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Abstract

A differential operatorL ∈ C(x)[d/dx] is calledabsolutely reducibleif it admits a factorization
over an algebraic extension ofC(x). In this paper, we give sharp bounds on the degree of
extension that is needed in order to compute an absolute factorization. Algorithms to characte
compute absolute factorizations are then elaborated. The ingredients are differential Galois
a group-theoretic study of absolute factorization, and a descent technique for differential op
with coefficients inC(x).
 2004 Published by Elsevier Inc.

Introduction

Let C denote the field of complex numbers andD = C(x)[∂] the ring of differential
operators (∂ = d/dx) with coefficients in the fieldk = C(x) of rational functions with
coefficients inC (see [31] for an exhaustive presentation of these objects).

Consider the differential operator

L= ∂4− 1

x
∂3+ 3

4x2
∂2− x.
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One can show that the operatorL is irreducible as an element of the ringD. However, if
we viewL as an element of the ringD⊗ k(

√
x )= k(

√
x )[∂], then we obtain

L= L̃1L1=
(
∂2− 1

x
∂ + 3

4x2
+√x

)(
∂2−√x

)
. (∗)

So the operatorL, irreducible overk, becomes reducible overk (i.e., overD⊗k k). Such an
operator is calledabsolutely reducible2 (see below for a precise definition). One can ch
that the above factorization is anabsolute factorizationin the sense that the operatorsL̃1
andL1 are absolutely irreducible.

The topic of this paper is the study of absolute factorization: How can one char
ize/compute an absolute factorization of such an operatorL?

This question is the first step when one wants to compute the differential Galois grG

of a differential operatorL. In the known strategies for computingG, the first step consist
in finding an absolute factorization (see [12,24]).

We should first note that, from a theoretical point of view, the question of abs
factorization is solved in [12]. The method of [12] is complete (and theoretic
operational). However, it is based on the (delicate) search of algebraic solutions o
big linear differential system constructed from the operator. We rather propose to r
the question to the (much easier) problem of finding solutions with algebraic logari
derivatives to ancillary operator of lower order than in [12]. To achieve this, we will s
carefully the structural consequences of absolute factorization on the differential G
group and give a more efficient approach to absolute factorization.

As a test case, we may think of the case when an irreducibleL ∈C(x)[∂] admits a factor
of order one:L=M ◦ (∂ − u) with ∂ = d/dx, M ∈ C(x)[∂], andu algebraic overC(x).
Such factors have long been studied; there actually exist algorithms [13,22,40] that
if u exists and, if so, compute the minimum polynomial ofu.

These algorithms are based on the remarkable fact that one can providea priori a finite
list Ln of integers (which depends only on the ordern of the operatorL) such that: if
L factors asL = M̃ ◦ (∂ − ũ) with ũ algebraic, then it must factor asL =M ◦ (∂ − u)

with d := deg(u) ∈ Ln. For example (see Appendix B for more), forn = 2 one has
d ∈ {2,4,6,12}, for n= 3 one hasd ∈ {3,6,9,21,36}, etc.

In this article, we generalize this method. We show that an irreducibleL ∈ D has a
factor of orderr overk only if it has such a factor over an extension of degree belon
toLn/r (Proposition 3) and then give an algorithm (Section 3.2) to obtain adecomposition
of L into absolutely irreducible factors.

To achieve this, our main tool is differential Galois theory. We translate the (abs
reducibility properties ofL in terms of representation of its differential Galois gro
A standard theorem of Clifford leads (as in the works of Singer and Ulmer on
order factors) to a dichotomy betweenprimitive and imprimitive representations of th
differential Galois group (see definitions in page 80). To handle the primitive case
imprimitive case then being an easy induction), we develop on work of Katz to s

2 Also sometimes calledLie-reduciblein the literature.
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a “Galoisian descent” process for (suitable) differential operators with coefficients
algebraic extension ofC(x). We reprove Theorem 2 (from [24]) that, in this case, o
can writeL�M ⊗N whereM,N ∈D, M is absolutely reducible, andN has a basis o
algebraic solutions. We then explore what this decomposition implies on the Galois
and how to actually deduce absolute factorizations (in particular the degree lists). H
effectively achieve the descent and computeM will appear in subsequent work.

This article is structured as follows. In the first part, we characterize abs
reducibility in terms of representations of the groupG. We particularly develop th
primitive case and the descent process. In the second part, we study the impact of a
factorization on the differential Galois group. In the third part, we deduce from th
list of possible degrees and use representation theory to elaborate an effective me
computing absolutely irreducible factors ofL.

To conclude this introduction, let us mention cases where absolute factorizat
handled in the literature. First consider a linear differential equationLy = 0 with only two
singularities 0 being a regular one and∞ being an irregular one. Under these hypothe
Beukers, Brownawell and Heckman [5, Corollary 3.3], give conditions for the ope
L to be absolutely (“Lie” in their language) irreducible. This condition is easily rea
the monodromy at 0 and uses the fact that the (global) monodromy group is gen
by the local monodromy at 0 in this case. Beukers, Brownawell and Heckman app
criterion to confluent hypergeometric operators that enter this frame (Katz and G
[24] independently obtain analogous results for this family). Also, works that com
Galois groups of differential operators of given order contain lots of material about ab
reducibility for example [38] (operators of order 2 and 3) and [18] for operators of ord
now followed by [13,17].

1. Group-theoretic characterizations of absolute reducibility

Throughout this paper, we assume that the reader has a working knowled
differential Galois theory. The main reference for this is now [31]. Alternative introduc
are for example [3,6,27,28,30,37]. Notions on factorization and Liouvillian solution
recalled in the appendices, mainly to fix notations as we use these notions a lot.

1.1. Notations and conventions

Let k be an ordinary differential field of characteristic zero, and callC its field of
constants. LetL ∈D= k[∂] be a differential operator of ordern:

L= ∂n + an−1∂
n−1+ · · · + a0 ∈D.

Throughout the paper, the following convention will be used: when a capital
comes subscripted, it means that the subscript refers to a differential operator it is a
to. For example,KL will denote the Picard–Vessiot extension ofk associated toL (a
minimal differential field extension ofk generated by solutions ofL); VL will denote the
solution space ofL in KL, andGL will denote the differential Galois group ofKL overk
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(the group ofk-automorphisms ofK that commute with the derivation). The action ofGL

on VL induces a matrix representation ofGL in GL(n,C) that we fix once for all; often
the group will be identified with this representation inGL(VL). From now on, we assum
thatL is irreducible inD (i.e., there are no properGL-invariant subspaces ofVL).

Definition 1. Let L ∈D= k[∂] be an irreducible differential operator of ordern.
We say thatL is absolutely reducibleif it factors over an algebraic extension ofk.

We say thatL1 ∈ k[∂] is anabsolute factorof L if L1 is a factor ofL over an algebraic
extension ofL andL1 is absolutely irreducible. We say that (the action of) its differen
Galois groupGL is absolutely reducibleif there is a normal subgroupH of finite index
such thatH acts reducibly onVL (equivalently: if the connected component of the iden
G◦ acts reducibly onVL). The representationVL of GL is called imprimitive if it is
irreducible and if there exist an integert > 1 and subspacesW1, . . . ,Wt of VL such that
VL =W1⊕· · ·⊕Wt andGL acts transitively on the set{W1, . . . ,Wt }. The set{W1, . . . ,Wt }
is called asystem of imprimitivityfor G. The representation is calledprimitive if it is
irreducible and not imprimitive.

In the sequel, we adopt the convention that “system of imprimitivity” will always r
to a system of imprimitivity where the blocksWi have minimal dimension with respect
this property. If dim(Wi)= 1 then (the representation of) the group is calledmonomial. We
will see (Lemma 1) thatL is absolutely reducible if and only ifG is.

Throughout this section,L is assumed to beirreducible overk but reducible overk1,
wherek1 denotes an algebraic extension ofk. LetL1 ∈ k1[∂] denote a factor ofL overk1.
The following lemma is a trivial exercise in differential Galois theory. We include a p
mainly to set notations.

Lemma 1. The operatorL is reducible over a Galoisian algebraic extensionk1 of k if and
only if there exists a normal subgroupH �G of finite index such thatH acts reducibly
onVL.

Proof. Assume such anH exists. LetV1 ⊂ VL be a non-trivialH -invariant subspace o
minimal dimension and letk1 denote the fixed field ofH . BecauseH is of finite index,k1
is a (Galoisian) algebraic extension ofk. By [36, Lemma 1],V1 is then the solution spac
of an operatorL1 with coefficients ink1. Now, asV1⊂ VL, L1 is a factor ofL.

