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We consider a second order ordinary linear differential equation

(1) L̃y ≡ ∂2y + A1(x)∂y + A2(x)y = 0

with rational coefficients , A1, A2 ∈ C(x), over a constant field C which is assumed to be of

characteristic zero and algebraically closed. We denote ∂ =
d

dx
and K = C(x).

After a change of variable y → ye
R
−a

2 the equation (1) is changed into the reduced form

(2) Lry ≡ ∂2y − r(x)y = 0 where r(x) =
A2

1

4
+

A′
1

2
−A2

Given two linearly independent solutions of (1), say y1, y2, either formal or actual, the differential
field K < y1, y2 > generated by K, y1 and y2 is called a Picard-Vessiot extension of (1). The group of
K-differential automorphisms (i.e., of field automorphisms leaving K pointly fixed and commuting
with ∂) is called the differential Galois group of (1) over K. We denote it by G(L̃) = GalK(L̃)
and by PG(L̃) = G(L̃)/Z(G(L̃)) ' G(L̃)/(G(L̃) ∩ C∗) the corresponding projective group.

A differential Galois group is a linear algebraic group over C ; it can then be represented as a
subgroup of GL(2, C). In the case of an operator in reduced form Lr the differential Galois group
is a special linear algebraic group over C and it can thus be represented as a subgroup of SL(2, C).

The Galois correspondence states the link between properties of solutions and the form of the
differential Galois group. The equation(2) has no liouvillian solutions (also called solutions in closed
form) if and only if the differential Galois group G(L) is isomorphic to SL(2, C). At the opposite
end, all solutions are algebraic if and only if the differential Galois group G(L) is a finite group. In
the case when G(L) 6= SL(2, C) since the order is only 2, then all solutions are liouvillian.

The Kovacic algorithm ([K86]) is an algorithm to effectively determine whether or not a second
order linear differential equation has liouvillian solutions with a computation of those. It can be
pushed up to the calculation of the differential Galois group of the equation in reduced form. What
follows applies to general second order differential equations in form (1) as well as form (2).

This talk is concerned with the case when the solutions are algebraic and an explicit direct
computation of those. The idea consists in refering to a small amount of standard equations the
solutions of which were computed once for all. Using a theorem of Klein each equation is seen as
an adequate pullback of one of the standard equations. Our aim is to make this pullback explicit.
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1. Standard equations

The possible projective differential Galois groups in this case are the dihedral groups Dn for all
n ∈ N, the tetrahedral group A4, the octahedral group S4 and the icosahedral group A5.

The standard equations in reference are the hypergeometric equations

StG = ∂2 +
a

x2
+

b

(x− 1)2
+

c

x(x− 1)

where the coefficients a, b, c are related to the differences λ, µ, ν of the exponents at 0, 1, and ∞ by

the relations a =
1− λ2

4
b =

1− µ2

4
and c =

1− ν2 + λ2 + µ2

4
. More precisely, one can

choose (λ, µ, ν) =
(1
2
,
1
2
,
1
n

)
for G = Dn,

(1
3
,
1
2
,
1
3
)

for G = A4,
(1
3
,
1
2
,
1
4
)

for G = S4 and
(1
3
,
1
2
,
1
5
)

for G = A5.
The index G refers to the differential Galois group of the equation StGy = 0 corresponding to the

chosen values of a, b, c. The solutions of these hypergeometric equations are Legendre functions.

2. Klein Theorem

Definition 1. Let L1 ∈ C(z)
[ d

dz

]
and L2 ∈ C(x)

[ d

dx

]
be linear differential operators.

(1) L2 is a proper pullback of L1 by means of f ∈ C(x) if the change of variable z = f(x)
changes L1 into L2.

(2) L2 is a pullback of L1 by means of f ∈ C(x) if there exists v ∈ C(x) such that L2 ⊗ (∂ + v)
is a proper pullback of L1 by means of f .

Theorem 1. Let L be a second order linear differential operator over C(x) in reduced form with
projective differential Galois group PG.

Then, PG ∈ {D4,A4,S5,A5} if and only if L is a pullback of StG.

Let L have a projective differential Galois group PG and suppose the standard equation with
projective differential Galois group PG has H1,H2 as a C-basis of solutions. The theorem of Klein
says that L is a pullback of StPG. Suppose we know f and v. Then, a C-basis of solutions of
Ly = 0 is given by H1(f(x))e

R
v and H2(f(x))e

R
v.

H1 and H2 are known for all standard equations. To get the solutions in explicit form one
should then determine the projective differential Galois group and, in case it is finite, determine
the pullback f and v. The idea is to build these quantities using the semi-invariants of the equation.

3. Invariants and semi-invariants

Definition 2. (1) A polynomial I(Y1, Y2) ∈ C[Y1, Y2] is said invariant with respect to a differ-
ential operator L if its evaluation on a C-basis y1, y2 of solutions is invariant under the action
of the differential Galois group G(L) of L. The rational function h(x) = I(y1(x), y2(x)) is
called the value of the invariant polynomial I.

(2) A polynomial I(Y1, Y2) ∈ C[Y1, Y2] is said semi-invariant with respect to a differential

operator L if the logarithmic derivative
h′

h
of its evaluation h(x) = I(y1(x), y2(x)) on any

C-basis y1, y2 of solutions is rational, i.e., in C(x).
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The invariant polynomials (in short invariants) of degree m of a differential equation Ly = 0
are elements of the mth symmetric power Symm(Sol(L)). Their values are elements of the space
Sol(Symm(L)). An isomorphism between these two spaces preserving the Galois representations
allows to identify an invariant to its value. As a consequence, determining the invariants or the
semi-invariants of degree m of L is equivalent to determining the rational solutions of the mth

symmetric power Symm(L) of L. On another hand, we know the full set of possible m since we
know the list of invariants and semi-invariants of the finite groups Dn,A4,S4,A5.

