On Symmetric Powers of Differential Operators

Manuel Bronstein Thom Mulders
Institute for Scientific Computation
ETH Zentrum IFW
CH-8092 Ziirich

{bronstein,mulders}@inf.ethz.ch

http://www.inf.ethz.ch/personal/{bronstein,mulders}/

Abstract

We present alternative algorithms for computing symmet-
ric powers of linear ordinary differential operators. Our
algorithms are applicable to operators with coefficients in
arbitrary integral domains and become faster than the tra-
ditional methods for symmetric powers of sufficiently large
order, or over sufficiently complicated coefficient domains.
The basic ideas are also applicable to other computations
involving cyclic vector techniques, such as exterior powers
of differential or difference operators.

Introduction

Let R be an integral domain of characteristic 0, D) be a
derivation on R, K be the quotient field of R and R[9; D] be
the corresponding ring of linear differential operators with
coefficients in R. Let L = Z?:o a;0" € R[9; D] with n >0
and a, # 0, Yy,...,Y,_1 be indeterminates, and consider
the extension of) to K[Yg7 AU Yn_l] given by DY; = Yiy,
for0<i1<n—land DY,_; = —rz,?l Zn_l a;Y;. For any in-

@m

teger m > 0, the m'" symmetric power of L, denoted L ,
is defined to be a nonzero element of R[8; 1] of minimal de-

gree such that L@m(YOm) =0. Let H,,, C K[Yo,...,Yn_1]
be the set of homogeneous polynomials of degree m. Since

"+m_1) over
n—1

K and is closed under 1), it follows that the elements

Yy©, D (Ys™), ..., DY (Yg™) of H,, are linearly dependent

over K, hence that L " always exists and has degree at
most N. Symmetric powers have many applications within
algorithms for solving linear differential equations:

=0

H,. is a vector space of dimension N = (

o the factorization patterns of L®m determine the struc-
ture of the Galois groups of second and third order
equations, and provide necessary and sufficient condi-
tions for the existence of Liouvillian solutions [13];

e the radical solutions of T,®m provide explicitely the

Liouvillian solutions of second and third order equa-
tions [14];

Jacques-Arthur Weil
Département de Mathématiques
Faculté des Sciences, 123 Av. Albert Thomas
F-87060 Limoges

weil@unilim.fr

http://Medicis.Polytechnique.fr/gage/weil.html

e the rational solutions of L®m provide explicitely the
Liouvillian solutions of completely reducible second or-
der equations [16], and are needed as a first step in com-
puting the Liouvillian solutions of higher-order equa-
tions [15];

For computing invariants of operators, the algorithms pre-
sented in this paper provide a rational alternative to the

local method of [18].

The basic algorithm [11, 13] for computing Lo
is to look for a linear dependence over K between
Yo©, D(Yy"), ..., D" (Yy™) for increasing i’s until 1 = N,
the coefficients of the first dependence found being the coef-

ficients of L®m. Expressing each)7 (Yg") in the monomial
basis of H,, converts the problem of looking for a linear de-
pendence over K to finding the kernel of an N x (7 + 1)
matrix with coefficients in K. This kernel computation be-
comes however rapidly expensive as n and m increase, so we

present in this paper algorithms for computing L®m that
either avoid this linear algebra step (when L has order 2), or
reduce its cost through preprocessing of the corresponding
matrix (when L has arbitrary order). In addition, our algo-
rithms can be carried out in a fraction—free fashion over an
arbitrary integral domain rather than over its quotient field,
avoiding gcd computations and allowing the use of efficient
fraction—free linear algebra algorithms.

Notation: for any # € R and integer m > 0, 22 is the
descending factorial of z of degree m, i.e. z™ = H:;El (z—1).
Note that m™ = m™=L = m! and m™2L = 0. For any
rational number g, |g]| is the largest integer m such that
m < gq.

1 An iteration for second-order operators

In the case where deg(L) = 2, it is known that L™ has
degree m + 1. Furthermore, in the appropriate basis of H,,
the matrix of Yy™, D (Yy™),..., D™ (Yy™) is upper triangu-
lar, so the kernel computation can be avoided altogether,

resulting in the following iteration for computing L®m
Theorem 1 Let L = 3* +ad +b € R[@; D], m > 0 be an

integer and consider the sequence given by 1o =1, L1 = 0
and

Lig1 = (04 ia)Li +i(m — (i — 1))bLi_s

for0 < i<m. Then, Lmy1 = LO.

