φ̇
with the jth basis vector fm−1,j: φ̇sfm−1,j.

3. We define the matrices

Mm ∈ Mat

 
m−1X
i=0

di,n ×
mX
i=1

di,n , k

!

inductively as follows:

M1 := M1 ,M2 =

»
M2

tA1

0 M1

–
,

and

Mm :=

»
Mm

t
`
symm−1A1

´
tBm−1

0 Mm−1

–
where Bm−1 ∈ Mat

`
dm−1,n ×

Pm−1
i=1 di,n , k

´
is the

sub-diagonal block of the matrix of the order-m − 1
variational equation of (1),

Am−1 =

»
symmA1 0
Bm−1 Am−1

–
.

Example 11. This provides an explicit construction of
Mm, e.g. M1 =

ˆ
φ̇1 φ̇2 φ̇3 φ̇4

˜
and

M2 =

2664
φ̇1 φ̇2 φ̇3 φ̇4 0 0 0 0 0 0

0 φ̇1 0 0 φ̇2 φ̇3 φ̇4 0 0 0

0 0 φ̇1 0 0 φ̇2 0 φ̇3 φ̇4 0

0 0 0 φ̇1 0 0 φ̇2 0 φ̇3 φ̇4

3775 .
This has been successfully implemented in Maple for any
order m.

The following Theorem characterizes the jets of deriva-
tives of holomorphic first integrals.

Theorem 12. Let F be a holomorphic first integral and
φ be a non-constant solution of (1), then for each m ≥ 1:

1. The above matrices Mm and Mm have full rank.

2. F (m) (φ) and F (m−1) (φ) are linked by

Mm · tF (m) (φ) =
d

dt

“
tF (m−1) (φ)

”
. (5)

3. Vm := t
“
F (m) (φ) , . . . , F (1) (φ)

”
satisfies

Mm · Vm = 0

Proof. 1. φ̇ 6= 0 by hypothesis. Let (fj,m−1) be the
basis of Symm−1V as in Definition 10. Vectorsn

(fj,m−1s φ̇) ∈ SymmV
o

are linearly independent. Thus, the rows of Mm are
linearly independent, implying Mm has full rank. Dif-
ferentiating F (m−1) ∈ Symm−1V yields, on the basis
element corresponding to multi-index j,

˙(tF (m−1)(φ))j =

nX
i=1

∂mF

∂xj11 · · · ∂x
ji+1
i · · · ∂xjnn

(φ) · φ̇i

=
D
φ̇sfj,m−1 ,

tF (m) (φ)
E
.

But φ̇sfj,m−1 corresponds to the exact expression of
row j in matrix Mm, which proves (5).

2. All Mm being full-rank, Mm is, too, by construction.
Let vi := F (i) (φ) and Vm := (vm, . . . , v1).

At order 1 the result is already proved. For m = 2 the
previous item implies M2 · v2 = v̇1 = A?1 · v1, since F
is a first integral. Therefore, we have

M2 · v2 + tA?1 · v1 =M2 · V2 = 0.



Assume Mm−1 · Vm−1 = 0 and let us prove it true for
m as well. Since F is a first integral we have

Mm ·vm = v̇m−1 = (symm−1A1)? ·vm−1+B?m−1 ·Vm−2,

which implies [Mm,
tsymm−1A1,

tBm−1]·Vm = 0. Since
Mm−1 · Vm−1 = 0, the result follows.

Corollary 13. For m ∈ N in the usual notations:

1. dimk (ker (Mm)) = dm,n − 1.

2. dimk (ker (Mm)) = dm,n−1.

Proof. 1. By Theorem 12Mm has full rank, whence

dimk (ker (Mm)) =

mX
i=1

di,n −
m−1X
i=0

di,n = dm,n − 1.