Conversely, letL1 ∈ k1[∂] denote a factor ofL over k1. We callΓ1 the Galois group
of k1 over k. ThenΓ1 acts on the coefficients ofL1. Let Li , for i = 1, . . . ,m, denote
the conjugates ofL1 under this action. Obviously, they are again factors ofL hence
their solution spacesVi are subspaces ofV . Let H := ⋂

i=1,...,m StabG(Vi). The group
G has a permutation action on the set{V1, . . . , Vm}; H is the kernel of this permutatio
representation, and hence a normal subgroup of finite index.✷
Remark 1. Note that the index ofH in G gives the degree ofk1 but not the degree of
factor in general. To see this, letu1 denote an element algebraic of degree 3 overk such
that its minimum polynomial has Galois groupS3. Let L denote the Least Common Le
Multiple (LCLM, see [31]) ofL1 := ∂−u1 and its conjugates∂−u2 and∂−u3. Obviously,
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L1 is defined over an algebraic extension of degree 3 whereas (in the above notatio
permutation representation isS3 and hence[G :H ] = 6 andk1= k(u1, u2, u3).

The above construction onH is the first step towards the following well-known theore
of Clifford:

Theorem 1 (Clifford [9]). LetG ∈GLn(C) be a linear algebraic group acting irreducibl
onV = Cn. Assume thatG has a normal subgroupH of finite index acting reducibly onV .
Then

(1) One can decomposeV asV =W1⊕· · ·⊕Wt with theWi beingH -modules all having
the same dimensions(hencedim(Wi) dividesn) and such thatG permutes theWi

transitively.
(2) For eachi, one can decompose theWi asWi =⊕

j Vi,j where theVi,j are irreducible
and isomorphicH -modules.

TheWi are called the homogeneous components ofV viewed as anH -module (see
Definition 49.5 in [14]). If t > 1 then the representationVL of G is imprimitive. If t = 1,
then the representation can be imprimitive or primitive but it isH -isotypical, i.e., all
irreducibleH -modules inV are isomorphic. Note that under the hypotheses of Cliffo
theorem all the irreducibleH -modules have the same dimensions.

We will say that a differential operatorL is primitive (respectively imprimitive) if the
representation of its differential Galois groupGL on its solution spaceVL is primitive
(respectively imprimitive). The above theorem shows howL can be written as a Lea
Common Left Multiple of an absolute factor and its conjugates.

Remark 2. If G is primitive and if H̃ is any normal subgroup of finite index, then th
representation is̃H -isotypical.

Remark 3. If n is prime, then the above results close the problem of absolute factoriz
as the only possible factors will be of order 1. Factors of order 1 over algebraic exte
have long been studied; lists of possible degrees and algorithms to compute such
are known (see Appendix B).

Because the imprimitive case can be viewed as a block of primitive cases, we wi
start analyzing the primitive case and then will use it for an induction in the imprim
case. The descent process described in Section 1.3 will rule the primitive case an
imprimitive cases, the other ones then appearing as induction cases.

1.2. The absolute stabilizer̃H

LetL1 denote an absolute factor ofL, andV1 its solution space inKL. Fori = 1, . . . ,m,
let Li denote the conjugates ofL1, i.e., its images under Galois action on the coefficie
of L1. We letH :=⋂m

i=1 StabG(Vi) as above. The fixed fieldk1 of H in KL is asplitting
field for L, in the sense thatL is an LCLM of absolutely irreducible operators overk1 (see
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[12] for more on splitting fields for differential operators.)3 One may wonder whetherH
andk1 depend on the initial choice ofV1. If the group is primitive, we will see that it doe
not. However, if the group is imprimitive, thenH may depend on the choice ofV1. We
now introduce a subgroup which canonically describes the absolute factorization.
of theVi may be isomorphicG◦-modules. In this case, we denoteφi,j aG◦-isomorphism
betweenVi andVj .

Definition 2. The group

H̃ = {
g ∈G | g(Vi)= Vi andg ◦ φi,j = φi,j ◦ g

}
is called theabsolute stabilizerin G (with respect to the representation onV ).

Note that, in the primitive case, the representationV is H -isotypical soH = H̃ . The
fact that this groupH̃ does not depend on its construction (i.e., it is canonical) foll
from the following lemma:

Lemma 2. AnyG◦-module inVL is anH̃ -module. Moreover, isomorphicG◦-modules are
isomorphicH̃ -modules.

Proof. Let us choose, among the conjugates ofV1, someG◦-modulesV1,1, . . . , V1,s, . . . ,

Vt,1, . . . , Vt,s such thatV is the direct sum of thoseVi,j and, for allj , k, we haveVi,j
andVi,k are isomorphic asG◦-module (and also as̃H -module by definition). LetW be
any G◦-irreducible module. ThenW is G◦-isomorphic to one of theVi,j , sayV1,1 up
to renumbering. Goursat’s lemma (e.g., Lemma 2.2 in [11]) then implies that there
constantsc2, . . . , cs such that

W = {
y + c2φ1,2(y)+ · · · + csφ1,s(y) | y ∈ V1,1

}

as aG◦-module. Now, as theφ1,j commute withH̃ , we see thatW is an H̃ -module.
Moreover, the projectiony + c2φ1,2(y) + · · · + csφ1,s(y) �→ y is an H̃ -isomorphism
from W to V1,1. It follows that any two isomorphicG◦-modules are also isomorph
H̃ -modules—independently of the initial choice ofV1 and of theφi,j . ✷
Remark 4. As pointed out to us by M.F. Singer, if we letK = EndG◦(VL), then
EndK(VL) = C[G◦] (Jacobson’s theorem [26, Chapter XVII, Section 3]) and we ob
that H̃ = C[G◦] ∩G. For example, ifG is a finite group, this shows that̃H is a central
cyclic subgroup.

3 Thesplitting fields are calleddecompositionfields in [12].
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Example. To understand better why this group̃H has to be introduced, consider t
representation inSL2 of the quaternion group. This is a group of order 8 generate
the matrices

M1=
(
i 0
0 −i

)
and M2=

(
0 1
−1 0

)
.

If y1, y2 denote the basis ofV on which these matrices are expressed, we see that the
Vi generated by theyi are permuted by the group. Their stabilizerH is the group of four
elements generated byM1. However, the action ofM1 on V1 is multiplication byi and
the action onV2 is multiplication by−i so V1 andV2 are non-isomorphicH -modules.
Because the group is finite,G◦ = {Id} so of course any line is aG◦-module but it is not, in
general, anH -module. The group̃H , in this example, is easily seen to bẽH = {Id,−Id}
and, of course, any line is indeed añH -module.

1.3. Descent and absolute factorization

In the paper [9], Clifford shows that, in the case of a primitive absolutely redu
group, each matrix in the group can be written as a tensor products of two matrices
yields a representation of the group as a tensor product of twoprojectiverepresentation
(andnot subrepresentations).

A different approach, and the heart of our analysis, will be to establish (and de
on) the forthcoming theorem of Katz [24, trichotomy page 45], on absolute factoriz
in the case of isomorphic absolute factors. We will give a complete proof of this re
the interest being that we will recast its two main steps in a setting that will be use
extending and clarifying some of its consequences.

The object of the next subsection will be a descent theory for differential operator
C(x). The fact that our base field isC(x) (or an algebraic extension of it, see Corollary
plays an essential role there as we will use the fact that certain 2-cocycles will be trivi
follow closely the argument of Katz in this first part. We will then prove Katz’s theor
giving a proof that seems more elementary to us and that sheds more light on the und
group-theoretic consequences of the result; it will help establish some corollarie
Proposition 3.

1.3.1. Descent theory for differential operators
Let k = C(x) denote the (cohomologically trivial) base field. Recall [31,36] that

operatorsL1 and L2 in k1[∂] are calledisomorphic(or equivalent) over a field̃k1 if
ord(L1) = ord(L2) and there existR,S ∈ k̃1[∂] of order less than ord(L2) such that
L1R = SL2 (or, equivalently, if the associated differential modules are isomorphic).
operatorR can then be seen as a representant of the isomorphism fromL2 to L1. We say
thatL1 andL2 areprojectively equivalentif there existsr ∈ k such thatL1 is equivalent to
L2⊗ (∂ − r).