Proof. Note that deg(Li) = i for 0 < i < m + 1 and that
each L; is monic. Let Yo, Y1 be indeterminates and consider
the extension of D to K[Yp, Y1] given by DYo = Y1 and
DY) = —aY; — bYy. We show by induction on 2 that

Li(Ye™) = m*Yy" 7Yy (1)

for 0 <1 < m+1. We have Lo(Yy") = Yy" and L, (Yy") =
AY")=mY""'Y1, so let 1 < § < m and suppose that (1)
holds for 0 <1 < 3. Then,

Lisi(Ye") = (94 ja)Li(Ye™) + j(m — (5 — 1))bL,—1 (Ys")
= ml(Y" YY) + jamlyy Yy
+j(m — (5 = 1)bmi=tyy =0Ty
= mi(m— j)yom—(J+1)Y1j+1
+gmIY YT (—aYh - bYy)
FiamdY" Y 4 jbmdymm =)y
= pltly Uty

which implies that (1) holds for j + 1. Therefore,

L1 (Ye") = m™Ly~ ™ = 0

which implies that Lmy1 = L®m since it has degree m + 1.
[m]

When L = pd? 4+ ad + b and p is not a unit in R, we
want to avoid going to the quotient field in order to avoid
computing gcd’s. While we can replace L; by p'~' L; in the
iteration of Theorem 1 and obtain a sequence of operators
in R[8; D], those operators may have increasing contents, in
a similar fashion to what happens in polynomial remainder
sequences. Large parts of those contents can however be
predicted, yielding a fraction—free iteration over R, which
we present in the rest of this section.

Lemma 1 If R is a unique factorization domain then
r|q|gcd(p, Dp) = qr|pDr
for any p,q,r € R.

Proof. We can assume that p # 0, the result being trivial
otherwise. Suppose first that r is irreducible. If r | Dr, then
gr | pDr since q | p, so suppose that r [/ Dr and write p =
r”h where n > 0 and r k. Then, Dp = nr™~'hDr 4+ r" Dh,
so r f hDr implies that r™ f Dp, hence that r™ f g since
q | Dp. Therefore, r | (p/q), which implies that gr | p, hence
that gr | pDr.

Let now r1,rz be such that r; | g and gr; | pDr; for 1 =1, 2.
Then,

}_)D(T17‘2) _P (Dm n Drg) _ pDry _l_pDrz cR
q rirs q T r2 qri qr2
so qrirz | pD(rirz) and the lemma follows. O

Theorem 2 Suppose that R is a ged domain. Let L = pd*+
ad +b € R[0; D] where p # 0, pe = ged(p, Dp,a — Dp),
Po = ged(pe, bp/pe), m > 1 be an integer and consider the
sequence given by Lo = 1, L1 = 8, Ly = pd® + ad + mb,

-D D
Lo= Loyt =22 2P
Pe Pe Pe

) Lo+ 2(m— 1)L 1y
Pe o (2)

Ly = <£a+(2i—1)“_Dp+ Dp (i 1yplee
Do Po Po PoPe
. pro
+(2—2 Lo
() 2) 21
+(2i = 1)(m — (20 — 2)) 21 3)
1 — m — 1 — 125 —2 I
PoPe
and
a=Dp Dp .. pDp.
Loisr = <£a+mu+_f?+(,_w »
Pe Pe Pe e
. | D o
+(i — l)p—p) Lo;
PePo
+2i(m — (20 = 1)) 21, (4)
i(m — (2t — i
PoPe at
for2 < i< |(m+1)/2]. Then, Lmsr = L.
Proof. Define Qo = Lo =1, Q1 = .1 = 9, and
L=1)/2] Ls/2]-1
pl ph ,
Q=—""T-7T—"-"1; (5)

p]
for 2 < 3 < m + 1. We first prove that

, . , b
Qe = (0452) Q +im—G-)20 ©
for 0 < 3 < m. We have
1 b b
Q=-Lo=0+"0+m- = <a+ 3) Q1 +m—Qo
p p p p p

so (6) holds for j = 1. Using (2) we get

p2

. 1 —Dp D b
Q = Zr,= <_a+2“ p+—2p> Ly +2(m — 1)~ L
p p P p

= la(PQ2) + <2ﬂ + @> Q2 +2(m — 1)§Q1
p p p p

a b
(3 + 2-) Q2 +2(m—1)-Q
P P
so (6) holds for 7 = 2. Let 3 < j < m. If jis odd, then
j+ 1 =2i for some i > 2, so using (3) and (5) we get

i—1,_i—1 i—1, _1—1

i—1 1—1
Pe Po LJ+1:Pe fo L2i:Pe Pu {

Q‘] +1 = p] p]

a—1 D . . pDpe
<£3+Ju+_1)+(,_1)u

Po Po Po Dope
. pDp.\ P!
+(Z - 2) p% > 1—1 21—2 QJ
faln - 1) g,
Jm—(j— S @it
pope pe 2po 2 !
i—1 i—2 Jj—1
_ pe'py p a—Dp Dp
= Y (pi_lpf)_Q QJ) * (J PR
. Dpe . . Dpo . . Wb
+(i - l)p—p +(1-2) pp) Qi +(m—(y— 1))1—)(21—1

= (8—}-]%) Q;+3(m—(y— 1))262‘7—1

so (6) holds for j odd. A similar calculation using (4) and (5)
shows that (6) holds also for j even.