2. Again in virtue of the same Theorem, Mm is full-rank,
implying dimk (ker (Mm)) = dm,n−dm−1,n = dm,n−1.

In virtue of Theorem 12, given a holomorphic first integral
F and a non-constant solution φ of (1), the jet of derivatives
Vm along φ satisfies Vm ∈ Solk

``
LVEmφ

´?´ ∩ ker(Mm) for
every m ≥ 1. This motivates the following:

Definition 14. The set of admissible solutions of the
system

`
LVEmφ

´?
is defined as

Soladm

``
LVEmφ

´?´
:= Solk

``
LVEmφ

´?´∩ker(Mm), m ≥ 1.

Example 15. Let us illustrate Theorem 12 by showing
how these filters work. As in Example 9 we consider the
anharmonic oscillator H = 1

2
(p2

1 +p2
1)+λ ·q2

2 +(q2
1 +q2

2)2 as

well as, once again, the solution ψ(t) =
“

i
√

2
2t
, 0,− i

√
2

2t2
, 0
”

,

and define the base differential field k := C
“
ψ , ψ̇

”
= C (t).

Recall that H(ψ) = 0.

(VE1
ψ)? : We apply our algorithm from the next Section

and compute the rational solutions of
`
VE1

ψ

´?
belong-

ing to k4 and obtain Solk
`
LVE1

ψ

´?
equal to

t

„
−3c1t

2 − c2
2

t3
, 0, c1t

3 + c2
1

t2
, 0

«
: (c1, c2) ∈ C2

ff
,

having dimension 2. Let V1 ∈ Solk((VE1
ψ)?) be any

such vector. Applying filter condition M1 · V1 = 0
yields V1 = t(−c2 2

t3
, 0, c2

1
t2
, 0) which is proportional

to H(1)(ψ). Thus, Soladm(VE1
ψ)? = spanC(H(1)(ψ));

this proves that H is the only holomorphic first integral
which is not degenerate along ψ.`

LVE2
ψ

´?
: Since H(ψ) = 0, H2 has valuation 2 along ψ.

We know there is another first integral degenerate of
order 2 along ψ,

K =
1

2
p2

1 +
1

2
(q1p2 − q2p1)2 + q2

1(q2
1 + q2

2).

Therefore, we expect there will be at least 3 admissible
solutions for

`
LVE2

ψ

´?
:

(H(2)(ψ), H(1)(ψ)), ((H2)(2)(ψ), 0), (K(2)(ψ), 0),

stemming respectively from H, H2 and K. We com-
pute Solk

``
LVE2

ψ

´?´
and its dimension happens to be

6. After due application of the filter condition M2,
dimC Soladm((LVE2

ψ)?) is exactly 3 and we have

Soladm((LVE2
ψ)?) = spanC{W2 (c1, c2, c3) : ci ∈ C},

for a three-parametric vector W2. Hence, the admissi-
ble solutions of

`
LVE2

ψ

´?
correspond to the three first

integrals of valuation ν ≤ 2 along ψ: H, K and H2 2.

Since the valuation of H2 and K along ψ is 2, both
((H2)(2)(ψ)) and (K(2)(ψ)) must be admissible solu-
tions of (sym2A1)?. We compute Solk((sym2A1)?);
its dimension is 4. Applying the filter M2 we discard
2 out of 4 solutions. We obtain

Soladm((sym2A1)?) = {V2 (c1, c3) : ci ∈ C},

thus proving that H2 and K are the only two holomor-
phic first integrals degenerate of order 2 along ψ.

(LVE3
ψ)? : We perform the same computations at order 3
and obtain that

dimC Solk((LVE3
ψ)?) = 12.

We expect to get at least 5 admissible solutions: those
stemming from

H, H2, K, H3 and H ·K.

After applying the filter conditions we conclude that
such solutions are indeed the only admissible ones since

dimC Soladm(LVE3
ψ) = 5.

We obtain that the admissible solutions of (sym3A1)?

are exactly those stemming from the first integrals de-
generate of order 3 along ψ: H3 and H ·K discarding
thanks to the filter M3, 4 solutions out of 6. Therefore,
the only first integrals degenerate of order 3 along ψ are
H3 and H ·K.`

LVE4
ψ

´?
: Similarly at order 4 we obtain that

dimC Solk(
`
LVE4

ψ

´?
) = 21.