Definition 3. Let k1 be a Galois extension ofk =C(x) and letL1 ∈ k1[∂]. We say thatL1
descends tok over a fieldk0 if k0 is a Galois extension ofk containingk1 and if there exists
an operatorM ∈ k[∂] such thatL1 is isomorphicoverk0 to M.
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Let k1 be a Galois extension ofk =C(x) and letL1 ∈ k1[∂] be an absolutely irreducibl
operator. Assume thatL1 is isomorphic (over a Galois extensioñk1 of k containingk1) to
all its conjugates. Denote byΓ the Galois group of̃k1 overk. For eachh in Γ , we denote
by Lh the conjugate ofL1 under the action ofh on coefficients ofL1. By hypotheses, fo
eachh ∈ Γ , there exists an isomorphismφh of ∂-modules

φh : L1
φh

Lh.

Note thatφh is only defined up to multiplication by a constant. Now, ifg is another elemen
in Γ (g acts onφh by action on the coefficients), we may letg act on the above relation
pushing it to a morphism betweenLg andLgh = g(Lh), which leads us to the followin
diagram

L1

φg

φgh

φh
Lh

Lg
g(φh)

Lgh

We see thatg(φh) ◦ φg andφgh are two isomorphisms betweenL1 andLgh. As theLh

operators are assumed to be irreducible, Schur’s lemma implies that there exists a n
constanta(h,g) such that

φgh = a(h,g)g(φh) ◦ φg. (1)

Definition 4. We say that the collection of morphisms{φh}h∈Γ forms adescent dataif the
constanta(h,g) is always equal to 1, i.e.,φgh = g(φh) ◦ φg for all g,h ∈ Γ .

If L1 descends to anM ∈ k[∂] over some fieldk0, then existence of a descent da
(relatively toΓ0 = Gal(k0/k)) is clear: lettingφ denote an isomorphism fromL1 to M

overk0, we may setφh := h(φ)−1 ◦ φ for h ∈ Γ0 and it is easily checked that the{φh}h∈Γ0

form a descent data (becauseM is defined overk)

L1

φ

h(φ)−1◦φ
Lh

h(φ)

M

The converse is a bit more sophisticated. In [45] for varieties and [15,16] in the genera
(see also Chapter III of [33] for explanations on this topic), it is shown that the exis
of a descent data guarantees the existence of the descent. Indeed4 assume we have desce

4 We are grateful to Michael F. Singer for showing us this (classical) proof, see also [21].
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data{φh}h∈Γ0. The descent conditions show that the mapc :h �→ φh induces a 1-cocycle in
H 1 (Γ0,GLn(k0)). The latter is known to be trivial (e.g., [41, Chapter 11]) so there ex
φ ∈GLn(k0) such thatc(h)= h(φ−1)φ. It is easily verified that the image ofL1 underφ
is invariant underΓ0 and hence has coefficients ink (i.e., it is a descent ofL1).

Lemma 3 [24, 2.7.3].Let k1 be an algebraic Galois extension ofC(x) and letL1 ∈ k1[∂]
irreducible and isomorphic(over a Galois extensioñk1 of C(x) containingk1) to all its
conjugates. Assume thatL1 is absolutely irreducible. Then, there exists a Galois exten
k0 of C(x) containingk̃1 and an operatorM ∈C(x)[∂] such thatL1 is isomorphic overk0
to M.

Proof. As explained above, the proof will consist in the construction of a descent da
The set of constantsa(h,g) from relation (1) is easily seen to induce a 2-cocy

a :Γ × Γ → C∗, (h, g) �→ a(h,g). If a is trivial (i.e., if we can find a 1-cocycl
b ∈ H 1(Γ,C∗) such thata(h,g) = b(h)b(g)/b(gh)) then we can construct descent d
φ̃h := b(h)φh and our problem is solved. We will show that, at the cost of considerinL1
over a Galois extensionk0 of C(x) containingk̃1, the 2-cocyclea can be made trivial
hence the conclusion of the lemma.

As Γ is finite of some orderm, the 2-cocycleam is trivial (see [23, Proposi
tion 7.3, page 61]) so, up to multiplying theφh by a suitable constant, we may assu
thata has values in the groupµm of mth roots of unity, i.e.,a ∈H 2(Γ,µm).

Let G :=Gal(C(x)/C(x)) denote the absolute Galois group ofC(x), i.e., the projective
limit of Galois groups of algebraic extensions ofC(x). The groupH 2(C(x),µm) :=
H 2(G,µm) is an Abelian torsion group, hence it is a direct product of itsp-primary
components. Thep-primary component ofH 2(C(x),µm) identifies toH 2(C(x), (µm)p),
where(µm)p is thep-primary component ofµm [33, proof of Proposition 11 in §I.3]
Now, Tsen’s theorem shows thatC(x) (and more generally any field of transcende
degree 1 overC) has cohomological dimension� 1 (see [33, Example 3.3, page II.10
Proposition 11(ii) of §I.3 in Serre shows thatH 2(C(x), (µm)p)= 0 for all primep, hence
we haveH 2(C(x),µm)= 0.5 But

H 2(G,µm)= lim−→H 2(F ,µm)

where the inductive limit is taken on the Galois groupsF of finite extensions ofC(x).
Viewed as an element of the trivial groupH 2(C(x),µm), the 2-cocyclea must be trivial.
So, by definition (of the inductive limit), there exists a Galois extensionk0 of C(x) with
Galois groupΓ0 such thata is trivial as an element ofH 2(Γ0,C

∗). We then can construc
a descent dataover k0 andL1 is isomorphic overk0 to an operatorM with coefficients
in C(x). ✷
Remark 5. Note that the isomorphisms betweenL1 and its conjugates are defined overk̃1
and hence the isomorphisms involved in the descent data are defined overk̃1. However,

5 This remains true if we replaceC(x) by an algebraic extension ofC(x), see Corollary 2 below.
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if Γ is “not big enough,” there may not be “enough” isomorphisms to have the de
conditions realized. Indeed, introducing the overfieldk0 means that we take a bigger Galo
group, hence more isomorphisms and more freedom to obtain descent conditions.
will see in Section 2, this introduction ofk0 is not artificial and is sometimes really need
to achieve the descent. We will indeed show how to control the descent field (the on
which the descent conditions are satisfied, see Corollary 3).

1.3.2. Absolute factorization and tensor products
Building on this descent lemma, Katz shows in [24] the following variant on Cliffo

second theorem [9]. IfM, N are differential operators, we callM ⊗ N the differential
operator whose solution space is spanned by the productsyifj of solutionsyi of M and
fj of N , respectively. IfM, N are the differential modules associated toM andN , then
M ⊗N is an operator associated toM⊗N [31].

Theorem 2 [24]. Let L ∈ C(x)[∂] be an irreducible operator. We assume thatL admits
factorsL1, . . . ,Ls with coefficients in an algebraic extensionk1 of C(x) such that:

(1) TheLi are all the conjugates ofL1 (and are also absolutely irreducible).
(2) TheLi are pairwise isomorphic overC(x).

Then there exists operatorsM andN in C(x)[∂] such thatM is absolutely irreducible and
isomorphic overC(x) to L1, N has a finite Galois group, andL is isomorphic overC(x)
to the tensor productM ⊗N .

Proof. The first step in the proof of this theorem is the descent Lemma 3. Unde
hypotheses of the theorem, the operatorL1 is isomorphic to all its conjugates. By Lemma
there exists an operatorM ∈ C(x)[∂] and a Galois extensionk0 of C(x) such thatM is
isomorphic toL1 over k0. As L1 is absolutely irreducible, so isM. Let F1 ∈ C(x)[∂]
be a differential operator admittingk0 as a Picard–Vessiot extension (see, e.g., [32]
a construction of such a differential operator). LetL̃ denote the LCLM of operatorsF1
andM. We haveL̃ ∈C(x)[∂] and the Picard–Vessiot extensioñK of C(x) associated with
L̃ contains the Picard–Vessiot extensionsk0 andKM . A direct consequence is that̃K also
containsKL1, . . . ,KLs and thus containsKL. This can be sketched as

K̃

H1

G̃KM k0

Γ0

KL

G

k

We let H1 denote the differential Galois group of̃K over k0. As M and L1 are
isomorphic overk0, the solution spacesVM andVL1 in K̃ of the equationsMy = 0 and
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L1y = 0 are isomorphicH1-modules. AsH1 is normal inG̃, the set HomH1(VM,VL) of
H1-module homomorphisms fromVM to VL is a G̃-module (the action being defined b
g̃.φ = g̃φg̃−1). Now, one easily checks that the application

ψ :VM ⊗HomH1(VM,VL)→ VL, v⊗ φ �→ φ(v)

is a morphism of̃G-modules. Moreover, it is surjective: Im(ψ) = VL becauseVL is an
irreducibleG̃-module andψ �= 0. Let us compare dimensions of these twoG̃-modules. We
haveVL = VL1 ⊕ · · · ⊕ VLs , with dim(VL1) = · · · = dim(VLs ) = r. For all i ∈ {1, . . . , s},
VM andVLi are isomorphic and irreducibleH1-modules, hence dimHomH1(VM,VL)= s.
It follows that dim(VM ⊗ HomH1(VM,VL)) = dimVL, thus ψ is an isomorphism o
G̃-modules.