Since Qo = 1, @1 = 9 and (6) holds for 0 < 5 < m, Theo-
®
)

rem 1 applied to K implies that Q41 = (L/p ™ hence

C)m

thaﬁ lqn+1 = L . O
Note that since p, | p. | ged(p, Dp), Lemma 1 implies
that if R is a unique factorization domain, then the coeffi-
cients of the iteration of Theorem 2 are in R, i.e. that all

the quotients are exact.
Furthermore, if follows from (6) that each @; has leading
coefficient 1, so (5) implies that the leading coefficient of
AN
is
m

14

Cm = eI DRI,

If R is a unique factorization domain, then c¢,, € R and
every irreducible factor of ¢,, must divide p, which implies
in particular that if R is of the form k[z] with Dz = 1, then

all the singularities of L®m are singularities of L. This last
point follows also from the iteration of Theorem 1.

2 A general fraction free method

Let L = S a:id' € R[3; D] with n > 0 and an # 0,

Yo, ..., Yn—1 fg indeterminates and consider the derivation
A = anD on K[Yo,...,Yn_1]. Then, AY; = anYiy1 for
0<i<n—1and AY,—; = -3 """ a;Y;, which implies

that R[Yo,...,Yn_1] is closed under A.
Lemma 2 Let m > 0 be an integer,
wo = Yy" and

wip1 = Aw; — tD(an)w; fori> 0.

(7)

If Z;‘Aio ciw; =0 for some integer M >0 and co,...,cpm €

R, then
M
(Z ciazaz) (Yo") =o0.

i=0
Proof. We first prove by induction on 1 that
w; = a’, D' (Y5™)
for i > 0. We have wo = Yi™ = ad D° (Yg™), so suppose that
w; = ap D' (Yg™) for some i > 0. Then,
wiy1 = Aw; — z'D(an)wi
= a,D (a, D' (YJ")) — iD(an)a), D' (Y7")
= @ D () + ia, D(an) D' (V")
—iD(an)a, D' (Y5") = a;t' D (V")

It follows that

M M M
(Z ciailai) (Y7") = Zcia;Di (Yy") = Zciwi =0.

i=0 i=0 i=0
[m]
®&m . .
It follows that L can be obtained from the first linear
dependence found over R between wg, wi, ..., w; for increas-

ing 2 until : = N, which is equivalent to finding the kernel of
an N x (14 1) matrix with coeflicients in R. However, as in
the case of second-order operators, the iteration (7) produces
increasing contents in the rows of the resulting matrix.

Lemma 3 Let (wi)i>o be given by (7) and Y €
K[Yo, ..., Ya_1] be a primitive monomial of total degree m.

Then for any 1 > 0, the coefficient of Y in w; is divisible by
P(Y,i)

F(Y) ifi < F(Y);
P(Y,iy={ i if F(Y)<i
{ F(Y)+G(Y) ifi>F(Y)

where

SEY)+G(Y);
+G(Y),

F(Y) = kdegy, (V)
k=1

and

G(Y)=n—1—max{k | degy, (V) > 0}.

Proof. By induction on i. We have wo = Y{" and F(Y;") =
0, so the lemma holds for : = 0. Suppose now that z > 0
and that the coefficient of Y in w; is divisible by a,}:(y’z) for
any primitive monomial in Y € H,,. Since w; € H,,, we can
write w; = ZYbyY7 where by € R and the sum is taken
over all primitive monomials of total degree m. We have

wit1 = Aw; —iD(an)w;
= > (anD(by)Y —iD(an)by¥ + anby D(Y)).
Y

It suffices to show that for all primitive monomials Y and Yy
of total degree m, aﬁ(Y’H‘I) divides the coefficient of Y in
anD(by)Y —iD(an)byY +auby D(Y). Writing by = baj, ")
we get
anD(by) —iD(an)by =
D(b)al I 4 (P(Y, 1) — ibal) D(an). (8)

When P(Y,1) # 1 we have P(Y,1+4 1) = P(Y,i). From this
and (8) we see that ab ™Y divides anD(by) — iD(an)by.

For a primitive monomial ¥ € H,, and 0 < 3,k < n
such that degyj (Y) > 0, we define YU H o be the primitive
monomial Y'Y, /Y;. Whenever 0 < 7 < n—1and dngj(Y) >
0, we have

F(YUi+y = vy +1 (9)
and when 0 < y < n and degy, _,(Y) >0, then
FYPN = P(YY = (n = 1) + 5. (10)

Writing ¥ = H;=_0] Y7 we have

7

n—2 n—1
anbyD(Y) = anby Z er[]’H'l] — en_1by Z aJY["_l’]].
J=0 J=0

For Y = YU+ we have G(Y) < G(Y). From this and (9)
it follows easily that P(Y/7 i+1) < P(Y,1)+1 and so aP (Vi)
divides aJ,,by. .