We expect to get at least 8 admissible solutions: those
stemming from

H, H2, H3, H4, K, H ·K, H2 ·K and K2.

After applying the filter conditions we see that such
solutions are indeed the only admissible ones since

dimC Soladm

`
LVE4

ψ

´
= 8.

Consequently, the admissible solutions of (sym4A1)?

are exactly those stemming from the first integrals
degenerate of order 4 along ψ: H4, H2 · K and K2

discarding thanks to the filter M4, 6 solutions out of
nine. Therefore, the only order-four-degenerate first
integrals along ψ are H4, H2 ·K and K2.

Even assuming no prior knowledge about the existence of K
or the integrability of the system, this filter procedure leads
us as far as:

2The values (1, 0, 0), (0, 1, 0) and (0, 0, 1) of (c1, c2, c3) cor-
respond to K, H2 and H respectively.



1. computing the germ of a valuation-2 formal first inte-
gral along ψ;

2. and proving there is no other holomorphic first integral
of valuation at most 4 along ψ, which is a strong hint
on the non-existence of any other holomorphic first in-
tegral, as they would have to be of valuation at least 5
along ψ.

3.2 Bounds on dimCSoladm((symmA1)?)

The number of analytic first integrals which are degener-
ate at order-m along a non-constant solution φ has a lower
bound depending on the number of analytic algebraically
independent first integrals of the system:

Proposition 16. Let φ be a non-constant solution of (1)
and let F = {F1, . . . , FN} with N ≥ 1 be a family of holo-
morphic first integrals of (1) satisfying Ziglin’s Lemma (i.e
their junior forms are algebraically independent) with valu-
ations ν1, . . . , νN along φ. Then, for every m ≥ 1, we have
the inequalities

card
n
r ∈ NN :

XN

i=1
riνi = m

o
≤

dimk(Soladm((symmA1)?)) ≤ dm−1,n−1.

Proof. The upper-bound condition is easy:

dimkSoladm(symmA1)? ≤ dimk kerMm

= dm,n − dm−1,n = dm−1,n−1.

Now let m ∈ N and consider

Gm :=

(
G =

NY
i=1

Fmii : ν(G) = m

)
,

the family of first integrals of valuation m which are mono-
mials of degree m in F1, . . . , FN . For G ∈ Gm, we have
G◦ =

QN
i=1(F ◦i )mi . And

QN
i=1(F ◦i )mi are linearly indepen-

dent (otherwise the F ◦i would be algebraically dependent).

Therefore, dimk(spanC(
QN
i=1(F ◦i )mi)P

miνi=m
) is equal to

card
˘
r ∈ NN : r1ν1 + . . .+ rNνN = m

¯
. Now,

spanC(

NY
i=1

(F ◦i ))mi ⊂ Soladm((symmA1)?),

which proves our point.

Example 17. Back to the anharmonic oscillator exam-
ple. The table below summarizes for m ranging from 1 to 4
(first column) the dimension of Soladm

``
LVEmφ

´?´
(second

column) as well as the generators of the latter (third col-
umn). For each m we find out that the admissible solutions
of the [A?m] are generated by

1 1 spanC{H(1) (φ)}
2 3 spanC{H(2) (φ) ,K(2) (φ) , (H2)(2) (φ)}

3 5 spanC


H(3) (φ) ,K(3) (φ) , (H2)(3) (φ)

(H3)(3) (φ) , (H ·K)(3) (φ)

ff
4 8 spanC

8<:
H(4) (φ) ,K(4) (φ) , (H2)(3) (φ)

(H3)(4) (φ) , (HK)(4) (φ)

(H4)(4) (φ) , (H2K)(4) (φ) , (K2)(4) (φ)

9=;
In light of Proposition 16 consider the table below which

summarizes for each value of m ranging from 1 to 4 (first col-
umn) the dimension of Soladm(symmA1)?) (second column)
as well as the generators of the latter (third column)

