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Abstract. An algorithm for factoring differential systems in characteristic p
has been given by Cluzeau in [Cl03]. It is based on both the reduction of a
matrix called p-curvature and eigenring techniques. In this paper, we gener-
alize this algorithm to factor partial differential systems in characteristic p.
We show that this factorization problem reduces effectively to the problem of
simultaneous reduction of commuting matrices.

In the appendix, van der Put shows how to extend his classification of differ-
ential modules, used in the work of Cluzeau, to partial differential systems in
positive characteristic.
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Introduction

The problem of factoring D-finite partial differential systems in characteristic zero
has been recently studied by Li, Schwarz and Tsarév in [LST02, LSTO03] (see also
[Wu05]). In these articles, the authors show how to adapt Beke’s algorithm (which
factors ordinary differential systems, see [CH04] or [PS03, 4.2.1] and references
therein) to the partial differential case. The topic of the present paper is an al-
gorithm that factors D-finite partial differential systems in characteristic p. Aside
from its theoretical value, the interest of such an algorithm is its potential use as
a first step in the construction of a modular factorization algorithm; in addition,
it provides useful modular filters, e.g., for detecting the irreducibility of partial
differential systems.

T.Cluzeau initiated this work while being a member of Laboratoire STIX, Ecole polytechnique,
91128 Palaiseau Cedex, France.
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Concerning the ordinary differential case in characteristic p, factorization
algorithms have been given by van der Put in [Pu95, Pu97] (see also [PS03, Ch.13]),
Giesbrecht and Zhang in [GZ03] and Cluzeau in [C103, Cl04]. In this paper, we
study the generalization of the one given in [Cl03]. Cluzeau’s method combines the
use of van der Put’s classification of differential modules in characteristic p based
on the p-curvature (see [Pu95] or [PS03, Ch.13]) and the approach of the eigenring
factorization method (see [Si96, Ba01, PS03]) as set by Barkatou in [Ba01].

In the partial differential case, we also have notions of p-curvatures and eigen-
rings at our disposal, but van der Put’s initial classification of differential modules
in characteristic p cannot be applied directly, so we propose an alternative algorith-
mic approach. To develop a factorization algorithm (and a partial generalization
of van der Put’s classification) of D-finite partial differential systems, we rebuild
the elementary parts from [Cl03, Cl04] (where most proofs are algorithmic and
independent of the classification) and generalize them to the partial differential
context.

In the appendix, van der Put develops a classification of “partial” differential mod-
ules in positive characteristic which sheds light on our developments, and comes
as a good complement to the algorithmic material elaborated in this paper.

We follow the approach of [C103], that is, we first compute a maximal decom-
position of our system before reducing the indecomposable blocks. The decompo-
sition phase is separated into two distinct parts: we first use the p-curvature to
compute a simultaneous decomposition (using a kind of ”isotypical decomposition”
method), and then, we propose several methods to refine this decomposition into
a maximal one.

The generalization to the partial differential case amounts to applying si-
multaneously the ordinary differential techniques to several differential systems.
Consequently, since in the ordinary differential case we are almost always reduced
to performing linear algebra on the p-curvature matrix, our generalization of the
algorithm of [Cl03] relies on a way to reduce simultaneously commuting matrices
(the p-curvatures).

A solution to the latter problem has been sketched in [Cl04]; similar ideas
can be found in papers dealing with numerical solutions of zero-dimensional poly-
nomial systems such as [CGT97 |. The essential results are recalled (and proved)
here for self-containedness.

The paper is organized as follows. In the first part, we recall some defini-
tions about (partial) differential systems and their factorizations. We then show
how to generalize to the partial differential case some useful results concerning
p-curvatures, factorizations and rational solutions of the system: we generalize the
proofs given in [Cl03, Cl04]. After a section on simultaneous reduction of com-
muting matrices, the fourth part contains the factorization algorithms. Finally, in
Section 5, we show how the algorithm in [Cl03] can be directly generalized (with
fewer efforts than for the partial differential case) to other situations: the case of
“local” differential systems and that of difference systems.
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1. Preliminaries

In this section, we recall some classical definitions concerning differential systems
in several derivations. When there is only one derivation (m = 1 in what fol-
lows), we recover the ordinary definitions of differential field, ring of differential
operators,- - -. We refer to [PS03, Ch.2 and Ap.D] for more details on all these
notions.