For Y = Y"1 we have G(Y) < n —1 —j. From
this and (10) it follows that P(Y,i+ 1) < F(Y)+ G(Y) <
F(Y) < P(Y,1), so ab ¥+ divides by. a]

From the previous lemma we see that ai(y) divides the
content of the row corresponding to Y. In fact various en-
tries of the matrix are divisible by even higher powers of as,.

The following matrix shows the powers of a,, in the general
case of the 2™ symmetric power of an order 3 operator. The
numbers on the left are the corresponding F(Y). oo means
that the corresponding entry is 0.

0 0 o© 0o 2 2 2 2
1 co 1 oo 2 2 2 2
2 co o0 2 2 2 2 2
2 o oo 2 oo 3 3 3
3 o oo oo 3 3 3 3
4 o oo oo oo 4 4 4

Depending on the coefficients of the operator it can happen
that even higher powers of a,, than predicted by Lemma 3,
divide some entry of the matrix as the following example
shows.

Example 1 For the 2" symmetriz power of
($2 -|-5)33 -|-(5.’L‘2 — 2$+25)32 -|-(.’L‘4 — 1)8-|-$4 —2®—r -1

we get the following matriz of powers (of x° + 5) dividing
the corresponding entries.

0 c© 0o 2 3 3 3
oo 1 oo 2 4 3 3
oo oo 2 2 3 4 4
o oo 2 oo 3 4 4
o oo oo 3 3 4 4
o oo oo oo 4 4 4

In this section, we have used the operator A = a,,D to
get a matrix with all entries in R. In fact it might be the
case that (depending on the coefficients of the operator) it is
sufficient to use an operator A = ¢D with ¢ dividing a,,, in
order to avoid fractions. For example, for third—order oper-
ators with aa = p® it suffices to use ¢ = p®>. However, notice
that in this case R[Yg, .. ,Yn_l] is not closed under A. As
will be seen in the next section, the extra contents brought
in by using a, D instead of ¢D) can be removed through an
adequate preprocessing of the matrix.

In order to avoid fractions one might also use the original
operator 1) and multiply a column by a,, only when fractions
do appear.

3 Preprocessing the matrix

When applying the fraction—free method described in the
previous section, we have to compute a linear dependence
between the w;. For this we can use any method from lin-
ear algebra and in particular fraction—free Gaussian elimi-
nation ([5] §9.3) or modular methods [8] are suitable.

Choosing some order of the monomials of total degree
m in Yp,...,Ys_1 we can write the coefficients of w; in
a matrix A = (aq;) (i.e. a;; is the coefficient of the ith
monomial in w;). Computing a linear dependence between
the w; and between the columns of A are now equivalent
problems.

As shown in the previous section, the entries in A can
be divisible by high powers of a,. In this section we will
show how we can preprocess the matrix A in order to make
the computation of a linear dependence between its columns
more efficient.

It is clear that the kernel of a matrix does not change
by multiplying the rows of that matrix by scalars. By mul-
tiplying the columns of a matrix by scalars the kernel does

change, but there is an easy relationship between the ker-
nels. Our preprocessing strategy consists of multiplying the
rows and columns of the matrix A by powers of a» in order
to decrease the powers of a,, dividing the entries of the ma-
trix. Let B = (b;j) be a matrix, having entries in N U {oc0},

such that b;; = co when a;; = 0 and a,? divides a;; when
a;; # 0. For this we can use for example the powers pre-
dicted by LLemma 3 or, when R is a unique factorization
domain, we can use the true exponents of a, in the entries
of A. Multiplication of the ith row (resp. jth column) of
A by af can now be translated to adding k to each entry
of the ith row (resp. jth column) of B. We can state the
preprocessing problem now as follows:

Let B be an n X m matrix with coeflicients in
NU{oc}. Findr; € Z(1<i<n)andc; € Z (1<
j < m) such that the following holds:

1. bij +ri +¢; > 0 forall 7, .

2. Z(bw —H‘i—f-c]) should be minimal, where the
sum 1is taken over all 7, 7 such that b;; # oo
(i.e. the remaining powers of a, should be
minimal).

When we omit the condition that the variables r; and c;
should have integer values, this is an example of a linear
programming problem. For details on linear programming
we refer to [9]. Tt is clear that this problem has a solution.

We can write the constraints as Cx < b, where C is a
matrix whose columns are labeled by r; and ¢; and whose
rows are labeled by b;; # oo, and b is a vector whose entries
are labeled by (and are equal to) b;j # co. Then all entries
in the b;;’s row of C are 0, except for the entries in columns
r; and cj, which are equal to —1. We see that C is the
negative of the incidence matrix of the bipartite graph G,
whose vertices are labeled by r; and c¢; and which has an
edge from r; to ¢; when b;; # oc.