1 1 spanC{H(1) (φ)}
2 2 spanC{K(2) (φ) , (H2)(2) (φ)}
3 2 spanC{(H3)(3) (φ) , (HK)(3) (φ)}
4 3 spanC{(H4)(4) (φ) , (H2K)(4) (φ) , (K2)(4) (φ)}

Had the dimension of Soladm((sym3A1)?) been less than 2
and that of Soladm((sym4A1)?) less than 3, we could have
discarded the possibility of there existing any holomorphic
degenerate first integral of order 2 along ψ other than H2.
In this sense, Proposition 16 acts as a non-integrability in-
dicator.

4. GENERAL ALGORITHM
To summarize, we study (1) along an integral curve Γ

parametrized by φ(t). We wish to detect holomorphic (or
formal) first integrals and compute their Taylor expansions.
The above Theorems show that we should compute admis-
sible solutions of the (LVEmφ ). This is done as follows.

1. Compute rational solutions of (VE1
φ). Apply filter con-

dition from Theorem 12.

2. Order m. Assume we know a parametrized admissible
solution Vm−1 =

P
ciVi,m−1 in Soladm(LVEm−1

φ ).

(a) Compute rational solutions of Ẏ = symm(A)Y
(and filter via Theorem 12); this gives junior forms
of first integrals of valuation m along φ.

(b) Compute rational solutions of the inhomogeneous
system (with parametrized right-hand side)

Ẏ = symm(A)?Y +B?mVm−1.

Details on how to optimize this in the case k = C(t) are
given in the next Section.

5. AN ALGORITHM FOR THE RATIONAL
FUNCTION BASE FIELD CASE

Assume now k = C (t). We recall Barkatou’s algorithm in
[Bar99] to compute rational solutions of linear systems and
adapt it to a variant of [vHW97] tailored to our context.

Definition 18. Given A ∈ Mat (n,k) and P ∈ GLn (k),

Y = PZ transforms system Ẏ = AY into Ż = P [A]Z where

P [A] := P−1(AP − Ṗ ).

Such a change of variables is usually called a gauge trans-
formation.

A universal denominator (UD in short) is a rational function
r(t) such that any rational solution is Y = r(t)Z, Z being
a vector of polynomials. We briefly recall how such a UD
is computed. Consider a system Ẏ = A(t)Y , with A ∈
Mn (C(t)). If Y is a rational solution and p ∈ C is a finite
pole of Y then p is a pole of A. Moreover for any finite
pole p of A one can compute an integer `p such that for any
rational solution Y the function (t− p)−`pY has no pole at
p. A UD is obtained by taking the productY

p pole of A

(t− p)`p .

In order to compute the bound `p one must first compute a
gauge-equivalent system in a suitable so-called simple form



from which the indicial polynomial at p can be immediately
obtained. `p is then the smallest integer root of this indicial
equation. Simple forms are computed by using an adapted
version of the super-reduction algorithm ([HW87, BP09]).

Once a UD r(t) is known, we have rational solutions if,

and only if, system Ż = (A − ṙ
r
Idn)Z has polynomial so-

lutions. To achieve this, [Bar99] computes a gauge trans-
formation P∞ polynomial in t−1 (with P−1

∞ polynomial in
t) such that P∞[A] is in simple form at infinity (note that
P∞[A] − ṙ/rIdn = P∞[A − ṙ/rIdn]) and computes the co-
efficients of Z from regular solutions at ∞.

In the parametrized right-hand side case Ẏ = AY+
P
ciVi,

this algorithm returns the values of the ci for which the sys-
tem admits a rational solution, hence it is adapted to part
(2.b) of our general algorithm.

5.1 Symmetric Powers of Differential Systems
Recall [AM10] that Sym is a group morphism, i.e.

Symm(UV ) = Symm(U) Symm(V ),

and sym is a vector space morphism:

symm(A+ λB) = symm(A) + λ symm(B).

The following Lemmae, valid for all complex matrices, sum-
marize properties which will be used below.