Let now N ∈ C(x)[∂] be a differential operator whose solution space iñK is
(G̃-isomorphic to) HomH1(VM,VL). By definition all solutions ofNy = 0 in K̃ are fixed
by H1, and thus are algebraic overk. SoN must have a finite Galois group. Moreover,
the three operatorsM, N andL have their Picard–Vessiot extension iñK , the isomorphism
ψ imposes thatL is isomorphic overk to the tensor productM ⊗N . ✷
Remark 6. The operatorsM andN in Katz’s theorem are far from unique: they are defin
up to tensoring by an order 1 operator of the form∂ − f . Lemma 3 ensures the existen
of a descent but gives no indication, like degrees, on the descent morphism (or h
compute such descent). These questions are addressed in Section 2 of this paper.

Remark 7. Under hypothesis of Theorem 2, the order of the operatorM ⊗ N is
order(M).order(N). In other words, there is no non-trivial linear relation with coefficie
in C between{mi.nj } where{mi} and{nj } are bases of solutions ofM andN . IndeedM
is absolutely irreducible so the{mi} are linearly independent over any algebraic exten
of C(x) [10,11].

From the structure of our proof, we see that we may establish a number of corolla

Corollary 1. If a differential operatorL ∈ C(x)[∂] has a primitive absolutely reducibl
differential Galois group, then the hypotheses(and conclusion) of Katz’s theorem hold.

Proof. Because the group is primitive, the representationVL is G0-isotypical and even
H -isotypical (with the construction from Section 1.2) and hence the hypotheses of K
theorem are satisfied: theLi are defined and isomorphic overk1 (becausek1 is the fixed
field of H and the representation isH -isotypical). We thus see thatL�M ⊗N . ✷

For the study of the imprimitive case, we will need the following easy corollary.

Corollary 2. Katz’s theorem also holds if the base fieldk is a finite extension ofC(x).

Proof. The key step for Katz’s theorem (the descent) holds ifH 2(k,C∗) is trivial, where
k is the base field. A finite extension of a field of cohomological dimension� 1 is a field
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of cohomological dimension� 1 (Tsen’s theorem [33, ex. 3.3, page II.10]). If we repla
C(x) with a finite extensionk, thenH 2(k,C∗) is still trivial and the 2-cocycles can b
trivialized as in the proof of the descent Lemma 3.✷

We now turn to the question of the (non)-unicity of the descent. Obviously, ifM ∈ k[∂]
is a solution to the descent problem, then any operator equivalent overk to M is also a
solution; note also that the resultL�M⊗N definesM only up to projective equivalence
even thoughM itself is defined up to equivalence in the descent process.

The next lemma investigates the number of solutions to the descent problem. Th
of result is standard in descent theory.

Proposition 1. Same hypotheses and notations as in Katz’s descent Lemma3. Letk0 denote
the descent field andΓ0=Gal(k0/k). Then

(1) To any descent data{φh}h∈Γ0 corresponds a unique(up tok-equivalence) operatorM
equivalent overk0 to L1.

(2) The number of descent data overk0 (and hence of equivalence classes of solutionM

to the descent problem) is the order of the groupHom(Γ0,C
∗) of the homomorphism

fromΓ0 to C∗.

Proof. Part (1) is simple and well known. Let{φh}h∈Γ0 denote descent data and letM

and M̃ denote two descents ofL1 associated with{φh}h∈Γ0: this means that there a
morphismsf from L1 to M (respectivelyf̃ from L1 to M̃) such thatφh = h(f ).f−1 =
h(f̃ ).f̃−1. It follows thath(f.f̃−1) = f.f̃−1 for all h ∈ Γ0 and hence the isomorphis
f.f̃−1 betweenM andM̃ is defined overk. In our setting, we considerH 1(Γ0,C

∗) with a
trivial action ofΓ0 on C∗, soH 1(Γ0,C

∗)= Hom(Γ0,C
∗) and the result follows from th

introduction to Chapter III of [33]. ✷
We will come back to the descent problem and its impact on the Galois gro

Section 2.

1.4. Imprimitive differential operators

We now study the structure of animprimitive differential operatorL ∈ k[∂] with
k ⊂ C(x). Again, letKL denote the Picard–Vessiot extension ofk associated toL, VL
the solution space inKL, andGL the differential Galois group. Let(W1, . . . ,Wt ) denote a
system of imprimitivity forGL (precisely: for the representation ofGL onVL):

VL =W1⊕ · · · ⊕Wt

and GL permutes theWi transitively. LetS denote the stabilizer inG of the family
{W1, . . . ,Wt }: S := ⋂

StabG(Wi). ThenS is a normal subgroup of finite index inGL

which acts reducibly onVL so we see immediately thatL already factors over an extensi
of degreet of the base fieldk.
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EachWi is a primitiveS-module (by minimality of the dimensions of theWi ). For
i ∈ {1, . . . , t}, we letLi denote the monic differential operator with coefficients inKS

L ⊂ k

whose solution space isWi . Note that, thoughKS
L is an extension of degree at most(t !)

of k, eachLi has its coefficients in a subextension of degreet of k. OurL is the LCLM of
the operatorsL1, . . . ,Lt and eachLi is primitive.

Now assume thatk =C(x) (or a finite extension of it so that the results of the previ
section apply). By Theorem 2 and Corollary 2, eitherLi is absolutely irreducible or i
admits a factorization as a tensor productLi =Mi⊗Ni whereMi andNi have coefficients
in the coefficient fieldki of Li , Mi is absolutely irreducible, andNi has a finite primitive
Galois group.

2. Structure of the Galois group in the descent case

In this section, we place ourselves in the notations and descent hypothese
Theorem 2 and investigate the consequences of the descent on the Galois group.
show how to measure the degree of the descent morphism and of the morphisms b
the conjugate differential operatorsLi .

We first investigate, as a test case, the (easy) case of first order operators.

2.1. The descent for first order operators

In the case of a first order operator∂ − u with u algebraic, then the descent proce
can be explained in a more explicit way. LetL1 = ∂ − u1 be a first order differentia
operator with coefficients in an algebraic extension ofC(x). Assume thatL1 descends to
an operatorM = ∂ − f ∈ C(x)[∂], i.e., there exists a non-zero elementφ1 algebraic over
C(x) such that(∂ − u1).φ1= φ1.M. Then a simple computation shows that we must h
u1= f + φ′1/φ1 with φ1 algebraic. This in turn implies thatφ1 is radical overk(u1), i.e.,
there existsd ∈ N such thatφd

1 ∈ k(u1). Equivalently, there existsψ1 ∈ k(u1) such that
u1= f +ψ ′1/dψ1. Using the integration algorithm on algebraic curves [1,4,7,12,42],
can decide if this is the case and computef,d,ψ1. Conversely, ifu1 = f + φ′1/φ1 with
f ∈ k andφ1 algebraic overk, thenL1 obviously descends to∂ − f overk(φ1).

Example. Let u denote a root ofu3− u− x = 0 and let

L1= ∂ − 4u2− 6ux + 5x2+ 27x4− 4

x(−4+ 27x2)
.

The integration algorithm shows that

4u2− 6ux + 5x2+ 27x4− 4

(−4+ 27x2)x
= x + ψ ′1

3ψ1
with ψ1= u+ x.