An important class of matrices in linear programming
are the totally unimodular matrices. One of the character-
izations of these matrices is that all minors equal —1,0 or
1. It is well known that the incidence matrix of a bipar-
tite graph is totally unimodular, so C is totally unimodular.
From this it follows that a solution to our problem has inte-
ger components.

In our problem the variables r; and c; are free variables
(i.e. their value may be positive or negative) and the con-
straints are inequalities. If we want to use the standard
simplex method to solve this problem we first have to trans-
form it to a problem having only non-negative variables (i.e.
their values are non-negative), which doubles the number
of variables. If N is the number of constraints in the origi-
nal problem then solving the new problem using the simplex
method would need pivoting in an (N +41) x (N +2(n+m)+1)
matrix.

The dual problem of the original problem only has N
non-negative variables and n 4+ m equalities. So solving the
problem via the dual problem would need pivoting in an
(n+m+1)x (N + 14 n+ m) matrix (we not only have to
solve the dual problem but also the dual of the dual which
equals the original problem).

Since N = O(nm), the solution via the dual problem
seems to be the most efficient one.

Note that the dual problem is essentially the Hitchcock
problem (or transportation problem) for which efficient al-
gorithms do exist ([6]).

As before, we can see that the matrix corresponding to
the dual problem is totally unimodular. Next we will show
that during the process of pivoting the matrix will stay to-
tally unimodular.

Lemma 4 Let S = (sij) be a totally unirmodular n x m
matriz, 1 < 19 < n, 1 < 30 < m such that s;y;, # 0. Let
T = (tij) be the matriz we gel by pivoting matriz S using
Sigjo as pivol (i.e. clearing the o™ column of S). ThenT'
s totally unimodular.

Proof. Since s;,;, = £1 and by permuting the rows and
columns of S we see that it suffices to prove the lemma for
10 = jo = 1 and s1; = 1. Notice that

bt = Siy
iy = e
811845 841815

When 1< < - <uu<nand 1< 5 < - < g <m, we

denote by ([21,...,ix],[J1,-..,Jx])v the submatrix of ma-

trix U consisting of rows i1,--- , 1% and columns ji,..., Jx.
Since t;; = 0 for 2 > 1, we have when 1; > 1

ifi=1
ife>1

det (([21, ... 2], [1, 52, -, J&])7) = 0.
When i1 =1 then
det (([ir, ...], [, kl)) =
det (([o, .- 2u] [91, -+, 3k])s)
since ([F1,--- ,2k]y [91,--- »Jk])7 is obtained from
(&1, k), 71y yJx])s by adding or subtracting

the first row from some other rows.
When 11 > 1 and ji > 1 then Sylvester’s identity ([5],
§9.3) shows that

det (([i1, ... i), [y -, 36])7)
= s det (([1, 41, .., i), [1, 51, ..., Jx])s)
=det (([1,i1,... ,ik],[1, 751, ..., Jx])s) -

O

This lemma shows that during the process of pivoting

the matrix i1s always totally unimodular, which implies that

the pivot (which is a 1-minor) always equals £1. This means

that only integers appear during the pivoting and this fact

can be used to produce a faster implementation of the algo-
rithm.

Example 2 The solution to the linear program correspond-
ing to the matriz B of Frxample 1 is

sT6,Cly ... ,C7) =

(=3, -3, —4,

(7‘1, e
—4,—4,-4,3,2,2,2,1,0,0).

Adding ri; + c; to b;; we get:

0 oo oo 1
oo 0 oo 1
oo oo 0 0
o oo 0 =
oo oo oo 1
o0 o0

= OO O =~
[eNoNelololel
[eNoNelololel

The sum of all entries in B is 78, while the sum of all entries
in the optimized matrixz is only 7.

If one has some kind of factorization of a,, one can also
use this optimization technique to all factors seperately. So
depending on the algorithms available for R (factorization,
gcd computations or none) one can use a complete factoriza-
tion, balanced factorization or no factorization of a,. Using
this preprocessing at each factor compensates for using a,, 1)
as derivation (instead of cD for some factor ¢ of a,) when
generating the matrix.

4 Implementation issues and timings

We have implemented the above algorithms in %I 0.1.8b [2]
and in MAPLE V.3 [4]. In order to benefit fully from the
advantages of the fraction—free methods, the following points
must be considered:

e for second order operators, all the exact quotients ap-
pearing in Theorem 2 should be precomputed before
starting the iteration;

e because of the high powers (Lemma 3) of the leading
coeflicient a,, of L appearing in the iteration (7), the
elements of R should be manipulated in the form a2b
where d € N and b € R, so that the powers al are not
expanded;

o since the fraction—free algorithms work over arbitrary
integral domains, when R = k[z] and & is the quotient
field of an integral domain S, then c¢L € S[z][d; D] for

some nonzero ¢ € S, so we can take advantage of the
R m

faster arithmetic in S[z] and compute (cL)® rather

than L@m. An important case is R = Q[x], since

multiplication in Z[z] has better asymptotic complexity

than in Q[z]".

