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Abstract

A differential operatorL € C(x)[d/dx] is calledabsolutely reducibléf it admits a factorization
over an algebraic extension &f(x). In this paper, we give sharp bounds on the degree of the
extension that is needed in order to compute an absolute factorization. Algorithms to characterize and
compute absolute factorizations are then elaborated. The ingredients are differential Galois theory,
a group-theoretic study of absolute factorization, and a descent technique for differential operators
with coefficients inC(x).
0 2004 Published by Elsevier Inc.

Introduction

Let C denote the field of complex numbers abd= C(x)[d] the ring of differential
operators { = d/dx) with coefficients in the fieldk = C(x) of rational functions with
coefficients inC (see [31] for an exhaustive presentation of these objects).

Consider the differential operator
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One can show that the operatbris irreducible as an element of the riiy However, if
we view L as an element of the rifB ® k(/x ) = k(,/x)[d], then we obtain

. 1 3
L=L1L1=<82—;8+ﬁ+ﬁ)(82—ﬁ). (%)

So the operatok, irreducible ovek, becomes reducible ovér(i.e., overD ® k). Such an
operator is calledbsolutely reducibfe(see below for a precise definition). One can check
that the above factorization is absolute factorizatiofn the sense that the operatdrs
andL; are absolutely irreducible.

The topic of this paper is the study of absolute factorization: How can one character-
ize/compute an absolute factorization of such an opeiz®or

This question is the first step when one wants to compute the differential Galois@roup
of a differential operatoL.. In the known strategies for computidg the first step consists
in finding an absolute factorization (see [12,24]).

We should first note that, from a theoretical point of view, the question of absolute
factorization is solved in [12]. The method of [12] is complete (and theoretically
operational). However, it is based on the (delicate) search of algebraic solutions of some
big linear differential system constructed from the operator. We rather propose to reduce
the question to the (much easier) problem of finding solutions with algebraic logarithmic
derivatives to ancillary operator of lower order than in [12]. To achieve this, we will study
carefully the structural consequences of absolute factorization on the differential Galois
group and give a more efficient approach to absolute factorization.

As atest case, we may think of the case when an irreduLiklé€ (x)[0] admits a factor
of order onelL = M o (3 — u) with 8 = d/dx, M € C(x)[d], andu algebraic ovelC(x).

Such factors have long been studied; there actually exist algorithms [13,22,40] that decide
if u exists and, if so, compute the minimum polynomial:of

These algorithms are based on the remarkable fact that one can paquide a finite
list £, of integers (which depends only on the ordeof the operatorl.) such that: if
L factors asL. = M o (0 — i) with u algebraic, then it must factor d&s= M o (0 — u)
with d := dequ) € L£,. For example (see Appendix B for more), fear= 2 one has
de{2,4,6,12},forn =3 one hasgl € {3, 6,9, 21, 36}, etc.

In this article, we generalize this method. We show that an irreduditdeD has a
factor of order- overk only if it has such a factor over an extension of degree belonging
to £,/ (Proposition 3) and then give an algorithm (Section 3.2) to obtai@c@mposition
of L into absolutely irreducible factors.

To achieve this, our main tool is differential Galois theory. We translate the (absolute)
reducibility properties ofL in terms of representation of its differential Galois group.

A standard theorem of Clifford leads (as in the works of Singer and Ulmer on first
order factors) to a dichotomy betweg@nimitive and imprimitive representations of the

differential Galois group (see definitions in page 80). To handle the primitive case (the
imprimitive case then being an easy induction), we develop on work of Katz to study

2 Also sometimes calletlie-reduciblein the literature.
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a “Galoisian descent” process for (suitable) differential operators with coefficients in an
algebraic extension df(x). We reprove Theorem 2 (from [24]) that, in this case, one
can writeL ~ M ® N whereM, N € D, M is absolutely reducible, andl has a basis of
algebraic solutions. We then explore what this decomposition implies on the Galois group
and how to actually deduce absolute factorizations (in particular the degree lists). How to
effectively achieve the descent and compMtevill appear in subsequent work.

This article is structured as follows. In the first part, we characterize absolute
reducibility in terms of representations of the groGp We particularly develop the
primitive case and the descent process. In the second part, we study the impact of absolute
factorization on the differential Galois group. In the third part, we deduce from this a
list of possible degrees and use representation theory to elaborate an effective method for
computing absolutely irreducible factors bf

To conclude this introduction, let us mention cases where absolute factorization is
handled in the literature. First consider a linear differential equdtipga- 0 with only two
singularities 0 being a regular one amglbeing an irregular one. Under these hypotheses,
Beukers, Brownawell and Heckman [5, Corollary 3.3], give conditions for the operator
L to be absolutely (“Lie” in their language) irreducible. This condition is easily read on
the monodromy at O and uses the fact that the (global) monodromy group is generated
by the local monodromy at 0 in this case. Beukers, Brownawell and Heckman apply this
criterion to confluent hypergeometric operators that enter this frame (Katz and Gabber
[24] independently obtain analogous results for this family). Also, works that compute
Galois groups of differential operators of given order contain lots of material about absolute
reducibility for example [38] (operators of order 2 and 3) and [18] for operators of order 4,
now followed by [13,17].

1. Group-theoretic characterizationsof absolute reducibility

Throughout this paper, we assume that the reader has a working knowledge of
differential Galois theory. The main reference for this is now [31]. Alternative introductions
are for example [3,6,27,28,30,37]. Notions on factorization and Liouvillian solutions are
recalled in the appendices, mainly to fix notations as we use these notions a lot.

1.1. Notations and conventions

Let k be an ordinary differential field of characteristic zero, and €alits field of
constants. LeL € D = k[d] be a differential operator of order

L=93"4+ay,_ 10" 1+ ... +apeD.

Throughout the paper, the following convention will be used: when a capital letter
comes subscripted, it means that the subscript refers to a differential operator it is attached
to. For exampleK; will denote the Picard—Vessiot extension lofassociated td. (a
minimal differential field extension df generated by solutions df); V; will denote the
solution space of. in K, andG will denote the differential Galois group & overk
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(the group ofc-automorphisms oK that commute with the derivation). The action®@f,
on V. induces a matrix representation@f, in GL(n, C) that we fix once for all; often,
the group will be identified with this representationGi.(V, ). From now on, we assume
thatL is irreducible inD (i.e., there are no prop&r . -invariant subspaces &f.).

Definition 1. Let L € D = k[3d] be an irreducible differential operator of order

We say thatL is absolutely reducibléf it factors over an algebraic extension bf
We say thatLq € k[d] is anabsolute factoof L if L1 is a factor ofL over an algebraic
extension ofL and L is absolutely irreducible. We say that (the action of) its differential
Galois groupG is absolutely reducibléf there is a normal subgrouf of finite index
such thatd acts reducibly orV;, (equivalently: if the connected component of the identity
G° acts reducibly onVy). The representatio;, of G, is calledimprimitive if it is
irreducible and if there exist an integer 1 and subspace®1, ..., W; of V;, such that
VL =W1d---®W; andG acts transitively onthe s¢Ws, ..., W;}. The se{ W, ..., W;}
is called asystem of imprimitivitffor G. The representation is callgafimitive if it is
irreducible and not imprimitive.

In the sequel, we adopt the convention that “system of imprimitivity” will always refer
to a system of imprimitivity where the blockg; have minimal dimension with respect to
this property. If dingW;) = 1 then (the representation of) the group is cattezhomial We
will see (Lemma 1) thaL is absolutely reducible if and only @ is.

Throughout this sectior, is assumed to b&reducible overk but reducible overks,
wherek; denotes an algebraic extensionkotet L1 € k1[9] denote a factor of, overk;.

The following lemma is a trivial exercise in differential Galois theory. We include a proof
mainly to set notations.

Lemma 1. The operatolL is reducible over a Galoisian algebraic extensionof & if and
only if there exists a normal subgroup < G of finite index such thatl acts reducibly
onvVy.