We see thatL1.φ1= φ1.(∂ − x) with φ1 given byφ3= u+ x.
1
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LetM∗ denote the dual (or adjoint) ofM. Nowφ1 is an algebraic solution ofL1⊗M∗
and the latter descends to∂ . So, we see that, a first order operator admits descent if
only if, up to tensoring overk by a first order operator, it admits descent to∂ . The descen
morphism is then multiplication by a solutionφ1, whose degree overk(u1, u2, . . .) can
again be measured using the integration algorithm; and the isomorphisms between∂ − ui
and∂ − uj are multiplication byφi/φj (which obviously satisfy the descent conditions

We may remark now, that, becauseφ1 is an algebraic solution of an equationy ′ =
u1y, we haveφd

1 ∈ k(u1) for some numberd (measured by the integration algorithm
Moreover, there exists a (smaller) numberd̄ such thatφd̄

1 ∈ k1= k(u1, u2, . . .). A method
for measuring this degreēd is given in [12, Proposition 2.4].

2.2. Degree for the descent and for the algebraic equivalence

Throughout this section, we assume thatL�k M⊗N with L irreducible,M absolutely
irreducible of orderr, N of order s = n/r with a finite Galois group. Recall (se
Appendix B) that we then haveN = LCLM (∂ − u1, . . . , ∂ − um) with the ui algebraic
and conjugate, whose degreem can be picked from a precomputed listLs (i.e.,m depends
uniformly on s). Moreover there exist algebraic functionsfi satisfyingf ′i = uifi . Note
that we may, without loss of generality, assume thatN is unimodular. Indeed, write
N = ∂s + as−1∂

s−1 + · · · and letω denote the Wronskian ofN . As GN is finite, ω is
algebraic overk and henceN ⊗ (∂ − (as−1)/s) has a finite unimodular Galois grou
Evidently,M ⊗N �k (M ⊗ (∂ + (as−1)/s))⊗ (N ⊗ (∂ − (as−1)/s)) so, in the sequel, w
assume thatGN is unimodular.

We now will show the link between this structure ofN and the degrees for an absolu
factorL1 of L, for the associated descent morphism, and for the equivalence isomorp
between theLi .

Lemma 4. LetL ∈ k[∂]. LetLf denote the image ofL under the map∂ �→ ∂ − f in k[∂].
ThenLf = L⊗ (∂ − f ) .

Proof. The solutions ofL⊗ (∂ − f ) arey.exp(
∫
f ). Now

(
y.exp

(∫
f

))′
= exp

(∫
f

)
(∂ + f )(y)

Noting that bothLf andL⊗ (∂ − f ) are monic and have the same order, this yields
result. ✷
Theorem 3. Assume thatL �k M ⊗ N with L irreducible,M absolutely irreducible o
order r, N of orders = n/r with a finite unimodular6 Galois group. Letui be conjugated
algebraic functions such thatN = LCLM (∂ − u1, . . . , ∂ − um). Let fi be non-trivial
algebraic functions such thatf ′i = uifi .

6 We saw above that we can impose this without losing generality.
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ThenL admits a factorL1 ∈ k(u1)[∂] such that the descent morphism is(in operator
form) R1 := f1R̃1 with R̃1 ∈ k(u1)[∂] and the isomorphism between two conjugatesLi

andLj ofL1 is of the formφi,j = (fi/fj )Φi,j with Φi,j ∈ k(ui, uj )[∂].

Proof. By assumption, there exists operatorsR,S ∈ k[∂] such thatR has order less tha
M ⊗ N andL.R = S.(M ⊗ N). Recall thatN = LCLM(∂ − ui , i = 1, . . . ,m). Let m
denote the degree of theui , chosen minimal.

Let fi denote a non zero solution ofy ′ = uiy. By construction, there exists measura
integersd andd̄ such thatf d

i ∈ k(ui) andf d̄
i ∈ k1= k(u1, . . . , um), respectively. NowR

mapsVM⊗(∂−u1) to a subspace ofVL. Hence, if we letR1 denote the remainder of th
right division ofR by M ⊗ (∂ − u1), thenR1 mapsVM⊗(∂−u1) to a subspace ofVL so
there exists a factorL1 ∈ k(u1) of L such thatL1.R1=�S1.(M ⊗ (∂ − u1)). The solutions
of M⊗(∂−u1) are of the formz.f1 with M(z)= 0. Now, we have(zf1)

′ = f1.(∂+u1)(z).
Hence, by Lemma 4, we see that

R(z.f1)= f1
(
R1⊗ (∂ + u1)

)
(z).

Letting R1 := f1(R1 ⊗ (∂ + u1)), we see thatR1 mapsVM to VL1. So, we conclude
that there existsS1 ∈ k(u1)(f1) such thatL1.R1 = S1.M. Moreover, by the irreducibility
of VM and Schur’s lemma, any morphism fromM to L1 will be of the formc.R1.

Similarly,R2 := f2(R2⊗ (∂+u2)). To obtain the inverse ofR2, we write an operatorr2
of orderr − 1 with indeterminate coefficients. The condition forr2 to be the inverse ofR2

(viewed as a morphism fromVM toVL2) is that the remainder of the right division ofr2.R2
by M should be 1. The latter gives linear (non-differential) conditions on the coeffic
of r2 (for which a unique solution exists by construction). In fact, the latter can als
written as

f2
(
r2⊗ (∂ + u2)

)(
R2⊗ (∂ + u2)

)= 1 modM,

which shows thatR−1
2 ∈ (1/f2)k(u2). As a consequence, we see that the isomorph

φ1,2 := R1.R
−1
2 mod L2 has coefficients in(f1/f2).k(u1, u2) and satisfiesL1.φ1,2 =

ψ1,2.L2. ✷
Remark 8. The result on theφi,j can also be seen the following way.

Let k1 be a Galois extension ofk and k̃1 a Galois extension ofk containingk1. Let
L1,L2 ∈ k1[∂] be differential operators, irreducible over̃k1 and isomorphic over̃k1. Letφ
denote the isomorphism. For allg ∈ Gal(k̃1/k1), g(φ) is again an isomorphism betwee
L1 andL2 so Schur’s lemma implies that there exists a constantcg such thatg(φ)= cgφ.
It follows that there existf ∈ k̃1, satisfyingg(f ) = cgf for all g ∈ Gal(k̃1/k1), and
Φ ∈ k1[∂] such thatφ = f.Φ. Becauseg(f ) = cgf for all g ∈ Gal(k̃1/k1), we see tha
there existsd ∈N such thatf d ∈ k1.

The disadvantage of this proof is that it gives no information on the possible de
for f . An analogous remark appears as “rigidity lemma” on page 45 of [24].
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Remark 9. Theorem 2, in fact, shows that the hypotheses of the theorem are equival
VL is GL-irreducible,G◦

L-reducible, andG◦
L-isotypical.

So far, k̃1 denoted an extension ofk1 over which the operator was isomorphic to
conjugates. It is now natural to study the smallest such field. In the sequel,k̃1 is the field
generated overk1 by the coefficients of the morphisms between theL1 constructed in the
above proof and its conjugates. We will show that this does not depend on the choiceL1.

Corollary 3. Same hypotheses and notations as in Theorem3.

(1) The coefficient field̃k1 of the isomorphisms between theLj is in KL (precisely:

k̃1=KH̃
L ).

(2) The fieldk0 :=KN = k̃1(f1) is a descent field. In particular,KN is a cyclic extension
of k̃1 whose degree(over k̃1) divides the orders = n/r ofN .

Proof. (1) The coefficients of theLi are differential functions on their solutions hen
k1 ∈KL. Similarly, the morphisms betweenLi andLj are (differential) functions on the
solutions sõk1 ⊂KL. The Galois correspondence then allows one to check thatk̃1 is, in
fact, the fixed fieldKH̃

L of the absolute stabilizer̃H in KL. The fieldk̃1 hence only depend
on the equivalence class ofL and not on the choice of absolutely irreducible factorsLi

(Lemma 2). We may thus chooseL =M ⊗ N andLi =M ⊗ (∂ − ui) without loss of
generality.

(2) The above theorem now shows thatk1 = k(u1, . . . , um), k̃1 = k1(fi/fj )i �=j and
immediatelyk0 := k̃1(f1) is a descent field asL1 andM are (by construction) isomorph
over thisk0. This also shows thatKN = k0 = k̃1(f1). Let g ∈ Gal(KN/k̃1). As ui ∈ k̃1,
g(ui) = ui and so there existsci ∈ C such thatg(fi ) = cifi . Now, asg(fi/fj ) = fi/fj ,
we haveci = cj for all i, j . It follows thatg is scalar and hence in the center ofGN . Now,
becauseGN is unimodular, we must havegs = 1, wheres = n/r is the order ofN , and
thusKN is a cyclic extension of̃k1 whose degree dividess. ✷
Example. This example was supplied to us by Mark van Hoeij. Let

L : = ∂4+ 2
(x − 1)∂3

x(x − 2)
− 1

4

(16x5− 80x4+ 128x3− 63x2− 2x + 4)∂2

x2(x − 2)2

− 1

4

(32x4− 128x3+ 144x2+ 1− 33x)∂

x2(x − 2)2

+ (x − 1)(4x5− 20x4+ 32x3− 21x2+ 10x + 2)

x2(x − 2)2
.