Lemma 19. • Let λ1, . . . , λn be the eigenvalues of M .
The eigenvalues of symm(M) (resp. Symm(M)) are of

the form
P
|i|=m ijλj (resp.

Q
|i|=m λ

ij
j ).

• If M ∈ Mn(k) is such that M and Ṁ commute, then

Symm(eM ) = esymm(M).

Lemma 20. Given gauge transformation B = P [A],

• symm(P [A]) = Symm(P )[symm(A)].

• If A has a regular singularity at t = 0 and matrix
P [A] = A0

t
+ · · · has a pole of order one, we then have

Symm(P )[symm(A)]) = symm(A0)
t

+ · · · .

5.2 Case in which all singularities are regular
In this Section we consider the regular singular case, as it

often occurs in examples and simplifies the exposition.
Any system Ẏ = AY with a regular singularity, say at

t = 0, can be transformed, e.g. using Moser’s algorithm (see
[Mos60], [BP09]), to a gauge-equivalent system with a first-

kind singularity, i.e. Ż = BZ, B having at most a simple
pole at 0: B(t) = 1

t
B0 + B1 + · · · . The indicial polynomial

coincides with the characteristic polynomial of B0.
It is well-known that, using a suitable polynomial gauge

transformation, one can assume that the eigenvalues of B0

do not differ by non-zero integers. In this case the system
Ż = BZ has a formal solution matrix at t = 0 of the form
Û = Φ̂ (t) · tΛ, where Φ̂ ∈ Mn (C[[t]]) satisfies det Φ(0) 6= 0
and Λ ∈ Mn(C) is the normal Jordan form of B0. The
eigenvalues of B0 are called the (local) exponents (or local
data) at t = 0.

For each finite singularity p, one can compute, with the
Moser algorithm, a polynomial gauge transformation Pp such
that B = Pp[A] = 1

t−pB0,p + · · · and the order of the UD
at t = p is the least integer eigenvalue of B0,p. We thus

have Symm(Pp)[symm(A)]) =
symm(B0,p)

t−p + · · · hence the

eigenvalues of symm(B0,p) are
P
|i|=m ijλj , λ1, . . . , λn be-

ing the eigenvalues of B0,p. We may thus compute a UD
rm for system Ẏ = symm(A).Y from the local data com-

puted on Ẏ = AY . Since ∞ is regular, P∞[A] has simple
pole at infinity; hence Sym(P∞)[symm(A)] also has a simple
pole at infinity. It follows that the Barkatou algorithm for
polynomial solutions may be applied directly to

Symm(P∞)[symm(A)?]− ṙm
rm

Id.

To summarize, bounds at singularities (for denominators)
are computed from local data of

`
VE1

φ

´
, the transformation

to simple form at ∞ is lifted to symm(A)? and polynomial
solutions of the latter are then as in [Bar99] or [vHW97].
This gives junior forms of first integrals of valuation m along
φ. Note that, as in [vHW97], we may reduce the size of
computations by means of suitable formal solutions from
(VE1

φ) at this stage.
Part 2.b of the algorithm is adapted similarly. The only

thing that changes is that we need a min between the “uni-
versal bound” computed above (at each singularity) and the
valuations of the right-hand side B?mVm−1.

5.3 Irregular Singularities
For a singularity, say t = 0, which is not regular sin-

gular, Û = Φ̂(t)tΛeQ with notations as above and Q =

diag
“
q1(1/t

1
r ), . . . , qn(1/t

1
r )
”

with qi ∈ C[1/t1/r]. These

exponential parts of A?1 may be computed from [Bar97].
Once exponents are computed at p (using [Bar99, §4.3] as
above), the corresponding exponents of symm(A) may be
computed from these exponents and the exponential parts
using (a small adaptation of) procedure global-bounds in
[vHW97, §3 (p. 368)]. Regarding bounds at infinity, the
symmetric power of a super-reduced system at infinity may
not be simple. However, it will be very close. So if we let
SR(A) denote a super-reduced form of A at infinity (see
[Bar99, App. A.1, A.2]), then SR(symm(SR(A))) involves
a small calculation once SR(A) is known.