Proof. Assume such am/ exists. LetVy C Vi be a non-trivialH -invariant subspace of
minimal dimension and lét; denote the fixed field off . Becausdd is of finite index k1

is a (Galoisian) algebraic extensioniofBy [36, Lemma 1],V1 is then the solution space
of an operatoi1 with coefficients ink;. Now, asV1 C Vi, L1 is a factor ofL.

Conversely, letL1 € k1[d] denote a factor of. overk;. We call I'; the Galois group
of k1 over k. Then I'7 acts on the coefficients df1. Let L;, fori = 1,..., m, denote
the conjugates of.1 under this action. Obviously, they are again factorsLohence
their solution space¥; are subspaces dof. Let H :=(,_; _,, Stak;(V;). The group
G has a permutation action on the $&t, ..., V,,}; H is the kernel of this permutation
representation, and hence a normal subgroup of finite index.

Remark 1. Note that the index o in G gives the degree df; but not the degree of a
factor in general. To see this, lei denote an element algebraic of degree 3 dveuch
that its minimum polynomial has Galois grodp. Let L denote the Least Common Left
Multiple (LCLM, see [31]) ofL; := d —uj and its conjugate— up andd — u3. Obviously,
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L1 is defined over an algebraic extension of degree 3 whereas (in the above notations), the
permutation representations§s and hencé¢G : H] = 6 andky = k(u1, uz, u3).

The above construction df is the first step towards the following well-known theorem
of Clifford:

Theorem 1 (Clifford [9]). Let G € GL,(C) be a linear algebraic group acting irreducibly
onV = C". Assume tha; has a normal subgrouff of finite index acting reducibly oW .
Then

(1) One candecompodéasV = W1 &--- & W, with theW; beingH-modules all having
the same dimensioritencedim(W;) dividesr) and such thatG permutes theW;
transitively.

(2) For eachi, one can decompose thig asW; = @/ V;,j where theV; ; are irreducible
and isomorphicH -modules.

The W; are called the homogeneous component¥ ofiewed as and -module (see
Definition 495 in [14]). If > 1 then the representatidny, of G is imprimitive. If 1 =1,
then the representation can be imprimitive or primitive but itHsisotypical i.e., all
irreducible H-modules inV are isomorphic. Note that under the hypotheses of Clifford’s
theorem all the irreduciblé& -modules have the same dimensions.

We will say that a differential operatdr is primitive (respectively imprimitive) if the
representation of its differential Galois gro@f, on its solution spacé/; is primitive
(respectively imprimitive). The above theorem shows hbwan be written as a Least
Common Left Multiple of an absolute factor and its conjugates.

Remark 2. If G is primitive and if H is any normal subgroup of finite index, then the
representation i#f -isotypical.

Remark 3. If n is prime, then the above results close the problem of absolute factorization
as the only possible factors will be of order 1. Factors of order 1 over algebraic extensions
have long been studied; lists of possible degrees and algorithms to compute such factors
are known (see Appendix B).

Because the imprimitive case can be viewed as a block of primitive cases, we will first
start analyzing the primitive case and then will use it for an induction in the imprimitive
case. The descent process described in Section 1.3 will rule the primitive case and some
imprimitive cases, the other ones then appearing as induction cases.

1.2. The absolute stabilizéf

Let L1 denote an absolute factor bf andV1 its solution space ik . Fori =1, ..., m,
let L; denote the conjugates éf, i.e., its images under Galois action on the coefficients
of L1. We letH := ()., Stak;(V;) as above. The fixed fielty of H in K is asplitting
fieldfor L, in the sense that is an LCLM of absolutely irreducible operators ovgr(see
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[12] for more on splitting fields for differential operatos®ne may wonder whethed

andki1 depend on the initial choice of;. If the group is primitive, we will see that it does

not. However, if the group is imprimitive, thed may depend on the choice &f. We

now introduce a subgroup which canonically describes the absolute factorization. Some
of the V; may be isomorphi&°-modules. In this case, we dengig; a G°-isomorphism
betweenV; andV;.

Definition 2. The group
H=|geG|g(V))=V;andgo¢;;=¢ijog}
is called theabsolute stabilizem G (with respect to the representation Gi).

Note that, in the primitive case, the representafiors H -isotypical SoH = H. The
fact that this groupH does not depend on its construction (i.e., it is canonical) follows
from the following lemma:

Lemma 2. Any G°-module inV, is an H-module. Moreover, isomorphi@°-modules are
isomorphicH-modules.

Proof. Let us choose, among the conjugated’ofsomeG°-modulesVy 1, ..., Vig, ...,

Vi, ..., Vis Such thatV is the direct sum of thosg,-,j and, for allj, k, we haveV; ;

andV; ; are isomorphic a&°-module (and also a&-module by definition). LetV be

any G°-irreducible module. TheW is G°-isomorphic to one of the/; ;, say V11 up

to renumbering. Goursat’s lemma (e.g., Lemma 2.2 in [11]) then implies that there exist
constantsy, ..., ¢, such that

W={y+cap1200) + - +csprs() |y € Vi)

as aG°-module. Now, as the; ; commute withH, we see thaW is an H-module.
Moreover, the projectiory + cog1.2(y) + -+ + cs¢p1.5(y) = y is an ﬁ-isomorphism
from W to Vy1. It follows that any two isomorphi&;°-modules are also isomorphic
ﬁ-modules—independently of the initial choicedf and of theg; ;. O

Remark 4. As pointed out to us by M.F. Singer, if we |16&€ = Ends-(V.), then
Endc (V) = C[G°] (Jacobson’s theorem [26, Chapter XVII, Section 3]) and we obtain
that H = C[G°] N G. For example, ifG is a finite group, this shows th& is a central
cyclic subgroup.

3 Thesplitting fields are callediecompositiorfields in [12].
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Example. To understand better why this group has to be introduced, consider the
representation irsL, of the quaternion group. This is a group of order 8 generated by

the matrices
i 0 0 1
M1=<0 —i> and M2=<_1 0).

If y1, y2 denote the basis df on which these matrices are expressed, we see that the lines
Vi generated by the; are permuted by the group. Their stabiliZéris the group of four
elements generated hy;. However, the action oM on Vj is multiplication byi and

the action onV, is multiplication by —i so V; and V, are non-isomorphid/-modules.
Because the group is finit&° = {Id} so of course any line is @°-module but it is not, in
general, ani{-module. The grougd , in this example, is easily seen to fe= {Id, —Id}

and, of course, any line is indeed akmodule.

1.3. Descent and absolute factorization

In the paper [9], Clifford shows that, in the case of a primitive absolutely reducible
group, each matrix in the group can be written as a tensor products of two matrices. This
yields a representation of the group as a tensor product optejectiverepresentations
(andnot subrepresentations).

A different approach, and the heart of our analysis, will be to establish (and develop
on) the forthcoming theorem of Katz [24, trichotomy page 45], on absolute factorization
in the case of isomorphic absolute factors. We will give a complete proof of this result,
the interest being that we will recast its two main steps in a setting that will be used for
extending and clarifying some of its consequences.

The object of the next subsection will be a descent theory for differential operators over
C(x). The fact that our base field &(x) (or an algebraic extension of it, see Corollary 2)
plays an essential role there as we will use the fact that certain 2-cocycles will be trivial. We
follow closely the argument of Katz in this first part. We will then prove Katz's theorem,
giving a proof that seems more elementary to us and that sheds more light on the underlying
group-theoretic consequences of the result; it will help establish some corollaries, like
Proposition 3.