1.1. D-Finite Partial Differential Systems

Let m € N* and let .# = k(z1,...,%m) be the field of rational functions in the m
variables x1,...,Z,, with coefficients in a field k.
For ¢ in {1,...,m}, let 9; := ﬁ be the operator “derivation with respect to the

i-th variable” and let © := {0y, ..., 0} be the commutative monoid generated by
the 0;. Following the terminology of [PS03, Ap.D], we say that (&, 0) is a partial
differential field or ©-field. The field of constants of (#,0)is ¢ :={f € F;Vé €
©,4(f) =0}

Definition 1. Let (%,0) be a partial differential field. The ring of partial dif-
ferential operators with coefficients in % denoted Z[0] is the non-commutative
polynomial ring over F in the variables 0;, where the 0; satisfy 0; 0; = 0; 0;, for
alli, j and 0; f = f0; + 0;(f), for all f € F.

Definition 2. A system of partial (linear) differential equations or (linear) partial
differential system is given by a finite set of elements of the ring Z[©]. To every
partial differential system S, we associate the (left) ideal (S) generated by the
elements of S.

Definition 3. A partial differential system S is said to be D-finite if the .7 -vector
space F[O]/(S) has finite dimension.

D-finite partial differential systems correspond with .7 [@]-modules, i.e., with
vector spaces of finite dimension over .%# that are left modules for the ring .7 [0]
(see [PS03, Ap.D], and the next section in positive characteristic). In other words,
a D-finite partial differential system is a partial differential system whose solutions
only depend on a finite number of constants.

Throughout this paper, the partial differential systems that we consider are
D-finite partial differential systems written in the form

Al(y) =0 with Al = 81 - A17
: (1)

An(y) =0 with A, =0, — An,
where the A; € M,,(#) are square matrices of size n € N* with coefficients in

Z and the A; commute. This implies the following relations, called integrability
conditions, on the matrices A; (see [PS03, Ap.D] for example):

&(A]) - a](Ai) - Az Aj + Aj Al = 0, for all i, j (2)
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The (D-finite) partial differential system given by (1) will sometimes be noted
[A1,..., Ap]; this is convenient when one wants to refer to the matrices A; or to
the operators A;.

There exist algorithms to test whether a given partial differential system S is
D-finite and if so, to write it into the form (1). For example, this can be achieved
by computing a Janet basis (also called involutive basis in the literature) of S
(see [Ja20, Ja29, HS02, BCGPRO3]). These bases can be viewed as some kind of
(non-reduced) Groebner bases. A Janet basis of the system yields a basis of the
quotient .Z[0]/(S). And, the fact that this basis is finite is then equivalent to the
fact that the system is D-finite. The matrices A; can be obtained by computing
the action of the 0; on the basis of the quotient.

Let .# be a Z[O©]-module of dimension n over .#. Let (ey,...,e,) and
(f1,- -, fn) be two bases of . related by

(fla--~7fn):(617~-~7en)P

where P € GL, (%) is an invertible element of M, (.%). If [Ai,...,An] and
[B1,...,B,] are respectively the partial differential systems associated with .#
with respect to the bases (eq,...,e,) and (f1,..., fn), then, for all i € {1,...,m},
B;, = prP! (AZP — 81(P))

In the sequel, to simplify the notations, we will note P[A;] := P~ (A; P —
9i(P)).

1.2. Factorization and Eigenrings

In this subsection, we define some notions about factorization of partial differential
systems that are used in the sequel. We have seen in the last subsection, that a
partial differential system over (.%,0) can be thought of as a left module over
Z10]. This classical approach has the advantage of enabling one to apply directly
the general theorems on modules [Ja80] (like the Jordan-Holder theorem, Schur’s
lemma, the Krull-Schmidt theorem) to partial differential systems. This allows a
better understanding of the problems arising in the study of partial differential
systems.

Let (#,0) be a partial differential field. Two partial differential systems
Sy = [A1,...,Ap] and Sy = [By,..., By] over (#,0) are called equivalent dif-
ferential systems (or similar) if the associated .#[©]-modules are isomorphic. A
simple computation shows that S; and S5 are equivalent if, and only if, there ex-
ists a matrix P € GL,(.%) such that, B; = P[4;], for all i.