¢ when R is a univariate polynomial ring (with arbitrary
derivation), then the preprocessing of the previous sec-
tion should be done for each balanced factor of a,,.

e if a ring-homomorphism (or even Z-module homomor-
phism) o : R — F is available for a finite field F, then
the linear independence over [F of w{,w?,...,w{ can
be checked while the w;’s are being computed. Let d
be the smallest integer such that wg,...,w] are lin-

early dependent over [F. Then, deg(L®m) > d and for
suitable R, ' and o, that degree is d with high prob-
ability [10]. We can then apply the preprocessing of
Section 3 to the matrix A whose columns consist of
wo, ..., wq and continue the iteration (7) beyond wq
only if ker A = 0. When R = Z[z], we can also attempt

to directly lift the linear dependence [8]. Incidentally,
this heuristic either proves that deg(L®m) = (":Tl_l)

or indicates that it is stricly smaller with high probabil-
ity, an important information for the algorithm of [15].

We present in the rest of this section empirical timings of
the various methods presented in this paper. In addition,
since our MAPLE implementation of the fractional kernel
method takes advantage of the many cancellations appearing
during the linear algebra, we also give the timings obtained
with version “Nov.21 1996” of the diffop package of [17].
All the timings in this section were obtained on a single

!The Karatsuba multiplication algorithm is not effective in Q[z]
since multiplication and addition have the same complexity in Q).

CPU DEC Alpha 500/333 with 256Mb main memory run- s MAPLE
ning Digital Unix V4.0a. All timings are given in seconds of firee frac || firee frac | diffop
CPU, garl'aage collection included, and a * indicates that the L\/W@Q 1.3 0.5 0.3 0.3 1.7
computation was aborted after one hour of CPU. In order I ®3
to be able to verify the results, we use examples with known \/—222@)4 2.2 714 0.6 0.6 4.9
Galois groups and/or invariants from the literature. L /=3 3.8 286.3 | 09 1.3 13.2
5
Lm@) 5.9 2252 1.6 2.5 34.5
4.1 Timings for second-order operators ®6
L =55 87 % 2.1 4.4 | 69.2
. . . @12
fr(())rmratéi).nal coefficients, we use the following operators j - 60 " 10 415 "
b D2 9 3(2z —])2(.774 — 2 4o+ 1) Table 2: second order operators over Q(y/—222)(z)
T T 1652 (x —1)2(s% =0 — 1)2
Ds = D*— 2 D+ (272" = 542° 4 5% 4 220 4 27) (20 — 1)* pected that fraction—free methods become more advanta-
2z —1 14422 (z — 1)?(2? — © — 1)? ' geous when the cost of computing in the quotient field of R
3 9 3 increases. The difference between the two methods is more
Ay = D? + -+ > — drastic in EIT, which uses the classical FEuclidean algorithm
16z 9(z - 1) 16a(z — 1) for computing greatest common divisors in Q(v/—222)[z],
and for an example with algebraic numbers in its coefficients, while MAPLE uses better algorithms, making the cost of
the following non-completely reducible operator from [1]: normalizing quotients less important.
Ly = ($12 4220 4 ﬂxs + @mﬁ + 5920 2t 4.2 Timings for higher-order operators
B 3 3 9
10952 , 5476 , 104 4, For rational coefficients, we use the following operators
—5 ¢ T) D” — 25 ¢ from [18]:
_ (E _ Qm) o (7754 _ 68 —222) 6 b _ g 5090”4142 4 9) | 5(81a’ 4 18507 42290 + 81)
25 15 75 15 36 = 4822 (1 + 1)? 43253 (x4 1)3 ’
_ (11248 _ E _222) 4
75 15 To— 4
_ 3 - 2
25925% — 2963z + 560 57024x — 40805
Table 1 contains the times needed for computing symmetric 25202 (z — 1)2 2469622 (z — 1)2 °

powers by the various methods of this paper: lteration Z[z]
is the fraction—free iteration of Theorem 2, Iteration Q(z)))))
is the fractional iteration of Theorem 1, Kernel Z[z] is the o 1 1 1, 1
fraction—free kernel method of Section 2, and Kernel Q(x) PSLs eD(eD 2)($D 4)($D + 4)($D 8)
is the classical kernel method?. We see from Table 1 that 1, 5,

the iteration methods of Section 1 are faster than the ker- (zD — g)(xD + g)(xD + g)