Computation shows that it is irreducible overC(x) and that it admits the following
algebraic factor

l1 := ∂2− 1 ∂ − 4x −√x + 2x3− 6x2
.

2 x − 2 x(x − 2)
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It can be shown that the above is absolutely irreducible (for example, by le
x = t2 and checking that the corresponding operator inC(t)[d/dt] has Galois groupG
satisfyingG◦ = SL(2,C) with the Kovacic algorithm [25]). Nowl1 and its conjugate
l2 lie in k1[∂] where k1 := C(x)(

√
x )[∂] and are isomorphic over̃k1[∂] where k̃1 :=

C(x)(
√
x,
√
x − 2)= k1[

√
x − 2]. Indeed, we havel1.r1,2= s1,2.l2 with

r1,2=
√
x − 2

x − 2

(
∂ +√x

)
.

By the descent theorem,L�M⊗N with GN finite. In fact, because theli are permuted
transitively, we see thatGN is an imprimitive group. We note that we have other factor
order 2, e.g.,

∂2− 1

2

∂

x
− 4

√
x − 2+ 1+ 2(x − 2)5/2+ 6(x − 2)3/2√

x − 2x
or

∂2− 1

2

(x2− 2x −√(2− x)x )

x(2+ x2− 3x)
∂ − 2x + 2.

This implies thatGN has three semi-invariants of degree 2 and hence it is the quate
group from the example on page 83.

2.3. About the structure of the differential Galois group

In Katz’s theorem, we obtainL as a tensor productL�M ⊗N . Can we then infer tha
GL �GM ⊗GN? This depends on whether the Picard–Vessiot extensions forM andN
are included inKL or, equivalently, if the descent fieldk0 = KN is included inKL. We
may recall the construction from our proof of Theorem 2:

K̃
cyclic

k0=KN = k̃1(f1)

cyclic

KL

GL

k0∩KL

k

Let ρL : G̃→ GL(VL) denote the representation of̃G on theG̃-moduleVL (similarly
defineρM(G̃) andρN(G̃)). Then, as bothKM andKN lie in K̃ , we have:
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Proposition 2. Same notations and assumptions as in Theorem3. Then

(1) ρL(GL)= ρL(G̃)� ρM(G̃)⊗ ρN(G̃).
(2) GL is a quotient of̃G by a finite cyclic central subgroup whose order divides the or

s ofN .

Proof. Part (1) follows from the preceding discussion. For part (2), the above dia
shows thatGL is a quotient ofG̃ by Gal(K̃/KL) and that Gal(K̃/KL) � Gal(KN/

(KL ∩ KN)). Corollary 3 shows that the latter is cyclic of order dividings and central
in GN and hence iñG. ✷
Remark 10. In the primitive case, theLi are isomorphic overk1. Hence, Theorem 3 show
that the quotientsfi/fj lie in k1. We thus obtain thatKN = k0= k1(f1), f1 is radical over
k1 and its order dividess.

Remark 11. A result similar to Proposition 2, though stated with different tools, app
in [9] and [46]. In fact,GL and G̃ are projectively equal. IfρL denotes the projectiv
representation associated withρL, thenρL(G) is the tensor productρM(G) ⊗ ρN(G).
If furthermoreKN ⊂ KL, thenG = G̃ and we obtain alinear representationρL(G) �
ρM(G)⊗ ρN(G).

In the isotypical case, we haveGL � ρM(G̃)⊗ρN (G̃); it can then be checked that̃H =
H = {ρM(g)⊗ ρN(g) | g ∈ ρ−1

N (Z(GN))}, whereZ(GN) is the center ofGN = ρN(G̃).
LettingCG(H̃ ) denote the centralizer of̃H in G, we may also note thatCG(H̃ )= CG(G

◦).

3. Degrees and an algorithm for absolute factorization

In this section, we investigate the degrees over which one may compute an ab
factorization ofL. Note that one must here distinguish between the degree of the coef
field of onefactor and the field extension ofk generated by the coefficients of the set
operatorsLi such thatL= LCLM (L1, . . . ,Ls).

3.1. Degrees for absolute factorization

As in Appendix B, the notationPs stands for the (computable) list of possible minim
degrees for an algebraic logarithmic derivative of a solution in the case of a prim
unimodular group of orders (Definition 5, page 102), and the notationLs stands for a
(precomputable) list of integers such that, if an operator of orders has a first order facto
over an algebraic extension, then it has one defined over an extension of degreem ∈Ls .

We first start with the possible degrees in the primitive case.

Lemma 5. Let L denote a primitive differential operator of ordern with coefficients in
k ⊂C(x). ThenL is absolutely reducible if and only if it admits an(absolutely irreducible)
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right-hand factor of orderr (wherer | n) over an extension ofk whose degree belongs
Pn/r .

Proof. BecauseL is primitive, Theorem 2 shows that it admits an absolute factorizati
and only if we haveL�M ⊗N with N primitive finite andM absolutely irreducible. Le
r denote the order ofM ands = n/r. ThenN admits a factor∂ − u whereu is algebraic
of degreem ∈ Ps . LetΦ denote the map (overk) transformingM ⊗N intoL. BecauseΦ
is defined overk, the image ofM ⊗ (∂ − u) is a factorL1 of L which is defined overk(u)
(see Theorem 3). ✷

Now the degrees in the imprimitive case.

Lemma 6. Let L denote an imprimitive differential operator of ordern with coefficients
in k ⊂ C(x). ThenL is absolutely reducible, and it admits an absolutely irreducible fac
defined over an extension ofk whose degree belongs to

⋃
t |n, t>1 t (

⋃
r |(n/t)Pn/(rt)) andr

is the order of the factor.

Proof. If t is the cardinal of a (maximal) system of imprimitivity, then Section 1.4 sh
that there exists a divisorr of t such that an absolutely irreducible factor has orderr and is
defined over an extension of degreem ∈ t .Pn/(rt). ✷

Summarizing Lemmas 5 and 6, we obtain:

Proposition 3. LetL denote an irreducible differential operator of ordern with coefficients
in k ⊂C(x). The operatorL admits a factor over an algebraic extension ofk if and only if
L admits a factor whose orderr is a divisor ofn, and which is defined over an extensi
of k whose degree belongs toLn/r .

Proof. The operatorL is primitive or imprimitive, and the result follows from the tw
preceding lemmas and the fact thatLn/r =⋃

t |(n/r) tPn/(rt). ✷
Remark 12. The bounds are sharp in the sense that there actually are absolute fac
these degrees. However, in the imprimitive case, the example constructed at the end
shows that there may, in some cases, exist factors of even lower degrees: this follow
the fact that the listsLr given above are sharp but not always minimal. In the primi
case the listPs contains exactly the possible minimal degrees.

Example. We give illustrations of this proposition and Lemmas 5 and 6 to com
complete degree lists forn = 4,6, . . . (the lists for primen follow from the works on
Liouvillian solutions).

Let n = 4. If the group is primitive, we see that the possible degrees for abs
factors are inP4 = [5,8,12,16,20,24,40,48,60,72,120] for factors of order 1 and
P2 = [4,6,12] for factors of order 2. For the imprimitive case, we obtain 2 for abso
factors of order 2 and 4P1∪ 2P2= [4] ∪ [8,12,24] = [4,8,12,24] for factors of order 1
Summarizing, we see that the possible degrees for an order 1 factor at order
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[4,5,8,12,16,20,24,40,48,60,72,120] and, for a factor of order 2, the degrees are
[2,4,6,12].

Let us now turn to order 6 and factors of order 2 and 3. For an absolute fac
order 2, the possibilities areP3= [6,9,21,36] (primitive case) and 3 (imprimitive case
For an absolute factor of order 3, the possibilities areP2= [4,6,12] (primitive case) and
2 (imprimitive case).