Let S = [A1, ..., Ay] be a partial differential system over (%, ©) and denote
by 4 the associated #[0]-module. A subspace # C # is called invariant if
A; W C W, for all i. One can see easily that # C .# is invariant if, and only if,
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W is a submodule of .Z .

The partial differential system S is called a reducible partial differential sys-
tem if the .#[O]-module . is reducible, i.e., if there exists a submodule # of .#
such that 0 # # # .# . Otherwise, S is called irreducible.

The partial differential system S is called a decomposable partial differential
system if .# is decomposable, i.e., if 4 = W1 & #5 where #; # 0. Otherwise, S
is called indecomposable.

The partial differential system S is called a completely reducible partial differ-
ential system if .4 is completely reducible, i.e., if it is a direct sum of irreducible
submodules.

In matrix terms, S is reducible (resp. decomposable) if there exists a system
[B1,...,By] equivalent to S over .# such that, for all 4, B; has the following
reduced form

B171 B172 e Bl,r
B; = 0 32’2 - : s
: E E Br—l,r
0 0 B,
resp. decomposed form
By 0
B’L = ..
0 Brr

)

Definition 4. Let S = [Ay,...,An] be a partial differential system. Factoring S
means deciding whether it is reducible or irreducible, decomposable or indecompos-
able, and, in the reducible (resp. decomposable) case, find an invertible matriz P
such that P[A;] has a reduced (resp. decomposed) form, for alli.

Thus, factoring a partial differential system means factoring simultaneously
the systems 0;(Y) = A; Y. Particularly, we already see that if one of these systems
is irreducible over .#, then the system [A4,..., Ay,] is irreducible over .# as well.

In the ordinary differential case, when one wants to factor a reducible differ-
ential system, a very useful object is the eigenring associated with the differential
system; indeed, non-trivial elements of this ring provide factorizations of the dif-
ferential system (see [Si96, Ba0l, PS03] for example).
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Definition 5. The eigenring & (S) of a partial differential system S = [A1,..., An]
is the set of all P € M,,(F) satisfying: 0;(P) = P A; — A; P, for all i.

The eigenring of a partial differential system S is isomorphic to the ring of
endomorphisms End(S) of the associated .%[©]-module .#. Indeed, it is not dif-
ficult to see that a map u : # — .# belongs to &(S5) if, and only if, u is an
Z -linear map satisfying u o A; = A; o u, for all 3.

In the sequel, we will also use the partial eigenrings &;(S) consisting of all
P € M, (%) satisfying P A; = A; P. We clearly have &(S) = (-, &(5).

Remark 1. The following facts are standard (e.g., [Ba01, PS03]) for usual differ-
ential equations and generalize easily to the case of D-finite partial differential
equations.

&(S) is a finite dimensional € -subalgebra of M, (%) which contains € I,,. As a
consequence, any element of &(S) has a minimal (and characteristic) polynomial
with coefficients in € .

The eigenrings of two equivalent partial differential systems are isomorphic as € -
algebras.

If &£(95) is a division ring, then S is indecomposable.

If S is irreducible, then &(S) is a division ring (Schur’s lemma). The converse is
false. However, if S is completely reducible and if &(S) is a division ring, then S
is irreducible.

2. Partial Differential Systems in Positive Characteristic

Let p be a prime number and r € N*. Consider the partial differential field (K, ©)
where K := k(z1,...,2y,) with k =T, for ¢ = p". The partial constant field of K
with respect to, say, 9 is €1 := kerx(91) = k(2f,z2,...,2,). The constant field
of (K,0) is ¢ := 2,6 = k(z],25,...,2L,). Note that K is a €-vector space of
dimension p™ and a %;-vector space of dimension p.

In the following, we consider partial differential systems [A4,..., A,,] with
coefficients in (K, ©) and, to avoid pathologies, we assume that the prime number
p is strictly greater than the size n of the A;.

Following the theory of differential equations in characteristic p, we now
introduce partial p-curvatures:

Definition 6. Let [A1,...,An] be a partial differential system over (K,©). The
partial p-curvatures of [A1,..., A,,] are the K-linear operators AL = (9; — A;)P,
forie{l,...,m}, acting on K™.

The proof of the following lemma is then immediate:
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Lemma 1. Let S = [A1,..., Ay] be a partial differential system over (K, ©). All the
partial p-curvatures A commute and belong to the eigenring &(S). In particular,
the minimal (and characteristic) polynomial of each A has its coefficients in € =

k(zf, ... aB).