1.3.1. Descent theory for differential operators

Let k = C(x) denote the (cohomologically trivial) base field. Recall [31,36] that two
operatorsLy and Ly in k1[d] are calledisomorphic(or equivalent) over a field; if
ord(L1) = ord(L»2) and there exisRR, S € k~1[8] of order less than o(d.») such that
L1R = Sl (or, equivalently, if the associated differential modules are isomorphic). The
operatorR can then be seen as a representant of the isomorphismifsdmZL;. We say
thatL, andL; areprojectively equivalenif there exists € k such thatl; is equivalent to
L2® (0 —r).

Definition 3. Let k1 be a Galois extension @&f= C(x) and letL1 € k1[d]. We say that_
descends té over a fieldkg if kg is a Galois extension @f containingk; and if there exists
an operatoM € k[d] such thatl.; is isomorphicoverkg to M.
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Letk; be a Galois extension &f= C(x) and letL1 € k1[d] be an absolutely irreducible
operator. Assume thdt; is isomorphic (over a Galois extensiﬁpof k containingk1) to
all its conjugates. Denote by the Galois group of1 overk. For each: in I", we denote
by L, the conjugate of.1 under the action ok on coefficients of_;. By hypotheses, for
eachh € I', there exists an isomorphisgp of 3-modules

¢n: Ly —— Ly.

Note thatpy, is only defined up to multiplication by a constant. Nowy is another element
in I" (g acts ong;, by action on the coefficients), we may letact on the above relation,
pushing it to a morphism betwedr, andL,, = g(L), which leads us to the following
diagram

®n
L, —— Ly

N ¢h
¢>gl S
N

Ly, —— Lgp
8(n)

We see thag(¢p) o ¢, and¢,, are two isomorphisms betwedn andLg;. As the L),
operators are assumed to be irreducible, Schur's lemma implies that there exists a non-zero
constant:(h, g) such that

$gn =a(h, g)g(dn) o pg. )

Definition 4. We say that the collection of morphisr, } . forms adescent dat# the
constant(h, g) is always equal to 1, i.egg, = g(¢n) o ¢pg forall g, h e I'.

If L1 descends to aM € k[d] over some fieldkg, then existence of a descent data
(relatively to I'h = Gal(ko/k)) is clear: lettingy denote an isomorphism from; to M
overko, we may seby, := h(¢) Lo ¢ for h € I'y and it is easily checked that then}nery
form a descent data (becaugeis defined ovek)

h(¢)~to

1—>Lh
\ /aﬁ)

The converse is a bit more sophisticated. In [45] for varieties and [15,16] in the general case
(see also Chapter Il of [33] for explanations on this topic), it is shown that the existence
of a descent data guarantees the existence of the descent.4adsathe we have descent

4 We are grateful to Michael F. Singer for showing us this (classical) proof, see also [21].
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data{¢, }re - The descent conditions show that the map — ¢, induces a 1-cocycle in
H (I, GL, (ko). The latter is known to be trivial (e.g., [41, Chapter 11]) so there exists
¢ € GL, (ko) such thate(h) = h(¢p~1)¢. Itis easily verified that the image @f; underg

is invariant undetip and hence has coefficientsér(i.e., it is a descent af.1).

Lemma 3[24, 2.7.3].Letk; be an algebraic Galois extension ©{x) and letL; € k1[d]
irreducible and isomorphi¢over a Galois extensioky of C(x) containingki) to all its
conjugates. Assume thaj is absolutely irreducible. Then, there exists a Galois extension
ko of C(x) containingk~1 and an operatoM € C(x)[d] such thatl1 is isomorphic ovekg

to M.

Proof. As explained above, the proof will consist in the construction of a descent data.

The set of constanta(i, g) from relation (1) is easily seen to induce a 2-cocycle
a:I' x I' - C*, (h,g) — a(h,g). If a is trivial (i.e., if we can find a 1-cocycle
b e HY(I", C*) such thata(h, g) = b(h)b(g)/b(gh)) then we can construct descent data
@l := b(h)¢y, and our problem is solved. We will show that, at the cost of considdring
over a Galois extensiokg of C(x) containingk~1, the 2-cocyclex can be made trivial,
hence the conclusion of the lemma.

As I' is finite of some ordenmn, the 2-cocyclea™ is trivial (see [23, Proposi-
tion 7.3, page 61]) so, up to multiplying th#, by a suitable constant, we may assume
thata has values in the groyp,, of mth roots of unity, i.e.a € H2(I", ).

Let G := Gal(C(x)/C(x)) denote the absolute Galois group@x), i.e., the projective
limit of Galois groups of algebraic extensions 8fx). The groupH2(C(x), jm) =
H?(G, uy) is an Abelian torsion group, hence it is a direct product ofzitprimary
components. The-primary component o 2(C(x), i) identifies toH?(C(x), (m)p),
where (i), is the p-primary component of,, [33, proof of Proposition 11 in 81.3].
Now, Tsen’s theorem shows th@t(x) (and more generally any field of transcendence
degree 1 ove€) has cohomological dimensicd 1 (see [33, Example 3.3, page 11.10]).
Proposition 11(ii) of §1.3 in Serre shows thdf(C (x), (4m) p) = O for all prime p, hence
we haveH?2(C(x), i) = 0.5 But

H2(G. pm) = lim H2(F. ftm)

where the inductive limit is taken on the Galois group=f finite extensions ofC(x).
Viewed as an element of the trivial grodp?(C(x), un), the 2-cocycle: must be trivial.
So, by definition (of the inductive limit), there exists a Galois extenipof C(x) with
Galois grouplp such that: is trivial as an element aff (I, C*). We then can construct
a descent dataver kg and L1 is isomorphic ovekg to an operatoM with coefficients
inC(kx). O

Remark 5. Note that the isomorphisms betweEnand its conjugates are gefined oﬁér
and hence the isomorphisms involved in the descent data are definekhoowever,

5 This remains true if we replac@(x) by an algebraic extension @f(x), see Corollary 2 below.
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if I is “not big enough,” there may not be “enough” isomorphisms to have the descent
conditions realized. Indeed, introducing the overfigldheans that we take a bigger Galois
group, hence more isomorphisms and more freedom to obtain descent conditions. As we
will see in Section 2, this introduction & is not artificial and is sometimes really needed

to achieve the descent. We will indeed show how to control the descent field (the one over
which the descent conditions are satisfied, see Corollary 3).

1.3.2. Absolute factorization and tensor products

Building on this descent lemma, Katz shows in [24] the following variant on Clifford’s
second theorem [9]. IM, N are differential operators, we call ® N the differential
operator whose solution space is spanned by the progug£tsof solutionsy; of M and
fj of N, respectively. ItM, A are the differential modules associatedioand N, then
M ® N is an operator associatedAd ® N [31].

Theorem 2 [24]. Let L € C(x)[d] be an irreducible operator. We assume tiatdmits
factorsLy, ..., Ly with coefficients in an algebraic extensibnof C(x) such that

(1) TheL; are all the conjugates af; (and are also absolutely irreducible
(2) TheL; are pairwise isomorphic oveC(x).

Then there exists operatod$ and N in C(x)[d] such thatM is absolutely irreducible and
isomorphic overC(x) to L1, N has a finite Galois group, anfl is isomorphic overC(x)
to the tensor product ® N.