nel methods, and that the fraction—free iteration is faster 1 1
than the fractional one. The fraction—free kernel method —z(zD+ g)(xD - g)v
of Section 2 is not always faster than the fractional kernel

method, which is to be expected since it reduces the cost of as well as the following operator with larger coefficients
the linear algebra, but the matrices generated in the case of from [15]1
second order operators are triangular, so the linear algebra 5 A s)
cost is negligible compared to the simplex preprocessing and i + 128 2" — 98 4 108 2" + 373 z” — 4867 4 162 D2
overhead. As will be seen in the next section, the fraction— z(z — 1)p(x)

free kernel methodfbecomes bett?r W]%len tlrlle ine}f.r a;ligebra N a(x) b(x)

cost increases, i.e. for operators of sufficiently high order, or YT - L IS

with sufficiently complicated coefficients. We remark also 362%(—1)%p(z) 72a(e —1)*p(z)
that the fraction—free iteration together with a fraction—free where
rational kernel finder makes the algorithm of [16] quite effi-

cient: Darboux curves for D,, D3 and A4 were computed in ple) =724° —2162° 4 2804" — 1262° + 272° + 81w — 54,
YT in 1.2, 1.4 and 1.1 seconds respectively, without a priori
knowledge of their degrees, while the MAPLE differential

equation solver was only able to solve Ds. a(z) = 2304z° — 13464 " + 24872 2° — 24840 2° 4 2106 &*
Table 2 contains the times needed for computing sym- +29565 z° — 26514 2 + 9477 x — 1458,

metric powers of L /5 by the fraction—free (ffree) and

fractional (frac) iterations of Section 1. It shows as ex- and

=

=
=

N
Il

4608 z° — 28872 #° + 67240 z* — 115560 &°
+131166 22 — 78165z + 27135 .

2Q(z) is represented as the quotient field of Z[x], which is a more
efficient type than the quotient field of Q[z].

= MAPLE

I[teration Kernel [teration Kernel diffop

Zlzg] Qz) | Z[z] Q=) || Z[=] Q=) | Z[z] Q(z) | Q(=)
0,9 004 02 |03 03 [o0os 02 |04 03 1.2
2% | 08 33 |62 49 |07 19 |58 32 | 374
D27 | 35 155|421 28 | 30 81 |284 147 | 3988
D% |loos 02 |03 03 |01 01 |04 02 1.3
D2 | 08 34 |71 64 |07 21 |61 36 | 381
D2 | 37 162 | 50 317 32 91 [303 166 | 490
4.2 o002 01 |01 03 ||oor 007] 04 02 | 08
A% o1 07 |04 21 |02 04 |16 08 | 49
A9 o3 20| 3 58 |05 14 |65 27 | 244

Table 1: second order operators over Q ()

Finally an example with algebraic numbers in its (small)
coeflicients:

L= "+1)D°—v2D 4.

Table 3 contains the times needed for computing symmet-
ric powers by the fraction—free (Z[z]) and fractional (Q(z))
kernel methods, while Table 4 contains the times needed for

=T MAPLE
5] UET | ZE Ul | aFfep
5
Fie® 83 103 || 109 39 | 616
6
Fio® | 314 257 || 204 143 | 3407
5
Gies® || 154 263 || 140 83 | 608
Gies® || 105 791 || 356 210 | 500.7
o’ 57 12 || 67 60 | 336
(O | 612 1182 || 197.8 1446 | 12012
~ 5
i® 895.6 1384 | * 26353 |
2
PsL:®" | 1631« | 2185 1979 | 2004

Table 3: higher order operators over Q(z)

computing symmetric powers of L ; by the fraction—free
(firee) and fractional (frac) kernel methods.

P MAPLE
ffree frac || firee frac | diffop
L0 [os 1] 14 14| sa
®3
Lﬁ 33.7 * 9.6 76.5 81.4
L\/§®4 * * 60.2 * *

Table 4: higher order operators over Q(v/2)(z)

The LT columns of Table 3 illustrate the cutoff when
the fraction—free method starts becoming better than the
fractional one in a system with canonical expanded forms
for polynomials and fractions such as X7 or axiom [7]:

F36®m and G168®m have orders smaller than the generic

(m+1)(m+2)/2 and their coeflicients are rather small, so the

fractional method remains faster. On the other hand, L and
its powers have quite larger coefficients, and the fraction—
free method is then faster, as well as on the higher-order
example PSLs. This cutoff is further away on MAPLE be-

cause of two characteristics of the arithmetic in MAPLE:

o the preprocessing step of Section 3 consists of a simplex
on a matrix of machine-integers. Machine integers are
however not accessible in the MAPLE user language,
causing the preprocessing step to take a more signifi-
cant portion of the computing time than in compiled
languages, thereby pushing the cutoff further away;

e the normal function in MAPLE keeps the numerators
and denominators of elements of QQ(z) factorized, and
this allows an appropriately coded Gaussian elimina-
tion to take advantage of the many cancellations that
happens on the matrices that arise in the symmetric
powers computations, thereby giving an extra advan-
tage to the fractional method; At the same time, the
intermediate results tend to become expanded during
the fraction-free elimination, giving it an additional dis-
advantage;

Both of the above points disappear when the constant field
is a proper extension of (Q, as illustrated by Table 4, where
the fraction—free method is significantly faster than the frac-
tional one on all systems.