At order 8, we see a new phenomenon occur for factors of order 2. For an absolute
of order 2, the possibilities areP4 = [5,8,12,16,20,24,40,48,60,72,120] (primitive
case) and 4.P1∪ 2.P2= [4] ∪ [8,12,24] = [4,8,12,24] (imprimitive case), thus resultin
in the list[4,5,8,12,16,20,24,40,48,60,72,120]. For an absolute factor of order 4, th
possibilities areP2= [4,6,12] (primitive case) and 2 (imprimitive case), thus resulting
the list[2,4,6,12].

3.2. Algorithm for computing an absolute factorization

In this section, we give a procedure which, given an irreducible operatorL, decides ifL
is reducible overk and, if so, computes an algebraic extensionk(u) and an absolute facto
L1 ∈ k(u)[∂] of L.

In addition to the degree considerations, we will first show auxiliary results abou
representations ofGL onΛr(VL) to obtain a more natural algorithm.

A first general observation is the following lemma (which follows from the factoriza
method exposed in Appendix A).

Lemma 7. L has a factor of orderr over an algebraic extension of degreem if and only
if there is a line in the exterior powerΛr(V ) generated by a pure tensor and whose or
under the Galois group is finite of lengthm.

Proof. The implication follows from Lemma 10.
Conversely, letw= v1∧ · · · ∧ vr denote a pure tensor and assume that the lineC.w has

an orbit of lengthm. Let V1 be ther-dimensional vector space spanned by thevi . For g
in G, let Vg be the vector space spanned by theg(vj ). Now, denote byH the intersection
of the stabilizers of all theVg . We haveΛr(Vg)= g(w) so, becausew has finite orbit, there
are exactlym Vg := {V1, . . . , Vm}. ThenH is a normal subgroup inG of index� m!. Let
k1 be the fixed field ofH in KL. V1 is the solution space of an operatorL1 with coefficients
in k1. Now the Galois groupG acts on the coefficients ofL1 and sends it to someLg . The
solution space of this is one of theVj so there are exactlym operatorLj . This shows tha
the coefficient field ofL1 is algebraic of degreem as claimed. And, becauseV1⊂ VL, our
L1 is a factor ofL. ✷

Let us first distinguish between the primitive and imprimitive cases.
In the primitive case, Theorem 2 tells us thatL =M ⊗ N . Write VN = C.f1 ⊕ · · · ⊕

C.fs . Then

VL �G̃ (VM ⊗C.f1)⊕ · · · ⊕ (VM ⊗C.fs).
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Lemma 8. Notations as in the proof of Theorem2. Assume thatL �k M ⊗ N with
ord(M)= r. ThenΛr(VL) admits aG̃-submodule isomorphic toΛr(VM)⊗Symr (VN).

Proof. A simple computation shows thatΛr(VM ⊗ VN) contains a G̃-submodule
generated by elements of the formΛr(VM) ⊗ C.f r with N(f ) = 0, hence this modul
is (isomorphic to)Λr(VM)⊗Symr (VN). ✷

Note that this lemma also gives another proof for the degrees measured in Pr
tion 3.

We now turn to the imprimitive case.

Lemma 9. Assume thatGL is imprimitive, let {W1, . . . ,Wt } denote a system o
imprimitivity. Then, there exists a monomial submodule of dimensiont in Λn/t (VL).

Proof. Follows from the fact that thet linesΛn/t (Wi) are permuted transitively by th
Galois group and, hence, their direct sum is aGL-submodule inΛn/t (VL). ✷

The absolute factorization procedure, thanks to the above lemmas, follows the foll
path: decompose (overk) the successive exterior powersΛr(L) (wherer | n), identify
the relevant factors via representation theory and dimension analysis, and search f
tensor first order factors over algebraic extensions of degrees found in the lists.

To explain the absolute factorization process, we show how to proceed for an opeL
of ordern= 6 (the process is similar at any order). The steps below have to be perfo
successively. We proceed by increasing the order of the sought factors. Success at
provides an absolute factorization (because we study increasing orders) and the al
then stops. If none succeeds, then the operator is absolutely irreducible.

order 1: Search for Liouvillian solutions ofL ([22,40], and Appendix B), i.e., first orde
factors overk.

order 2: Compute an LCLM decompositionΛ2(L)= l1⊕ l2⊕ · · · [36].
(a) For all sumsl of li of total order 3 (potential imprimitive case with factor

order 2): find if there are Liouvillian solutions of degree 3 ofl ([22,40], and
Appendix B) and apply the Plücker test (see Appendix A) to those to rec
the putative corresponding factor.

(b) For all sumsl of li of total dimension 6.
If l = l1⊕ l2 with dim(l1)= 1 and dim(l2)= 5, then search for a Liouvillian
solution of degree 6 inl2.
If l = l1⊕ l2 with dim(li)= 3, then search for a Liouvillian solution of degr
9 of each of theli .
Else l should be irreducible of dimension 6; if so, search for a Liouvill
solution of degrees 9,21,36. For each such Liouvillian solution, apply th
Plücker test to recover the putative corresponding factor (Appendix A).
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order 3: Compute an LCLM decompositionΛ3(L)= l1⊕ l2⊕ · · · .
(a) For all sumsl of li of total order 2 (potential imprimitive case with factor

order 2): find Liouvillian solutions of degree 2 ofl and apply the Plücker tes
to those to those to recover the putative corresponding factor.

(b) For all sumsl of li of total order 4:
(i) Test [35] if l is projectively isomorphic to the symmetric cube of a sec

order operator.
(ii) If l = l1⊕ l2, then search for a Liouvillian solution of degree 4 for eachli .

Else,l should be irreducible of dimension 4; if so search for Liouvill
solutions of degrees 6,12.

For each such Liouvillian solution, apply the Plücker test to recover the put
corresponding factor.

Proof. Part (b) at order 2 is the primitive case. In this case,N is (projectively equivalen
to) one of the finite primitive subgroups ofSL3. The decompositions of characters
these groups on the second symmetric power (Table 1, page 8 in [38]) gives the d
decomposition (that a solution will exist in somel follows from the unicity up to
isomorphism of the LCLM factorization).

Similarly, part (a) at order 3 is the imprimitive case, and part (b) follows as above
the character decompositions given in Table 2, page 8 of [38].✷

4. Conclusion

The method presented relies on the fine analysis of the primitive case, for
we have a factorization of the operatorL as a tensor productL � M ⊗ N . This
factorization has given us the degrees (and a characterization) of the extension
which L may potentially factor. These degrees are sharp (and optimal in the prim
case).

We saw that the factorization ofL as a tensor product comes from a phenomeno
Galoisian descent, which leads us to the following two topics:

(1) How one actually realizes the descent. More precisely, given an operatorL1 with
algebraic coefficients satisfying the descent conditions, how one computes the
its descents (up to rational isomorphisms).

(2) How to effectively obtain the factorization ofL as a tensor productM ⊗ N in the
isotypical case.

These two questions will be answered in subsequent work.
Last, in [21], van Hoeij and van der Put also study descent problems for diff

tial operators in a slightly different context, as their concern is operators with c
cients inC(x), with C a non-algebraically closed subfield ofQ and questions of defin
ition fields for those. There again, the descent machinery is the source of inspiri
sults.
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Appendix A. Factorization of differential operators and systems

The general reference for this appendix and the next is [31]. The results ther
are “well-known” to specialists and recalled here mainly for convenience and nota
conventions.

Let D = k[∂] denote the ring of differential operators (see [31]). We say th
differential operatorL is reducible if there exists non-trivialL1 andL2 in D such that
L = L1L2. We say that a differential moduleM is reducible if it admits a (non-trivial
∂-submodule. We say that a system(S): Y ′ =AY is reducible if it is equivalent (overk) to
a block-triangular system of the form

Y ′ =
(
A1 A2
0 A3

)
Y.

It is easily verified that these three properties are equivalent. This section is con
with algorithms for detecting and computing factorizations of differential operators
approach given here stems from [8,43], who built on an old work of Beke (1884).

The present presentation came out of discussions of the authors with M. van d
Its advantage, besides its natural simplicity, is that it generalizes straightforwar
factorization of differential systems.

Another approach to factoring differential operators/systems, using∂-endomorphisms
of M, is given in [36] (see [2,19] for its algorithmic developments); yet another appr
to factorization (probably the most efficient) was developed by van Hoeij in [20] and
not be used here.

A.1. Exterior powers of differential systems

Let e1, . . . , en denote a basis of the differential moduleM. By taking the standar
alternating productsei1 ∧ · · · ∧ eir as a basis for the exterior powerΛr(M), we naturally
endow it with a structure of∂-module.