Proof. The first step in the proof of this theorem is the descent Lemma 3. Under the
hypotheses of the theorem, the operdtpis isomorphic to all its conjugates. By Lemma 3,
there exists an operatdf € C(x)[d] and a Galois extensioky of C(x) such thatM is
isomorphic toL; over kg. As L1 is absolutely irreducible, so i87. Let F; € C(x)[d]

be a differential operator admittiny as a Picard—\essiot extension (see, e.g., [32] for
a construction of such a differential operator). lletlenote the LCLM of operatorsy
andM. We havel € C(x)[d] and the Picard—Vessiot extensi&nof C(x) associated with

L contains the Picard—\Vessiot extensiégggnd K ;. A direct consequence is that also
containsKy,,, ..., Kr, and thus containk . This can be sketched as

>
<
»
o
>
Z
oY

We let H; denote the differential Galois group q? over ko. As M and L; are
isomorphic overkg, the solution spaceBy, andVz, in K of the equations/y = 0 and



E. Compoint, J.A. Weil / Journal of Algebra 275 (2004) 77-105 87

L1y = 0 are isomorphidi;-modules. AsH; is normal inG, the set Horg, (V, Vi) of
Hji-module homomorphisms froviy, to vV, is a G-module (the action being defined by
g.¢ =3¢3~1). Now, one easily checks that the application

YiVy @ Homy, (Vy, VL) = Vi, v®¢ = ¢(v)

is a morphism ofG-modules. Moreover, it is surjective: (W) = V; becauseV; is an
irreducibleG-module andy # 0. Let us compare dimensions of these tinodules. We
haveV, =V, @ --- & Vi, with dim(Vy,) =--- =dim(V.,) =r. For alli € {1, ..., s},
Vu andVg, are isomorphic and irreduciblé;-modules, hence dimHom(Vy, V) =s.
It follows that dim(Vy ® Homg, (Vas, Vo)) = dimVy, thus ¢ is an isomorphism of
G-modules.

Let now N € C(x)[d] be a differential operator whose solution space Knis
(G-isomorphic to) Horg, (Vu, V1). By definition all solutions otVy =0 in K are fixed
by Hj, and thus are algebraic overSo N must have a finite Galois group. Moreover, as
the three operato®, N andL have their Picard—\Vessiot extensionn the isomorphism
Y imposes thaL is isomorphic ovek to the tensor produd¥ @ N. 0O

Remark 6. The operatorg/ andnN in Katz's theorem are far from unique: they are defined

up to tensoring by an order 1 operator of the farm f. Lemma 3 ensures the existence

of a descent but gives no indication, like degrees, on the descent morphism (or how to
compute such descent). These questions are addressed in Section 2 of this paper.

Remark 7. Under hypothesis of Theorem 2, the order of the operdtorR N is
ordenM).ordet(N). In other words, there is no non-trivial linear relation with coefficients
in C between{m;.n;} where{m;} and{n;} are bases of solutions 8 andN. IndeedM

is absolutely irreducible so the:;} are linearly independent over any algebraic extension
of C(x) [10,11].

From the structure of our proof, we see that we may establish a number of corollaries.

Corollary 1. If a differential operatorL € C(x)[d] has a primitive absolutely reducible
differential Galois group, then the hypothegard conclusiohof Katz's theorem hold.

Proof. Because the group is primitive, the representalignis Go-isotypical and even
H-isotypical (with the construction from Section 1.2) and hence the hypotheses of Katz’'s
theorem are satisfied: thle are defined and isomorphic oveer (becausé; is the fixed
field of H and the representation i$-isotypical). We thus see that~ M  N. O

For the study of the imprimitive case, we will need the following easy corollary.

Coroallary 2. Katz’'s theorem also holds if the base fiélé a finite extension df (x).

Proof. The key step for Katz’s theorem (the descent) holdg4ik, C*) is trivial, where
k is the base field. A finite extension of a field of cohomological dimensidnis a field
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of cohomological dimensiok 1 (Tsen’s theorem [33, ex. 3.3, page 11.10]). If we replace
C(x) with a finite extensiork, then H2(k, C*) is still trivial and the 2-cocycles can be
trivialized as in the proof of the descent Lemma 31

We now turn to the question of the (non)-unicity of the descent. Obviously,d&fk[9]
is a solution to the descent problem, then any operator equivalenkdeed! is also a
solution; note also that the resullt~ M ® N definesM only up to projective equivalence,
even thoughV itself is defined up to equivalence in the descent process.

The next lemma investigates the number of solutions to the descent problem. This type
of result is standard in descent theory.

Proposition 1. Same hypotheses and notations as in Katz's descent L&ntratkg denote
the descent field anfiy = Gal(ko/ k). Then

(1) To any descent dati@y}rcr,, corresponds a uniqu@ip tok-equivalencioperatorM
equivalent ovekgto Lj.

(2) The number of descent data ovgr(and hence of equivalence classes of solutighs
to the descent problenis the order of the grouplom(/p, C*) of the homomorphisms
from Iy to C*.

Proof. Part (1) is simple and well known. L€§#,},cr, denote descent data and fet
and M denote two descents df, associated witHe¢n}rery: this means that there are
morphismsyf from L1 to M (respectivelyf from L1 to M) such thaip, = h(f).f L=
h(f).f~L. It follows thati(f.f~1) = f.f~1 for all h € I'y and hence the isomorphism
f.f~1 betweenM andM is defined ovek. In our setting, we considei 1(Ip, C*) with a
trivial action of Iy on C*, so H1(Ip, C*) = Hom(Ip, C*) and the result follows from the
introduction to Chapter Il of [33]. O

We will come back to the descent problem and its impact on the Galois group in
Section 2.

1.4. Imprimitive differential operators

We now study the structure of amprimitive differential operatorL € k[d] with
k c C(x). Again, let K; denote the Picard—Vessiot extensionkofssociated td., V.
the solution space i, andG the differential Galois group. L&W1, ..., W;) denote a
system of imprimitivity forG; (precisely: for the representation6f, on v ):

Vi=W1&®.--@&W,

and G, permutes theW; transitively. LetS denote the stabilizer it of the family
{W1,..., Ws}: S := () Stak;(W;). Then S is a normal subgroup of finite index G
which acts reducibly ofv; so we see immediately thatalready factors over an extension
of degree of the base field.
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EachWw; is a primitive S-module (by minimality of the dimensions of th&;). For
ief{l,...,t}, weletL; denote the monic differential operator with coefficient:idfn ck
whose solution space ;. Note that, thoungf is an extension of degree at mast)
of k, eachL; has its coefficients in a subextension of degreék. Our L is the LCLM of
the operatord.4, ..., L, and eaclL; is primitive.

Now assume thdt = C(x) (or a finite extension of it so that the results of the previous
section apply). By Theorem 2 and Corollary 2, eitligris absolutely irreducible or it
admits a factorization as a tensor prodict= M; ® N; whereM; andN; have coefficients
in the coefficient fieldk; of L;, M; is absolutely irreducible, anii; has a finite primitive
Galois group.

2. Structure of the Galoisgroup in the descent case

In this section, we place ourselves in the notations and descent hypotheses from
Theorem 2 and investigate the consequences of the descent on the Galois group. We also
show how to measure the degree of the descent morphism and of the morphisms between
the conjugate differential operataks.

We first investigate, as a test case, the (easy) case of first order operators.

2.1. The descent for first order operators

In the case of a first order operat®r u with u algebraic, then the descent process
can be explained in a more explicit way. LEf = 9 — u1 be a first order differential
operator with coefficients in an algebraic extensioC@f). Assume thai.; descends to
an operato = a9 — f € C(x)[d], i.e., there exists a non-zero elementalgebraic over
C(x) such that(d — u1).¢1 = ¢1.M. Then a simple computation shows that we must have
u1 = f + ¢1/¢1 with ¢1 algebraic. This in turn implies that, is radical overk(uy), i.e.,
there exists! € N such thatgbf € k(u1). Equivalently, there existg € k(u1) such that
u1 = f + v} /dvya. Using the integration algorithm on algebraic curves [1,4,7,12,42], one
can decide if this is the case and compyite, 1. Conversely, ifu; = f 4 ¢71/¢1 with
f € k and¢1 algebraic ovek, thenL1 obviously descends #— f overk(¢1).