) m

Note that in [Ka70, 5, p.189] (see also [Ka82, VII, p.222]), Katz defines a
notion of p-curvature in the case of several derivations and remarks the links
between this p-curvature and the eigenring of the system (refined in Lemma 1). In
[Ka82], he gives a method for computing the partial p-curvatures (see also [PS03,
Ch.13] or [Cl03]). For all ¢ in {1,...,m}, it consists in computing the index p
element in the Lie sequence (A, (j)) en associated with [A;] which is defined by:

Ai o) =1In and Vj >0, A; (j11) = Ai(A; (j)) = 9i(A; (jy) — Ai A ().

In [Pu95] (see also [PS03, Ch.13]), van der Put gives a classification of dif-
ferential modules in characteristic p. A consequence of this classification for the
factorization problem is that the Jordan form of the p-curvature leads to all the
factorizations of the system. In [Cl03] (see also [Pu97, Cl04]), this is made algo-
rithmic and combining this to the approach of the eigenring factorization method
proposed by Barkatou in [Ba01], the author develops an algorithm for factoring
differential systems in characteristic p and provides elementary effective proofs of
the key results (that can also be viewed from van der Put’s classification).

In the sequel, we build upon the approach of [Cl03] to generalize the main
steps of the van der Put classification that are needed for the algorithm ; in the
appendix, van der Put shows how to completely generalize his classification to
partial differential modules.

2.1. Rational Solutions

Let S = [A4,...,A;] be a partial differential system over (K,©). The space of
rational solutions (or solutions in K™) of the system S is the set Solg(S) = {Y €
K"; Vi, A;(Y) = 0}. One can show that Solg(S) is a vector space over the field of
constants ¥ of dimension < n.

The first algorithmic use of the p-curvature stems from Cartier’s lemma
([Ka70, Theorem 5.1]).

Lemma 2 (Cartier). Let S = [A1,...,An] be a partial differential system over
(K,®). The partial p-curvatures AY are all zero if, and only if, S admits a basis
of rational solutions, i.e solutions in K"

Note that S admits a basis of rational solutions if, and only if, S has a
fundamental matrix of rational solutions, i.e., a matrix P € GL,(K) satisfying
A;(P) = 9;(P) — A; P = 0, for all i. In other words, S admits a basis of ratio-
nal solutions if, and only if, there exists P € GL, (K) such that P[A;] = 0, for all 7.
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Although a proof of the above lemma can be found in [Ka70, Theorem 5.1],
we propose a new constructive proof for further algorithmic use.

Proof. The implication “«<” is trivial so we only need to prove “=". Consider
first the differential field (k(z2, ..., %m)(x1), 01) which has €] as constant field, and
view A as a differential operator acting on k(za, ...,z )(21)"; as it satisfies A} =
0, Cartier’s lemma in the ordinary differential case (e.g., [C103, Lemma 3.3]) implies
the existence of some P; € GL,, (k(x2,...,zmy)(x1)) such that Pfl Ay P, = ;. For
all i in {1,...,m}, let A; = P1_1 A; Py := 0; — B; for some matrices B; having
coefficients in k(z1,...,2.,). The integrability conditions imply that 0;(B;) = 0
so that the B; have their coefficients in %7, for all i. Now, we use the hypothesis
Ag = 0 and we apply Cartier’s lemma in the ordinary differential case to As:
there exists P, € GL, (%)) such that P{l As Py = 95, Moreover P € GL, (%)
implies that J; commutes with P, and thus P{l P ‘AP P, = P{l APy =
P{l 01 P, = 01. Applying this process recursively, we finally find an invertible
matrix P = Py --- P, with coefficients in k(z1,...,7,,) such that P~1 A; P = 9;,
for all 4; the result follows. O

This proof exhibits an algorithm to compute a fundamental matrix of ratio-
nal solutions of a partial differential system whose partial p-curvatures vanish.

Algorithm SimRatSols

Input: a partial differential system S = [A41,..., 4]

with the A; € M,,(K) and whose partial p-curvatures vanish.

Output: a fundamental matrix of rational solutions of [A1, ..., A,,].

1- For i from 1 to m, set AEl] = A,

2- For ¢ from 1 to m do:
2a- Compute a fundamental matrix P; of rational solutions of

the differential system (viewed as a system in one variable) 9;(Y) = Ay] Y
2b- For j from 1 to m, compute AE-ZH] = P! (AE.Z] P, — 0;(P,)).