This provides us with a perfectly effective procedure to determine the invariants or semi-invariants
of L and consequently the type of its differential Galois group.

Suppose now L has a differential Galois group G with semi-invariant S of degree m and value
σ(x). And suppose the value of S with respect to the standard operator StG with group G equals

σ0 (modulo C∗). Then, the value of S w.r.t. both the differential operator SG = StG⊗ (∂z +
σ′

0

mσ0
)

and the differential operator L = L̃⊗ (∂x +
σ′

mσ
) is equal to 1 and the following property holds.

Proposition 1. L is a proper pullback z = f(x) of SG.

A direct examination in each case will provide the pullback f .

4. Pullback formulæ

• Primitive case: PG ∈ {A4,S4,A5}

The standard equation in reference is StGy = 0 where the differences of exponents are λ =
1
3

at

x = 0, µ =
1
2

at x = 1, and ν =
1
3

for A4,
1
4

for S4 and
1
5

for A5 at infinity.

The differential Galois group of this equation has a semi-invariant S of degree m = 4 in the case
of A4, m = 6 in the case of S4 and m = 12 in the case of A5 with value s(x) = x−m/3(x− 1)−m/4.

The new standard equation SG = StG ⊗ (∂ +
1
3z

+
1

4(z − 1)
) reads

SG = ∂2 +
7z − 4

6z(z − 1)
∂ − 1

144
(6ν − 1)(6ν + 1)

z(z − 1)
.

It has exponents
(
0,

1
3
)

at 0,
(
0,

1
2
)

at 1 and
(6ν + 1

12
,
−6ν + 1

12
)

at infinity where ν has the previous
value in each case. The semi-invariant S of degree m has now value 1. The coefficients of the pull-

back equation ∂2y +a1∂y +a0y = 0 satisfy a1 =
f ′′

f ′ +f ′ 7f − 4
6f(f − 1)

and a0 = −(6ν − 1)(6ν + 1)f ′2

144f(f − 1)
.

Algorithm. Input: L̃ with finite primitive group.

1. For m ∈ {4, 6, 12} check for a semi-invariant of degree m and call v its logarithmic derivative.

2. If yes, let L = L̃⊗ (∂ +
1
m

v) be a proper pullback of SG with invariant value 1.

Denote L = ∂2 + a1∂ + a0.

3. Let s =
(6ν − 1)(6ν + 1)

144
(ν ∈

{1
3
,
1
4
,
1
5
}

is known).

Output: • the pullback function f =
1

1 + s
a0

(6a1 + 3a′
0

a0
)2

and
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• for StA4 , the basis of solutions H1 = 2F1

(
[−1
12 , 1

4 ], [23 ];x
)

and H2 = 3
√

x 2F1

(
[14 , 7

12 ], [43 ];x
)
;

for StS4 , the basis of solutions H1 = 2F1

(
[−1
24 , 5

24 ], [23 ], x
)

and H2 = 3
√

x 2F1

(
[ 7
24 , 13

24 ], [43 ], x
)
;

for StA5 , the basis of solutions H1 = 2F1

(
[1160 ,− 1

60 ], [23 ], x
)

and H2 = 3
√

x 2F1

(
[3160 , 19

60 ], [43 ], x
)
.

2F1 denotes the hypergeometric function. In the case of StA4 the solutions can also be given in
terms of radicals or roots of an algebraic equation of degree 24.

• Dihedral case: PG = Dn for n ∈ N.
The procedure is similar however, one has to determine here the value of n.
For sake of more symmetry in the formulas, the standard equation in reference is chosen with

exponent differences
1
2

at +1 and −1 and
1
n

at infinity. It has a semi-invariant S2 = Y1Y2 of degree
2 and two semi-invariants Sn,a = Y n

1 + Y n
2 and Sn,b = Y n

1 − Y n
2 of degree n. The new standard

equation

SDn = ∂2 − z

z2 − 1
∂ − 1

4n2

1
z2 − 1

has exponents
(
0,

1
2
)

at +1 and −1 and
(−1
2n

,
1
2n

)
at infinity ; it has a semi-invariant of degree 2 and

value 1. The operator L = ∂2 + a1∂ + a0 is a pullback of SDn if a0 = − 1
4n2

f ′2

f2 − 1
and a1 = −1

2
a′0
a0

.

The equation Ly = 0 admits the solutions exp
∫
±
√
−a0 = exp

∫
1
2n

f ′√
f2 − 1

dx. The number

n can thus be determined with the algorithm of integration on algebraic curves ([Br90], [Ri70],
[Tr84]) ; in fact, the authors give refinements of this part of the algorithm to compute a multiple
of n.

Algorithm. Input: L̃ = ∂2 + A1(x)∂ + A2(x) with finite differential Galois group.

1. Check for a semi-invariant of degree 2 and call v its logarithmic derivative.

2. If yes, let L = L̃⊗ (∂ +
1
m

v) be a proper pullback of SDn with invariant value 1.

Denote L = ∂2 + a1∂ + a0.
3. Determine a candidate for a multiple of n.
4. For an adequate n, the equation Lny ≡ ∂2y + a1∂y + n2a0y has solutions f and

√
f2 − 1,

hence f .

5. Let c be such that c2 =
4n2a0

f ′2 + 4n2f2a0

.

Output: the pullback function ±cf and the solutions
(
cf ±

√
c2f2 − 1

)1/n.

The procedure appears to be more efficient than the Kovacic algorithm. In addition, it provides
the pullback and the solutions in simple form.
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