Example. Let u denote a root ofi® — u — x = 0 and let

Qu? — Bux +5x2+27x% — 4

Li=0
! X(—4+27x2)
The integration algorithm shows that
4u? — Bux +5x%427x* — 4 /.
= with ¢ = .
(—4+27x2)x o yi=utx

We see thaL1.¢1 = ¢1.(d — x) with ¢1 given byg3 = u + x.
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Let M* denote the dual (or adjoint) @ff. Now ¢1 is an algebraic solution af; ® M*
and the latter descends & So, we see that, a first order operator admits descent if and
only if, up to tensoring ovek by a first order operator, it admits descendtd he descent
morphism is then multiplication by a solutigsy, whose degree oveér(u1, uz,...) can
again be measured using the integration algorithm; and the isomorphisms bétwegn
anda — u; are multiplication byp; /¢; (which obviously satisfy the descent conditions).
We may remark now, that, becauge is an algebraic solution of an equatigh=
uyy, we haveq)f € k(uy) for some number! (measured by the integration algorithm).
Moreover, there exists a_(smaller) numbesuch thatpf € ki1 =k(u1,uz,...). Amethod
for measuring this degregis given in [12, Proposition 2.4].

2.2. Degree for the descent and for the algebraic equivalence

Throughoutthis section, we assume that; M ® N with L irreducible, M absolutely
irreducible of orderr, N of orders = n/r with a finite Galois group. Recall (see
Appendix B) that we then hav& = LCLM (3 — u1, ..., 9 — u,,) with the u; algebraic
and conjugate, whose degraecan be picked from a precomputed li&t (i.e.,m depends
uniformly ons). Moreover there exist algebraic functioris satisfying f/ = u; f;. Note
that we may, without loss of generality, assume thatis unimodular. Indeed, write
N =9° +a,_10*"1+ ... and letw denote the Wronskian a¥. As G is finite, w is
algebraic overk and henceV ® (3 — (a;—1)/s) has a finite unimodular Galois group.
Evidently, M @ N >~ (M ® (3 + (a5—1)/s)) ® (N ® (3 — (as—1)/s)) SO, in the sequel, we
assume that y is unimodular.

We now will show the link between this structure @fand the degrees for an absolute
factorL of L, for the associated descent morphism, and for the equivalence isomorphisms
between thd ;.

Lemmad4. LetL € k[9d]. Let L ; denote the image df under the ma@ — 9 — f in k[d].
ThenL;=L® @ — f).

Proof. The solutions of. ® (3 — f) arey.exp([f). Now

(o ) o s

Noting that bothZ ; andL ® (3 — f) are monic and have the same order, this yields the
result. O

Theorem 3. Assume thal. ~; M ® N with L irreducible, M absolutely irreducible of
orderr, N of orders = n/r with a finite unimodulaf Galois group. Let; be conjugated
algebraic functions such thav = LCLM (3 — u1,...,d — u,;;). Let f; be non-trivial
algebraic functions such that’ = u; f;.

6 We saw above that we can impose this without losing generality.
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ThenL admlts a factorLl € k(u1)[d] such that the descent morphism(iils operator
form) Ry := flRl with Ry € k(u1)[9] and the isomorphism between two conjugates
andL; of Ly is of the formg; ; = (f;/fj)®Pi,j With @; ; € k(u;, u;)[0].

Proof. By assumption, there exists operat®sS € k[d] such thatR has order less than
M®N andL.R =S5.(M ® N). Recall thatN =LCLM@ —u;, i =1,...,m). Letm
denote the degree of the, chosen minimal.

Let f; denote a non zero solution of = u;y. By construction, there exists measurable
integersd andd such thatf? € k(u;) and ¢ € ky = k(u1, ..., un), respectively. Nowr
mapsVue—u,) t0 @ subspace of.. Hence, if we letR, denote the remainder of the
right division of R by M ® (8 — u1), thenRy mapsVyg—u,) t0 a subspace o¥, so
there exists a factat € k(u1) of L such thatl.1.R1 = S1.(M ® (8 — u1)). The solutions
of M ® (3 —u1) are of the forny. f1 with M (z) = 0. Now, we havézf1) = f1.(0 +u1)(z).
Hence, by Lemma 4, we see that

R(z.f1) = f1(R1® (3 + u1))(2).

Letting R1 := f1(R1 ® (3 + u1)), we see thaR, mapsVy to V.,. So, we conclude
that there exist$1 € k(u1)(f1) such thatL1.R1 = S1.M. Moreover, by the irreducibility
of Vj; and Schur’s lemma, any morphism fravhto L will be of the formc. R;.

Similarly, Rz := f2(R2® (3 + u2)). To obtain the inverse a?,, we write an operator
of orderr — 1 with indeterminate coefficients. The condition ferto be the inverse oR»
(viewed as a morphism froiviy, to Vy,) is that the remainder of the right divisionof R,
by M should be 1. The latter gives linear (non-differential) conditions on the coefficients
of ro (for which a unique solution exists by construction). In fact, the latter can also be
written as

F2(r2® (3 +u2)) (R2® (3 +uz)) = 1 mod M,

which shows tha‘rRZ*l € (1/f2)k(u2). As a consequence, we see that the isomorphism
P12 = Rl.Rz‘1 mod L, has coefficients in(f1/f2).k(u1,uz) and satisfiesL1.¢12 =
Y12.Lp. O

Remark 8. The result on the; ; can also be seen the following way.

Let k1 be a Galois extension df and k1 a Galois extension of contammgkl Let
L1, Ly € k1[0] be differential operators, irreducible overand isomorphic ovel;. Leto
denote the isomorphism. For alle Gal(k1/k1), g(¢) is again an isomorphism between
L1 andLz so Schur’s lemma implies that there exists a constastich thatg(¢) = c,¢.
It follows that there existf € ki1, satisfyingg(f) = cg f forall g e Gal(k1/k1), and
@ € k1[0] such thatp = f.@. Becauseg(f) =c, f forall g e Gal(kl/kl) we see that
there exists/ € N such thatf? € k1.

The disadvantage of this proof is that it gives no information on the possible degrees
for f. An analogous remark appears as “rigidity lemma” on page 45 of [24].
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Remark 9. Theorem 2, in fact, shows that the hypotheses of the theorem are equivalent to:
VL is G -irreducible,G¢ -reducible, ands§ -isotypical.

So far,k~1 denoted an extension @fi over which the operator was isomorphic to its
conjugates. It is now natural to study the smallest such field. In the sdguslthe field
generated ovel; by the coefficients of the morphisms between theconstructed in the
above proof and its conjugates. We will show that this does not depend on the chbice of

Corollary 3. Same hypotheses and notations as in The@em

(1) The coefficient field of the isomorphisms between tlig is in K; (precisely
kl = KH)

(2) The fieldkg := Ky = kl(fl) is a descent field. In particulaK y is a cyclic extension
of k1 whose degre@overky) divides the ordes =n/r of N.

Proof. (1) The coefficients of thd.,; are differential functions on their solutions hence
k1 € K. Similarly, the morphisms betwedn andL; are (differential) functions on their
solutions sdq C K. The Galois correspondence then allows one to checldcnhat in
fact, the fixed f|eIdKH of the absolute stabilize in K;.The freldk1 hence only depends
on the equivalence class éf and not on the choice of absolutely irreducible factbys
(Lemma 2). We may thus choogde=M ® N andL; = M ® (3 — u;) without loss of
generality.

(2) The above theorem now shows that= k(u1,...,un), k= ki(fi/f;)ix;j and
immediatelykg := kl(fl) is a descent field as; andM are (by construction) isomorphic
over thiskg. This also shows thaky = kg = kl(fl) Letg e GaI(KN/kl) As u; € k1,
g(u;) =u; and so there exists € C such thatg(f;) = c¢; f;. Now, asg(fi/f;) = fi/fj,
we haver; = c; for all 7, j. It follows thatg is scalar and hence in the center@f;. Now,
because&; y is unimodular, we must havg’ = 1, wheres = n/r is the order ofN, and
thusK is a cyclic extension oﬁ whose degree divides O

Example. This example was supplied to us by Mark van Hoeij. Let

(x —1)3% 1 (16x°—80x*+128¢3 —63x2—2x + 4)9?