3- Return Py --- P,,.

Remark 2. When only one of the partial p-curvatures is zero, then, after a change
of basis, the system (1) can be written

Al(y) =0 with Al = 61,

: ©
An(y)=0 with Ay = O — A,

so that the integrability conditions (2) imply 01(A;) = 0 for all j € {2,...,m}.
We can thus deduce that the partial differential system no longer depends on the

variable x1 but rather on xf.
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An alternative to Algorithm SimRatSols is to use the “Katz’ projector for-
mula”; this will be studied (and used) at the end of next subsection.

In general (when the partial p-curvatures do not vanish), in characteristic p,
computing rational solutions is an ordinary linear algebra problem which can be
set (and solved) in two ways:

e An iterative method: since for all 7, K & @?;é C; xi , any element Y of K™ can
be written ¥ = Zf:_ol C; % with C; € €. The equation A;(Y) = 0 is then
seen as an np x np linear system for the entries of the C;. Let Y7 1,...,Y7
denote a basis (over %) of solutions in K™ of A;(Y) = 0 obtained from
this linear system. As the A; commute, the space generated over €1 N %2 by
this basis is stable under Ay. Set Y5 := Y11, Z;’;g ¢;,; Y1,; ¥}, The equation
Ay (Y) = 0 translates into an 71p X rip linear system for the ¢; ; € €1 N 6.
Solving this system yields a basis Ya 1,...,Ys ., (over €1 N%2) of solutions in
K™ of {A1(Y) =0,A5(Y) = 0}. Iterating this process, we finally find a basis
over € of rational solutions of [A1, ..., A.].

e A direct (less interesting) method proceeds as follows: as K is a & vector
space (of dimension p™ over ¥), the system {A(Y) =0,...,A,,(Y) = 0}
translates into m linear systems of size np™ over €, from which a basis (over
%) of rational solutions is obtained.

As observed in [Cl03, 3.2.1] (see also [Cl04]), this leads to an immediate
algorithm for computing the eigenring (by computing rational solutions of a partial
differential system of dimension n?).

2.2. Scalar Partial p-Curvatures

We consider the case when all the partial p-curvatures A are scalar, that is, for
all i, A =\, I,, with \; € € = k(2f,...,2P,) (see Lemma 1).

First consider individually the system 04 (Y) = A; Y (also noted [A;]) with
coefficients in the differential field K = k(zo, ...,z )(21) endowed with the deriva-
tion 0y and having %) as constant field. In [Cl04] (see also [Pu97, PS03]), partial
fraction decomposition shows that if A} = A\ I,, with \; € %, then there ex-
ists v1 € k(z2,...,2,)(x1) such that [A1] is equivalent (over k(za,...,zm)(z1))
to [v11,]. Now Theorem 3.7 of [Cl03] applies and its proof shows that in fact
p1 = Tr(Ay)/n € K satisfies 9”7 (u1) + 2 = A and the system [4;] is thus
equivalent over K to [p I,].

Proposition 1. Let S = [A1,...,An] be a partial differential system over (K, ©).
All the partial p-curvatures AY are scalar if, and only if, the system S is equivalent
over K to a “diagonal system”. In other words, for all i, AY = \; I,, with \; € €
if, and only if, there exists P € GL,,(K) such that P[A;] = u; I, with p; € K, for
all 1.
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Proof. Suppose, without loss of generality, that m = 2. Consider a partial dif-
ferential system [A;, Ao satisfying AY = A\ I,, and AL = Xy [,, with Ay, \g €
€ = k(a¥,2h). Set (p1,p2) = (Tr(A1)/n, Tr(A2)/n) and consider the partial dif-
ferential system [A; — py I, Ay — pso I,]. By construction, its partial p-curvatures
vanish. Moreover the integrability condition for this new partial differential sys-
tem is satisfied: indeed, after some simplifications, this condition can be written
O1(pt2) = O2(p1) which is equivalent to Tr(01(A42)) = Tr(02(A1)) and, from (2),
to Tr(Ag A1) = Tr(A; As). Then, Lemma 2 shows the existence of an invertible
matrix P with coefficients in K such that P[A; — p1 I,,] = P[As — o I,] = 0, that
is, P71V ((A; — 1 I,) P — 01(P)) = P71 ((Ag — pa I,) P — 82(P)) = 0 and the
result follows. O

The proof of the next lemma, from [Ka70], exhibits a “Katz’ formula” (see
[Ka70], Formulas 5.1.2 and 5.1.7, p.191) to compute a fundamental matrix of ra-
tional solutions when all the partial p-curvatures are zero.