Example. If ∂(ei) = −∑n
i=1Aj,iej , then the action of∂ on Λ2(M) is given by∂(ei ∧

ej ) = ∂(ei) ∧ ej + ei ∧ ∂(ej ) = −∑n
k=1Ak,iek ∧ ej −∑n

k=1Ak,jei ∧ ek and the usua
antisymmetric rules on theei ∧ ej complete the expression of∂(ei ∧ ej ).

From this construction, we see that, to a differential systemY ′ = AY , we can naturally
associate anrth exterior power systemdenoted byY ′ = Λr(A)Y , “attached” to the
∂-moduleΛr(M).
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We say that an elementZ ∈ Λr(M) is a pure tensor in Λr(M) if there exists
f1, . . . , fr ∈M such thatZ = f1∧ · · · ∧ fr .

Lemma 10. The differential moduleM admits a∂-submoduleN of dimensionr if and
only ifΛr(M) admits a1-dimensional submodule generated by a pure-tensor.

Proof. (⇒) If f1, . . . , fr is a basis ofN , thenf1 ∧ · · · ∧ fr generates the 1-dimension
∂-submoduleΛr(N ): it is a ∂-module because∂(N )⊂N .

(⇐) Let Z := f1 ∧ · · · ∧ fr be the pure tensor generating a 1-dimensional submo
in Λr(M). We thus have∂(Z)= aZ with a ∈ k. Consider the application

Ψ :M→Λr+1(M), Y �→Z ∧ Y.

The kernel ofΨ is obviously thek-vector space generated byf1, . . . , fr . Let Y ∈ ker(Ψ ).
Then

0= ∂
(
Ψ (Y )

)= (∂Z)∧ Y +Z ∧ (∂Y )= aΨ (Y )+Z ∧ (∂Y )=Z ∧ (∂Y )

and hence∂Y ∈ ker(Ψ ), thus turning ker(Ψ ) into the desiredr-dimensional submodu
le. ✷

To compute the 1-dimensional submodules ofΛr(M), we may apply the algorithm o
[29] to the systemY ′ =Λr(A)Y . The result is a finite set of (finite dimensional)C-vector
spacesNi such that any element inNi generates a 1-dimensional∂-module (i.e., theNi

are generated (asC vector spaces) by elementsvi,j such that∂(vi,j )= aivi,j with ai ∈ k).
LetZi =∑

civi,j where theci are unknown constant parameters.

A.2. The Plücker relations

The Plücker relations characterize elements in an exterior power that are pure t
They were introduced in the context of the factorization of differential operators by T
in [43]. To recover those in an effective way in our context, we use the proof of Lemm
For eachi, let

Ψi :M→Λr+1(M), Y �→ Zi ∧ Y.

Identifying pure tensors is now just a rank computation, i.e., identify the constantscj such
thatΨi has rankn− r. The latter can be performed by standard algebraic operations
those values of thecj , all that remains to be done is to compute a basis of ker(Ψi): the
generators of ker(Ψi) then span a∂-submodule ofM. In particular, if we started from
differential operatorL, we may choose a cyclic basis of ker(Ψi), thus obtaining a facto
of L. Note that, in [8], Bronstein gives (in a slightly different language) explicit formu
for this reconstruction (i.e., the coefficients of a factor can be read off from a pure-t
solution ofY ′ =Λr(A)Y ).
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Example. Let’s continue with order 4 and search for a factor of order 2. LetZ̃ =∑2
i=0

∑3
j=i+1 zi,j ei ∧ ej denote a (possibly) parameterized generator for a 1-dimens

submodule inΛ2(M). ThenΨ (e0)= z1,2e0∧ e1∧ e2+ z1,3e0∧ e1∧ e3+ z2,3e0∧ e2∧ e3.
Continuing like this, we find the matrix ofΨ to be

MΨ =



z12 −z02 z01 0
z13 −z03 0 z01
z23 0 −z03 z02
0 z23 −z13 z12


 .

Computing the determinant gives us the well-known Plücker condition for this m
to not have full rank:z03z12− z02z13+ z23z01= 0. This condition can be shown to b
equivalent toMΨ having rank two. Note that the matrix is not square in general.

Now, assumeMΨ has a kernel and letY1, Y2 denote a basis for that kernel (if we wa
to make it cyclic, then we choose a basis of the formY1, ∂(Y1)). Complete with vectors
Y3, Y4 to form a basis ofM and letP denote the matrix whose columns are theYi . Then,
the Gauge transformationPAP−1+ P ′P−1 has the form

PAP−1+ P ′P−1=
(
A1 A2
0 A3

)

which provides the desired factorization overk.
If we had initially started with a differential operator (a companion system), then

second order factor associated to the above pure tensor would be∂2 − (z0,2/z0,1)∂ +
z1,2/z0,1.

Appendix B. First order factors over algebraic extensions

As we saw that computing first order factors was the building block for facto
we now turn to the question of computing first order factors over algebraic exten
This subject has a long history (Liouvillian solutions, see [37] for abundant details
references). Methods for performing this task were studied in the nineteenth c
by Picard, Vessiot, Marotte, and others; the algorithmic approach to the subjec
spectacularly revived by Kovacic in 1979 [25] for second order operators and Singe
for arbitrary order. Precise bounds for the degree of the algebraic extensions were g
[44] and [39]; the best known algorithms stem from [40] and [22] (see also [13]) an
quickly summarized below.

SupposeM admits a 1-dimensional submodule over an algebraic extension ofk. This
means that there existsu1 algebraic overk andY1 ∈M⊗ k[u1] such that∂Y1= u1Y1. Let
u2, . . . , um (respectivelyY2, . . . , Ym) denote the conjugates ofu1 (respectivelyY1). Then
Y1Y2 . . .Ym has coefficients ink and generates a 1-dimensional submodule in Symm(M).
In [40], the converse is shown (in a different language):M admits a first order facto
over an algebraic extension ofk if and only if there exists a 1-dimensional submodule
Symm(M) which factors (overk) as a product of elements ofM⊗ k. Note the striking
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similarity of this criterion (find a 1-dimensional submodule generated by a pure ten
Symm(M)) with the factorization criterion of Lemma 10.

We now turn to the question of the degree ofu. Singer showed in [34] that, for a
operator of ordern, the degree ofu was uniformly bounded by a functionF(n). He gave
estimates forF(n), which were refined in [44]. In the latter (and with Singer in [39
Ulmer further showed how one could actually compute an accuratelist Ln of possible
degrees7 for extensions over whichM may factor.

The construction of those lists is achieved the following way. First, separate be
primitive finite and imprimitive unimodular groups. There is a finite list of primitive fin
unimodular groups for which a listPn of corresponding degrees can be computed.

Definition 5. We denote byPn the list of minimal possible degrees for a right-hand fac
∂ − u of an irreducible operatorL ∈ k[∂] of order n with finite primitive unimodular
differential Galois group.

We denote byLn the list of possible degrees for a right-hand factor∂ − u of an
irreducible operatorL ∈ k[∂] or ordern.

We recall those lists for use in our paper:

P2= [4,6,12] (
see [25]

)
,

P3= [6,9,21,36] (
see [39,44]

)
,

P4= [5,8,12,16,20,24,40,48,60,72,120],
P5= [6,10,15,30,40,55] (

see [13]
);

we adopt the convention thatP1 = [1]. For higher values ofn, a bound on the highes
element ofPn is given in [34] and refined in [39,44].

In [39,44], it is shown8 that the complete list of degrees for factors of order one o
operator of ordern is Ln =⋃

r |n(n/r).Pr where(n/r).Pr is the list of elements of th
form (n/r)ν for ν ∈ Pr . For the record, we recall those complete lists:

L2= [2,4,6,12],
L3= [3,6,9,21,36],
L4= [4,5,8,12,16,20,24,40,48,60,72,120],
L5= [5,6,10,15,30,40,55].

7 This computation is systematic but by no means easy. Complete lists are known only up ton = 5 [13],
although the directions towards making such lists, in particular uniform bounds, are known for arbitrary
of n.

8 In fact, in [39,44], the authors give the (too pessimistic) bound(n/r)!.Pr but our correction (which has bee
long known to the authors of [39,44]) follows easily from Clifford’s Theorem 1 and the reasoning in Sectio
this paper.
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Those lists are used to construct analogous lists for higher order factors in Sectio
this paper.
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