._ a4
Li=9d +2x(x—2)_4_1 x2(x — 2)2
1(32x% —128¢3 + 144x2 4+ 1 — 33x)d
4 x2(x — 2)2
(x—l)(4x —20x% 4+ 323 — 21x2 4+ 10x + 2)

x2(x — 2)?

Computation shows that it is irreducible ov€(x) and that it admits the following
algebraic factor

Y 1 9 Ay — /x + 2x3 — 6x2
1= 2x -2 x(x -2
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It can be shown that the above is absolutely irreducible (for example, by letting
x =2 and checking that the corresponding operato€in)[d/dt] has Galois grougs
satisfying G° = SL(2, C) with the Kovacic algorithm [25]). Now; and its conjugate
I> lie in k1[d] whereky := C(x)(y/x)[3] and are isomorphic ovei[d] whereky :=
C(x)(«/x, v/x —2) = k1[v/x — 2]. Indeed, we hava.ry 2 = s1,2.I2 with

X

ry2=

—2
5 (04 ).

X —

By the descent theorem,~ M ® N with Gy finite. In fact, because theare permuted
transitively, we see thak y is an imprimitive group. We note that we have other factors of
order 2, e.g.,

52 10 4Jx—2+1+2(x —2)°24+6(x —2)%? o
2x /x_zx
1(x?—2x — /2= x)x)
2 x(2+x2-3x)

92 9 —2x +2.

This implies thatG y has three semi-invariants of degree 2 and hence it is the quaternion
group from the example on page 83.

2.3. About the structure of the differential Galois group

In Katz’s theorem, we obtaih as a tensor produdt >~ M ® N. Can we then infer that
G ~ Gy ® Gy? This depends on whether the Picard—Vessiot extensiond fand N
are included inK, or, equivalently, if the descent fieldh = K is included inK;. We
may recall the construction from our proof of Theorem 2:

Q4
ko= Ky =ki(f1) K
koN Ky
G
yE
k

Let p.: G — GL(V.) denote the representation Gf on the G-module v, (similarly
definepys (G) andpy (G)). Then, as botlkK; andKy lie in K, we have:
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Proposition 2. Same notations and assumptions as in The@emmen

1) pL(GL) = pL(G) ~ pu (G) ® pn(G).
(2) G isaquotient ofG by a finite cyclic central subgroup whose order divides the order
s of N.

Proof. Part (1) follows from the preceding discussion. For part (2), the above diagram
shows thatG; is a quotient ofG by GakK/K;) and that Galk/K;) ~ Gal(Ky/

(KL N Ky)). Corollary 3 shows that the latter is cyclic of order dividingand central

in Gy and hence irG. O

Remark 10. In the primitive case, thé; are isomorphic ovet;. Hence, Theorem 3 shows
that the quotientg; /f; lie in k1. We thus obtain thaky = ko = k1( f1), f1 is radical over
k1 and its order divides.

Remark 11. A result similar to Proposition 2, though stated with different tools, appears
in [9] and [46]. In fact,G . andG are projectively equal. Ipz denotes the projective
representation associated with, then pz (G) is the tensor produchy; (G) ® pon(G).

If furthermoreKy C K, thenG = G and we obtain dinear representationy, (G) ~

pm(G) ® pn(G).

In the isotypical case, we ha@L ,oM(G) ® pN(G) it can then be checked tth—
={om (@) ® pn(8) 18 € py (Z(GN))} whereZ(Gy) is the center oGy = pn (G).
Lettlng CG(H) denote the centralizer & in G, we may also note thaiIG(H) =Cg(G®).

3. Degreesand an algorithm for absolute factorization

In this section, we investigate the degrees over which one may compute an absolute
factorization ofL. Note that one must here distinguish between the degree of the coefficient
field of onefactor and the field extension éfgenerated by the coefficients of the set of
operatord.; such that, =LCLM (L, ..., Ly).

3.1. Degrees for absolute factorization

As in Appendix B, the notatiof?; stands for the (computable) list of possible minimal
degrees for an algebraic logarithmic derivative of a solution in the case of a primitive
unimodular group of ordes (Definition 5, page 102), and the notatidhy stands for a
(precomputable) list of integers such that, if an operator of ardexs a first order factor
over an algebraic extension, then it has one defined over an extension of aegrée

We first start with the possible degrees in the primitive case.

Lemma 5. Let L denote a primitive differential operator of orderwith coefficients in
k c C(x). ThenL is absolutely reducible if and only if it admits éabsolutely irreduciblg
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right-hand factor of order (wherer | n) over an extension df whose degree belongs to
Pusr-

Proof. Becausd. is primitive, Theorem 2 shows that it admits an absolute factorization if
and only if we havd. ~ M ® N with N primitive finite andM absolutely irreducible. Let

r denote the order i/ ands = n/r. ThenN admits a factod — u whereu is algebraic

of degreen € Ps. Let @ denote the map (ove) transformingM ® N into L. Becausep

is defined ovek, the image off ® (0 — u) is a factorL1 of L which is defined ovek(u)

(see Theorem 3). O

Now the degrees in the imprimitive case.

Lemma 6. Let L denote an imprimitive differential operator of orderwith coefficients

in k c C(x). ThenL is absolutely reducible, and it admits an absolutely irreducible factor
defined over an extension bfvhose degree belongstd,, ;.11\, /) Pn/e) andr

is the order of the factor.

Proof. If ¢ is the cardinal of a (maximal) system of imprimitivity, then Section 1.4 shows
that there exists a diviserof ¢ such that an absolutely irreducible factor has ordand is
defined over an extension of degvees 1. P, /(-1). O

Summarizing Lemmas 5 and 6, we obtain:

Proposition 3. Let L denote an irreducible differential operator of ordewith coefficients

in k c C(x). The operatot. admits a factor over an algebraic extensiorkdf and only if

L admits a factor whose orderis a divisor ofn, and which is defined over an extension
of k whose degree belongs 1y, .

Proof. The operatorL is primitive or imprimitive, and the result follows from the two
preceding lemmas and the fact thay, = U, /) tPn/¢ey- O

Remark 12. The bounds are sharp in the sense that there actually are absolute factors of
these degrees. However, in the imprimitive case, the example constructed at the end of [13]
shows that there may, in some cases, exist factors of even lower degrees: this follows from
the fact that the list€, given above are sharp but not always minimal. In the primitive
case the lisf?; contains exactly the possible minimal degrees.

Example. We give illustrations of this proposition and Lemmas 5 and 6 to compute
complete degree lists for = 4,6, ... (the lists for primen follow from the works on
Liouvillian solutions).

Let n = 4. If the group is primitive, we see that the possible degrees for absolute
factors are inP4 = [5, 8,12, 16, 20, 24, 40, 48, 60, 72, 120Q] for factors of order 1 and
P2 = [4, 6, 12] for factors of order 2. For the imprimitive case, we obtain 2 for absolute
factors of order 2 and72, U 2P, = [4] U [8, 12, 24] = [4, 8, 12, 24] for factors of order 1.
Summarizing, we see that the possible degrees for an order 1 factor at order 4 are
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[4,5,8,12, 16, 20, 24, 40, 48,60, 72, 120] and, for a factor of order 2, the degrees are in
[2,4,6,12].

Let us now turn to order 6 and factors of order 2 and 3. For an absolute factor of
order 2, the possibilities arB; = [6, 9, 21, 36] (primitive case) and 3 (imprimitive case).
For an absolute factor of order 3, the possibilitiesBse= [4, 6, 12] (primitive case) and
2 (imprimitive case).

At order 8, we see a new phenomenon occur for factors of order 2. For an absolute factor
of order 2, the possibilities ars = [5, 8,12, 16, 20, 24, 40, 48, 60, 72, 120] (primitive
case) and 1 U 2. P, =[4]U[8, 12, 24] = [4, 8, 12, 24] (imprimitive case), thus resulting
in the list[4, 5, 8, 12, 16, 20, 24, 40, 48, 60, 72, 120]. For an absolute factor of order 4, the
possibilities areP, = [4, 6, 12] (primitive case) and 2 (imprimitive case), thus resulting in
the list[2, 4, 6, 12].