Let S = [A4,...,A;] be a partial differential system over (K, ©). It is clear
that the space of rational solutions Solk (S) of S is included in (-, ker(A?) (the
common kernel of the partial p-curvatures A?).

Lemma 3 (Katz). Let S = [Ay,..., Ap] be a partial differential system over (K, ©).
Then

s

ker(A?) = Solg(S) @« K.

i=1

Proof. (Adapted from [Ka70]) Assume, for simplicity, that the denominators of A;

do not vanish at z; = 0. For all i € {1,...,m}, we define
Pr K* — K" v+— pil (_xl) Ak( )
(3 b :ZC' (3 ?
k=0

and we verify that:
o forallv e K", A;(Pr;(v)) = — (—x;)P~ ! AP (v) so that Pr; sends ker(A?) into
ker(Ai),
o foralli, j € {1,...,m} such that i # j, A;(Pr;(v)) = Pr;(A;(v)) so that the
Pr; commute.

Now set Pr := Hgl Pr;. This operator from K™ to K™ satisfies the following
property: for all 7 € {1,...,m}, if A?(v) = 0, then A;(Pr(v)) = 0. From [Ka70,
Formula 5.1.2, p.191], the formula for Pr(v) can be expanded to obtain

1 (_',I:'L)W1 = wi
prto) - 3 [T 2 [ a0,
w i=1 =1
where the sum is taken over all r-uples w = (wy,...,w,) of integers such that

0 < w; < p — 1. This projector sends (-, ker(A?) to Solk(S) and the (Taylor)

i=1
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formula [Ka70, Formula 5.1.7, p.191] induces the identity on (-, ker(A?) and
proves the lemma (compare to the proof of [C103, Theorem 3.8]). O

This thus yields an explicit formula for the calculation of a fundamental ma-
trix of rational solutions of a partial differential system whose partial p-curvatures
vanish and which satisfies further that (0,...,0) does not cancel the denominator
of the A;.

From this, we obtain the following algorithm that diagonalizes partial differ-
ential systems having scalar partial p-curvatures.

Algorithm ScalpCurv

Input: a partial differential system S = [41, ..., Ay

satisfying A = \; I,,, for all i.

Output: a matrix P and the P[A;] = p; I,.

1- For all 4, compute p; := Tr(A;)/n.

2- For all 7, set B; := A; — i I, and compute the Lie sequences B; (j).

3 Let P:=][", Z?;é (=) Bi ()

7!

4- Return P and the P[A;] = p; I.

The correctness of this algorithm follows directly from Proposition 1, Lemma
3 and their proofs. In Step 3, to apply “Katz’ formula”, we have to make sure that
(0,...,0) does not vanish the denominator of the B;; if it is the case, then we
shift with respect to the corresponding variable. The calculation in Step 2, can
be accelerated using [Cl03, Lemma 3.4] and the fact that the Lie sequences of the
[4;] have already been computed to obtain the AL

2.3. Nilpotent Partial p-Curvatures

In the sequel, the characteristic (resp. minimal) polynomial of a matrix M will be
noted x(M) (resp. Xmin(M)).

We now treat the case when all the partial p-curvatures are nilpotent. Here,
we use a method adapted from [Pu97, PS03] to handle the partial differential case.

Assume that all partial p-curvatures are nilpotent so, for all < € {1,...,m},
Xmin(A?) = X% with d; € N*. The case d; = 1 for all i has already been addressed
in Subsection 2.1, so we assume that there exists i such that d; > 1.