Conclusions

For second order operators, the fraction—free iteration
method of Theorem 2 is the most efficient way of comput-
ing symmetric powers, and it turns the algorithm of [16]
into a very efficient second order linear ordinary equation
solver. For higher-order operators, the fraction—free ker-
nel method of Section 2 is more efficient than the fractional
method whenever the order of the operator or its coefficients
are sufficiently large, or whenever the underlying constant
field is not @, in which case it seems to be the only practi-
cal method. lts performance on third-order operators with
smaller coefficients in (Q() seems to indicate that a polyal-
gorithm is not needed, and that the fraction—free method
can be used in general.

In addition, the techniques of applying a fraction—free it-
eration of a multiple of D (Lemma 2) followed by the prepro-
cessing of Section 3 are applicable to other problems that in-
volve computing a cyclic vector of a matrix constructed from
an operator, such as the computation of exterior powers of
differential or difference operators [3], or the factorization
of completely reducible differential operators [12], although
that last problem can also be solved without computing a
cyclic vector.

Acknowledgements

We are thankful to Marco Petkovsek, Loic Pottier and Emo
Welzl for their help and advice on the linear programming
aspects of the preprocessing step.

References

[1] BRONSTEIN, M. On radical solutions of linear ordinary

differential equations. In Proceedings of the Nijmegen
Cathode Workshop (1995), 'I'. Levelt, Ed., pp. 23-24.

[2] BronsTEIN, M. X'T- a strongly-typed embeddable
computer algebra library. In Proceedings of DISC0O’96
(1996), LNCS 1128, Springer, pp. 22-33.

[3] BRONSTEIN, M., AND PETKOVSEK, M. An introduction
to pseudo-linear algebra. Theoretical Computer Science

157 (1996), 3-33.

[4] CHAR, B., GeppEs, K., GoNNET, G., BENTON, L.,
MoNAGAN, M., AND WATT, S. Maple V Library Ref-
erence Manual. Springer, New York, 1991.

[5] GEDDES, K., CzAPOR, S., AND LABAHN, G. Algo-
rithms for Computer Algebra. Kluwer Academic Pub-
lishers, Boston, 1992.

[6] HENON, M. A mechanical model for the hitchcock
problem. Comptes Rendus de I’Académie des Sciences,
Paris, Série I, Mathématiques 321 (1995), 741-745.

[7] Jenks, R., AND SUTOR, R. Aziom - The Scientific
Computation System. Springer, New York, 1992.

[8] McCLELLAN, M. The exact solution of systems of lin-
ear equations with polynomial coefficients. Journal of

the ACM 20 (1973), 563-588.

[9] ScHRIIVER, A. Theory of Linear and Integer Program-
ming. Wiley, 1986.

[10] ScHWARTZ, J. Fast probabilistic algorithms for verifi-
cation of polynomial identities. Journal of the ACM 27
(1980), 701-717.

[11] SINGER, M. Liouvillian solutions of n*" order homoge-
neous linear differential equations. American Journal

of Mathematics 103 (1980), 661-682.

[12] SINGER, M. Testing reducibility of linear differential
operators: a group theoretic perspective. Applicable
Algebra in Engineering, Communication and Comput-
ing 7 (1996), 77-104.

[13] SINGER, M., AND ULMER, F. Galois groups for second
and third order linear differential equations. Journal of
Symbolic Computation 16 (1993), 1-36.

[14] SINGER, M., AND ULMER, F. Liouvillian and algebraic
solutions of second and third order linear differential

equations. Journal of Symbolic Computation 16 (1993),
37-73.

[15] SINGER, M., AND ULMER, F. Linear differential equa-
tions and products of linear forms. In Proceedings of
MEGA’96 (to appear).

[16] ULMER, F., AND WEIL, J.-A. Note on kovacic’s al-
gorithm. Journal of Symbolic Computation 22 (1996),
179-200.

[17] vaN Horw, M. Factorization of Linear Differ-
ential Operators. Computer science dissertation,
Nijmegen, 1996. The package diffop is available from
http://www-math.sci.kun.nl/math/compalg/diffop/.

[18] vaN HoErw, M., AND WEIL, J.-A. An algorithm for
computing invariants of differential galois groups. In

Proceedings of MEGA’96 (to appear).