3.2. Algorithm for computing an absolute factorization

In this section, we give a procedure which, given an irreducible opetatecides ifL
is reducible ovek and, if so, computes an algebraic extensgian and an absolute factor
L1 e€k(u)[d] of L.

In addition to the degree considerations, we will first show auxiliary results about the
representations af; on A" (V) to obtain a more natural algorithm.

Afirst general observation is the following lemma (which follows from the factorization
method exposed in Appendix A).

Lemma 7. L has a factor of order over an algebraic extension of degreeif and only
if there is a line in the exterior poweA” (V) generated by a pure tensor and whose orbit
under the Galois group is finite of lengii.

Proof. The implication follows from Lemma 10.

Conversely, letv = v1 A --- A v, denote a pure tensor and assume that thedinehas
an orbit of lengthm. Let V3 be ther-dimensional vector space spanned by theFor g
in G, let V, be the vector space spanned by gfie;). Now, denote byH the intersection
of the stabilizers of all th&,. We haveA” (V,) = g(w) so, because has finite orbit, there
are exactlyn Vy :={V1,..., Vi,}. ThenH is a normal subgroup it of index< m!. Let
k1 be the fixed field off in K. V1 is the solution space of an operaforwith coefficients
in k1. Now the Galois groug acts on the coefficients df; and sends it to somg,. The
solution space of this is one of thg so there are exactiy operatorL ;. This shows that
the coefficient field of_1 is algebraic of degree as claimed. And, becausg C Vv, our
LiisafactorofL. O

Let us first distinguish between the primitive and imprimitive cases.
In the primitive case, Theorem 2 tellsus tiae M @ N. Write Vy =C.f1® --- &
C.f;. Then

Ve~ (Vu®C.f1) @ - & (Vi ®C.f).
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Lemma 8. Notations as in the proof of Theoreth Assume that. >~ M ® N with
ord(M) =r. ThenA” (V,) admits aG-submodule isomorphic ta” (Vi) ® SynT (V).

Proof. A simple computation shows that\”"(Vy ® Vy) contains aG-submodule
generated by elements of the formi (V) ® C.f7 with N(f) = 0, hence this module
is (isomorphic to)A” (V) @ SymT (V). O

Note that this lemma also gives another proof for the degrees measured in Proposi-
tion 3.
We now turn to the imprimitive case.

Lemma 9. Assume thatG, is imprimitive, let {W1,..., W;} denote a system of
imprimitivity. Then, there exists a monomial submodule of dimensiom™/* (V).

Proof. Follows from the fact that the lines A"*/(W;) are permuted transitively by the
Galois group and, hence, their direct sum i§ g=submodule inA”/*(V;). O

The absolute factorization procedure, thanks to the above lemmas, follows the following
path: decompose (ovéf) the successive exterior powers (L) (wherer | n), identify
the relevant factors via representation theory and dimension analysis, and search for pure
tensor first order factors over algebraic extensions of degrees found in the lists.

To explain the absolute factorization process, we show how to proceed for an ogerator
of ordern = 6 (the process is similar at any order). The steps below have to be performed
successively. We proceed by increasing the order of the sought factors. Success at any step
provides an absolute factorization (because we study increasing orders) and the algorithm
then stops. If none succeeds, then the operator is absolutely irreducible.

order 1: Search for Liouvillian solutions df ([22,40], and Appendix B), i.e., first order
factors overk.
order 2: Compute an LCLM decompositiotf(L) =11 ® > & - - - [36].
(a) For all sumg of /; of total order 3 (potential imprimitive case with factor of
order 2): find if there are Liouvillian solutions of degree 3 ¢f22,40], and
Appendix B) and apply the Pliicker test (see Appendix A) to those to recover
the putative corresponding factor.
(b) For all sumg of /; of total dimension 6.
If I =1; @I with dim(/1) = 1 and dint/2) = 5, then search for a Liouvillian
solution of degree 6 ifp.
If I =11 @1 with dim(/;) = 3, then search for a Liouvillian solution of degree
9 of each of the,;.
Else! should be irreducible of dimension 6; if so, search for a Liouvillian
solution of degrees,21, 36. For each such Liouvillian solution, apply the
Plucker test to recover the putative corresponding factor (Appendix A).
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order 3: Compute an LCLM decompositiot¥ (L) =11 ®lo @ - - -.

(a) For all sumg of /; of total order 2 (potential imprimitive case with factor of
order 2): find Liouvillian solutions of degree 2 band apply the Plucker test
to those to those to recover the putative corresponding factor.

(b) For all sumg of /; of total order 4:

(i) Test[35]if! is projectively isomorphic to the symmetric cube of a second
order operator.

(i) If I =111, then search for a Liouvillian solution of degree 4 for each
Else,l should be irreducible of dimension 4; if so search for Liouvillian
solutions of degrees, 2.

For each such Liouvillian solution, apply the Plucker test to recover the putative

corresponding factor.

Proof. Part (b) at order 2 is the primitive case. In this cases (projectively equivalent
to) one of the finite primitive subgroups &lz. The decompositions of characters for
these groups on the second symmetric power (Table 1, page 8 in [38]) gives the desired
decomposition (that a solution will exist in soniefollows from the unicity up to
isomorphism of the LCLM factorization).

Similarly, part (a) at order 3 is the imprimitive case, and part (b) follows as above from
the character decompositions given in Table 2, page 8 of [38].

4, Conclusion

The method presented relies on the fine analysis of the primitive case, for which
we have a factorization of the operatér as a tensor produck ~ M ® N. This
factorization has given us the degrees (and a characterization) of the extensions over
which L may potentially factor. These degrees are sharp (and optimal in the primitive
case).

We saw that the factorization df as a tensor product comes from a phenomenon of
Galoisian descent, which leads us to the following two topics:

(1) How one actually realizes the descent. More precisely, given an opdrataith
algebraic coefficients satisfying the descent conditions, how one computes the set of
its descents (up to rational isomorphisms).

(2) How to effectively obtain the factorization df as a tensor produd¥ ® N in the
isotypical case.

These two questions will be answered in subsequent work.

Last, in [21], van Hoeij and van der Put also study descent problems for differen-
tial operators in a slightly different context, as their concern is operators with coeffi-
cients inC(x), with C a non-algebraically closed subfield @f and questions of defin-
ition fields for those. There again, the descent machinery is the source of inspiring re-
sults.
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Appendix A. Factorization of differential operatorsand systems

The general reference for this appendix and the next is [31]. The results thereafter
are “well-known” to specialists and recalled here mainly for convenience and notational
conventions.

Let D = k[d] denote the ring of differential operators (see [31]). We say that a
differential operatorL is reducible if there exists non-trividl; and L, in D such that
L = L1L,. We say that a differential modul&1 is reducible if it admits a (non-trivial)
d-submodule. We say that a systéf): Y’ = AY is reducible if it is equivalent (ovék) to
a block-triangular system of the form

/ A1 A2
- (4 )

It is easily verified that these three properties are equivalent. This section is concerned
with algorithms for detecting and computing factorizations of differential operators. The
approach given here stems from [8,43], who built on an old work of Beke (1884).

The present presentation came out of discussions of the authors with M. van der Put.
Its advantage, besides its natural simplicity, is that it generalizes straightforwardly to
factorization of differential systems.

Another approach to factoring differential operators/systems, usigdomorphisms
of M, is given in [36] (see [2,19] for its algorithmic developments); yet another approach
to factorization (probably the most efficient) was developed by van Hoeij in [20] and will
not be used here.