The reasoning is the same as in the iterative method for computing ratio-
nal solutions given at the end of Subsection 2.1. We have xmin(A]) = X4 so,
as shown in [Pu97, PS03], one can find a basis of solutions of A;(Y) = 0 in
K+ K"l +---+K"” lflfl where [y satisfies 01(l1) = 1/x1 (note: a general natural
algorithm to perform this task - in characteristic zero - is given in [BP99] and is
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easily adapted to our setting). So, the solutions of A;(Y) = 0 are of the form
Yii= Z?;Bl Y14, 1 with Y1, ; € K™. We now search for solutions of Ay(Y) = 0
of the form ), ¢; Y1, where the ¢; are constant with respect to 0;. Viewing the
¢; as functions in the variable xa, the relation Ay (3, ci(x2) Y1) = 0 yields a
linear differential system (Sa,) for the ¢;(z2). Now ymin(Ab) = X9 so we know
that we can find a basis of solutions of (Sa,) in K" + K" Iy + --- 4+ K" 927" with
2(l2) = 1/z5 (using again a method like in [BP99]). Iterating this process yields
a basis of solutions in K"[l1,...,l;;]. Let P denote the invertible matrix whose
columns are (generated by) the components in K™ of these solutions; then, for all
i, P[A;] has a reduced form with zeros as diagonal blocks.

The case when, for all i, xmin(A?) = (X — a;)% with a; € K can then be
handled since it reduces to the nilpotent case by using the tools from the previ-
ous subsection: indeed, letting p; := Tr(A;)/n and B; := A; — p; I,, we factor
the partial differential system [Bj, ..., By,] having nilpotent partial p-curvatures,
and then we shift back to deduce the factorization of [Ay, ..., A,,]. Note that this
particular case appears naturally when we want to adapt van der Put’s method
for the computation of the maximal decomposition of a partial differential system
[A1,..., A, satistying x(A?) = F", for all ¢ (see Subsection 4.2, [Pu97, PS03|
or [Cl03, Cl04]).

We now have the building blocks for factoring at our disposal. The key will
be to reduce the problem to the simultaneous reduction of the (commuting) par-
tial p-curvature matrices, so we address this problem first before proceeding to
factorization.

3. Simultaneous Reduction of Commuting Matrices

Let K be a field and V be a vector space of finite dimension n over K. Let
Z ={¢1,...,0s} be a set of s commuting linear endomorphisms of V; V' can be
viewed as a left K[Xq,..., X ]-module by defining X;.v = ¢;(v) for all v € V,
j€{l,...,s}. We shall denote this module (V,.Z).

We say that & is reducible, decomposable or completely reducible over K if the
K[X1,...,X]-module (V, %) is reducible, decomposable or completely reducible.

In all of this section, My, ..., My are s square matrices of size n with coef-
ficients in K. We further assume that the M; commute, i.e., Vi, j, [M;, M;] :=
M; M; — M; M; = 0. We set Q := {M,...,M,}. Viewing the M; as commuting
linear transformations written in the standard basis of K™, we naturally define the
terms €2 reducible, decomposable and completely reducible.
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3.1. Simultaneous Decomposition

Recall first (see [Jab3, Ch.4,9]) that if © is indecomposable, then the minimal
polynomial of any N € € is a power of an irreducible polynomial over K.

Suppose now that Q is decomposable and let .#Z = (K",Q) be the corre-
sponding K[X1,..., X;]-module. We decompose .# as
M = yﬂl D P yﬂd’
where the %#; are indecomposable. Now from [Ja53, Ch.4,9], we know that with
respect to a basis of K™ adapted with this decomposition, each element of {2 has
a decomposed form. Moreover, the minimal polynomial of each diagonal block is
a power of an irreducible polynomial. In other words, there exists P € GL,,(K)
such that for all N in Q, P~! N P has the form
Ny 0
PINP= - , (4)
0 Ny
where, for all j, xmin(&N;) = F;nj with F} irreducible over K.

Definition 7. A simultaneous decomposition of ) is the given of P € GL,,(K) such
that, for all N € Q, P~ N P has the form (4).

In the following, we shall show how to compute a simultaneous decomposition
of Q. The key to this computation is the (obvious) lemma:

Lemma 4. Assume that there exists N in Q such that x(N) = Fy - -- Fy, with h > 2
and the F; pairwise coprime. Then, we can compute P € GL,(K) such that, for
al N' in Q, P' N’ P has a decomposed form.

Proof. We know from the kernel decomposition theorem that if x(N) = Fy--- Fj
with the F}; pairwise coprime, then K™ = @;1:1 ker(F;(N)). Now, as the matrices
N and N’ commute, ker(F;(N)) is stable under N and the result follows. O

Following this lemma, one can easily construct a recursive rational algorithm
to compute a simultaneous decomposition of £ (see [Cl04]).