5.4 Further Reduction Strategies
The first part of Lemma 20 shows that whenever we have

a gauge transformation Y = PZ which “simplifies” the sys-
tem, then Symm(P ) provides the same simplification on
symm(A). If, say, r linearly independent admissible solu-
tions are computed for (VE1

φ), and an invertible P is built
whose first columns are the said admissible solutions, the
first r columns of P [A?] will vanish and Symm(P ) will yield`
r+m−1
m−1

´
columns of zeroes in symm(A?).

If (VE1
φ) has been put in reduced form [AMW09, AMW10,

AM10] then, as shown in [AMCW11] (also [AM10, Ch. 3]),
rational solutions of all symm(A?) will have constant coeffi-
cients, notably simplifying part 2.a of the algorithm, namely
kernel computation on a sym power.

6. CONCLUSION
Given a holomorphic vector field X, the vector of the

derivatives up to order m of a holomorphic first integral
of X appears as a rational solution of (LVEm)? [MRRS07].
In this work, following [AM10] we have proved that those
germs satisfy an additional set of linear conditions and we
have introduced the notion of admissible solution to this ef-
fect. This construction provides a method allowing us to re-



trieve those admissible solutions, germs of holomorphic first
integrals among them [AM10]. Combining the latter with
Barkatou’s use of local simple forms for rational solutions,
we have introduced an algorithm allowing us to efficiently
compute (whenever the base field is C(t)) those admissible
solutions.

Example 21. Consider the one-parameter family of clas-
sical two-degrees-of-freedom Hamiltonian systems

Hε(q1, q2, p1, p2) =
1

2
(p2

1 + p2
2) + Vε(q1 , q2),

where Vε(q1, q2) = 1
4
(q4

1 + q4
2) + ε

2
(q1q2)2 with ε ∈ C. This

family has been proven to be integrable only for the values
0, 1 and 3 of the parameter ε [Yos88]. These systems admit

φ =
“ c1
t
,
c2
t
, −c1

t2
, −c2

t2

”
i = 1, 2,

as solution curves3. We pick two particular cases, one inte-
grable (ε = 3) and one non-integrable (ε = 2).

The table below summarizes, for m ranging from 1 to 3,
dim Solk((LVEm

φ )?) (second column for ε = 3 fourth column
for ε = 2) and the dimension of Soladm((LVEm

φ )?) (third
column for ε = 3 and fifth column for ε = 2):

1 4 3 2 1
2 14 9 6 3
3 34 19 9 5

For ε = 3 the potential is completely integrable. Indeed,
the system admits another polynomial first integral F =
p1p2 + q1q2(q2

1 + q2
2) which, same as H, is non degenerate

along all particular solutions φ.
The dimension of Soladm((LVEm

φ )?) is maximal for all
m considered; this suggests H could be superintegrable (the
third first integral being non degenerate along φ). This is
consistent with the superintegrability necessary condition in
[MPY08]. In fact a necessary condition for superintegra-
bility for a general Hamiltonian system of dimension 2 is
that the set of admissible solutions be of maximal dimension
(possibly from a certain order on).

For ε = 2, the potential is not meromorphically integrable.
In particular, we can affirm that H is the only first inte-
gral which is not degenerate along φ. At order 2, in addi-
tion to the solutions corresponding to H and H2, there is
an additional admissible solution and at order 3 there are 2
additional admissible solutions. Applying the necessary con-
dition given above it is clear that the results obtained for
ε = 2 do not hint at superintegrability – as expected.

[AM10] conjectured that for each m, Soladm((LVEm
φ )?)

are but the solutions of a differential submodule of ∇?m =
d
dt
− A?m. Once proven, this conjecture, together with the

algorithm exposed in this work, will pave the way towards
an effective theory of formal first integrals of differential sys-
tems along a non-constant solution.
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