A.1. Exterior powers of differential systems

Letes,...,e, denote a basis of the differential modul. By taking the standard
alternating products;, A --- A e;, as a basis for the exterior powdr (M), we naturally
endow it with a structure ad-module.

Example. If 3(e;) = — ) 7_; Aje;, then the action 0d on A2(M) is given byd(e; A

ej)=03(ej) Nej+e ANd(ej) = _ZZ=1Ak,iek ANej— ZZ:lAk,jei A e and the usual
antisymmetric rules on thg A e; complete the expression dte; A e;).

From this construction, we see that, to a differential systém AY, we can naturally
associate anrth exterior power systendenoted byY’ = A,(A)Y, “attached” to the
d-moduleA” (M).
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We say that an element € A"(M) is a pure tensorin A" (M) if there exists
fi, ..., freMsuchthatZ = fi A--- A fr.

Lemma 10. The differential moduleM admits ad-submoduleN of dimensiorr if and
only if A”(M) admits al-dimensional submodule generated by a pure-tensor.

Proof. (=) If f1,..., f, isabasis ofV, thenfi A --- A f, generates the 1-dimensional
9-submoduleA” (NV): it is a 3-module becausg&(N) C V.

(&) LetZ:= f1 A--- A f; be the pure tensor generating a 1-dimensional submodule
in A"(M). We thus havé (Z) = a Z with a € k. Consider the application

UiM— ATE M), Y ZAY.

The kernel of& is obviously thek-vector space generated by, ..., f,. LetY € ken(¥).
Then

0=3(¥Y (M) =@Z)AY +ZA@Y)=a¥(Y)+ZA@Y)=ZA(3Y)

and henceY € ker(¥), thus turning kep) into the desired--dimensional submodu-
le. O

To compute the 1-dimensional submodulesié{. M), we may apply the algorithm of
[29] to the systenY’ = A, (A)Y. The result is a finite set of (finite dimension&@ljvector
spacesV; such that any element itv; generates a 1-dimensiortiaimodule (i.e., theV;
are generated (&S vector spaces) by elements; such thab (v; ;) = a;v; j with a; € k).
LetZ; = > c;v; j where ther; are unknown constant parameters.

A.2. The Plucker relations

The Plicker relations characterize elements in an exterior power that are pure tensors.
They were introduced in the context of the factorization of differential operators by Tsarév
in [43]. To recover those in an effective way in our context, we use the proof of Lemma 10.
For each, let

Ui M— AT M), Y ZAY.

Identifying pure tensors is now just a rank computation, i.e., identify the constaateh
thaty; has rank: — r. The latter can be performed by standard algebraic operations. For
those values of the;, all that remains to be done is to compute a basis oféker the
generators of kéw;) then span &-submodule ofM. In particular, if we started from a
differential operator., we may choose a cyclic basis of k&), thus obtaining a factor

of L. Note that, in [8], Bronstein gives (in a slightly different language) explicit formulas
for this reconstruction (i.e., the coefficients of a factor can be read off from a pure-tensor
solution ofY' = A, (A)Y).
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Example. Let's continue with order 4 and search for a factor of order 2. Fet
Y2, Z?=i+l zi,jei A ej denote a (possibly) parameterized generator for a 1-dimensional
submodule in2(M). Then¥ (eg) = z1.2e0 N e1Ae2+27213e0 A e1Ae3+223e0A e Aes.
Continuing like this, we find the matrix a¥ to be

712 —z02  Zo01 0
Mo — | 723 —z08 0 701
223 0 —Z03 202
0 723 —z13 212

Computing the determinant gives us the well-known Plicker condition for this matrix
to not have full rankzosz12 — z02z13 + 223201 = 0. This condition can be shown to be
equivalent toMy having rank two. Note that the matrix is not square in general.

Now, assuméy has a kernel and l&f;, Y> denote a basis for that kernel (if we want
to make it cyclic, then we choose a basis of the fdfma(Y1)). Complete with vectors
Y3, Y4 to form a basis ofM and letP denote the matrix whose columns are #aeThen,
the Gauge transformatiahA P~ + P’ P~1 has the form

A A
-1 rp—1_ [ A1 2
PAP "+ PP _<0 A3>

which provides the desired factorization over

If we had initially started with a differential operator (a companion system), then the
second order factor associated to the above pure tensor woud be(zo,2/20.1)8 +
71,2/20.1-

Appendix B. First order factorsover algebraic extensions

As we saw that computing first order factors was the building block for factoring,
we now turn to the question of computing first order factors over algebraic extensions.
This subject has a long history (Liouvillian solutions, see [37] for abundant details and
references). Methods for performing this task were studied in the nineteenth century
by Picard, Vessiot, Marotte, and others; the algorithmic approach to the subject was
spectacularly revived by Kovacic in 1979 [25] for second order operators and Singer [34]
for arbitrary order. Precise bounds for the degree of the algebraic extensions were given in
[44] and [39]; the best known algorithms stem from [40] and [22] (see also [13]) and are
quickly summarized below.

SupposeM admits a 1-dimensional submodule over an algebraic extensibnTdfis
means that there existg algebraic ovek andY1 € M ® k[u1] suchthabY; =u1Y;. Let
u, ..., uy (respectivelyys, ..., Y,) denote the conjugates of (respectivelyY1). Then
Y1Y2...Y,, has coefficients it and generates a 1-dimensional submodule in"Syt).

In [40], the converse is shown (in a different languagk): admits a first order factor
over an algebraic extension bfif and only if there exists a 1-dimensional submodule in
Symt" (M) which factors (ovek) as a product of elements ¢§ ® k. Note the striking



102 E. Compoint, J.A. Weil / Journal of Algebra 275 (2004) 77-105

similarity of this criterion (find a 1-dimensional submodule generated by a pure tensor in
Sym" (M)) with the factorization criterion of Lemma 10.

We now turn to the question of the degreeuwofSinger showed in [34] that, for an
operator of orden, the degree of: was uniformly bounded by a functiofi(n). He gave
estimates fotF(n), which were refined in [44]. In the latter (and with Singer in [39]),
Ulmer further showed how one could actually compute an acclisit&, of possible
degree&for extensions over whici\ may factor.

The construction of those lists is achieved the following way. First, separate between
primitive finite and imprimitive unimodular groups. There is a finite list of primitive finite
unimodular groups for which a lige, of corresponding degrees can be computed.

Definition 5. We denote byP, the list of minimal possible degrees for a right-hand factor
d — u of an irreducible operatof. € k[d] of ordern with finite primitive unimodular
differential Galois group.

We denote byL, the list of possible degrees for a right-hand factior- u of an
irreducible operatof, € k[d] or ordern.

We recall those lists for use in our paper:

P2=[4,6,12] (see[25),
P3=1[6,9,21,36] (see[39,44],
Pa=1[5,8,12,16, 20, 24, 40, 48, 60, 72,120],
Ps=16,10,15,30,40,55] (see[13];
we adopt the convention th&; = [1]. For higher values of, a bound on the highest
element ofP, is given in [34] and refined in [39,44].
In [39,44], it is showf that the complete list of degrees for factors of order one of an

operator of order is L, = U,ln(n/r).P, where(n/r).P, is the list of elements of the
form (n/r)v for v € P,. For the record, we recall those complete lists:

Lr=1[2,4,6,12],

L3=13,6,9, 21 36],

L4=14,5,8,12 16, 20, 24,40, 48,60, 72, 120,
Ls=15,6, 10,15, 30, 40, 55].

7 This computation is systematic but by no means easy. Complete lists are known only: up 50{13],
although the directions towards making such lists, in particular uniform bounds, are known for arbitrary values
of n.

8 Infact, in [39,44], the authors give the (too pessimistic) boGrya)!. 2 but our correction (which has been
long known to the authors of [39,44]) follows easily from Clifford’s Theorem 1 and the reasoning in Section 3 of
this paper.
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Those lists are used to construct analogous lists for higher order factors in Section 3 of
this paper.
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