We now propose to use another approach to compute a simultaneous decom-
position. The idea underlying this method can be found in [CGT97 , C104].

Consider the matrix
M2:t1M1+--~+tsMs, (5)
with coefficients in K[ty,...,ts]. Here t1,...,ts are indeterminates over K. Note

that, in practice (see [CGT97 , Cl04]), the calculations are performed after having
specialized the ¢; to random values.



14 M. A. Barkatou, T. CLUZEAU, J.-A. WEIL

For all ¢ € {1,...,s}, there exists a unique couple of matrices (S;, N;) with
S; semi-simple (that is diagonalizable over K) and N; nilpotent such that M; =
S; + N; and [S;, N;] = 0. Such a decomposition M; = S; + N; is called the SN
decomposition of M;.

Remark 3. The eigenvalues of M; in K coincide with the eigenvalues of S; in K.
In other words, M; and S; have the same characteristic polynomial.

Lemma 5. With the above notations, let S =t S1+---+ts Ss and N =ty Ny +-- -+
ts Ns. Then M = S + N is the SN decomposition of the matric M = 25:1 t; M;.

Proof. We have to show that S is semi-simple, N is nilpotent and [S, N] = 0. We
know (see [CO68, Théoréme 19.6, p.294] or [Le94]) that for all 4, S; and N; are
polynomials in M;. Consequently, as the M; are pairwise commuting matrices, we
have [S;,S;] = [N, N;] = [N;,S;] = 0, for all ¢, j. The matrices Sy,...,Ss are
thus pairwise commuting and semi-simple matrices. Thus they are simultaneously
diagonalizable over K, that is, there exists an invertible P with coefficients in K
such that, P~ S; P is diagonal, for all 4. The fact that S is semi-simple follows
immediately. If we note w; the nilpotence index of N;: N/ = 0 and N} # 0 for all
I < u;. Then, a direct calculation shows that IV is nilpotent with nilpotence index
at most u; + - - - + u,. Finally, the equality [S, N] = 0 is clear since [S;, N;] = 0 for

all 7, j. O
Corollary 1. With the previous notations, let (vi,...,v,) € K" be a basis of com-
mon eigenvectors of Si,..., 8. Let \;; be the eigenvalue of S; associated with v;,

ie., Siv; = N jv;. Then Sv; = (3i_, ti Xij)vj and, in particular, S has all its
eigenvalues in Y ;_, t; K C Klt1,...,ts].

An interesting consequence of this corollary is that the eigenvalues of M can
be computed without having computing first those of the M;. To proceed, it suf-
fices to factor into products of linear forms over K|[ti,...,ts] the determinant of
M (for example, we can use the algorithm given in [HRUW9S8, Ap.]). Indeed, we
know that det(M) equals (—1)™ times the product of the eigenvalues of M. Now,
from Corollary 1, these eigenvalues are linear forms in the ¢; with coefficients in
K thus det(M) necessarily factors into linear forms over K[ti,...,t].

We obtain the following algorithm that computes a simultaneous decompo-
sition of {Mjy,..., Ms} ([CGTI7 , Cl04)).
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Algorithm SimDec (Simultaneous Decomposition)
Input: Q = {M,..., M,} (with M; € M, (K) pairwise commuting matrices).
Output: P € M, (K) giving a simultaneous decomposition of (2.
1- Let MZ:t1M1+"'+tSMS.
2- Compute x (M) and factor it over K(ty,...,ts): let x(M) = Fy"* --- F}*?
with F; coprime irreducibles over K (ty,...,ts)
3-Forie{l,...,d}, do:
3a- Compute a basis e; = (e;.1,...,€;n,;) of ker(E;" (M)).
(choose the e; ; independent of the ;)
4- Return the invertible P having the e;; as columns.

Remark 4. This algorithm does not necessarily provide a maximal decomposition
of Q. Howewver, if the associated module A is semi-simple, then the result of this
algorithm corresponds to the isotypical decomposition of Z .

Note that the fact that factoring a partial differential system leads to reducing
a linear combination with indeterminate coefficients of matrices already appears
in a natural way when we consider integrable systems with constant coefficients.
Indeed, let My, ..., My be s commuting matrices with coefficients in C. The D-
finite partial differential system ditiy =M;Y,1<i<sadmits exp(Myt;+...+
M ts) as a fundamental matrix of solutions. Thus, if we want to calculate this
exponential of matrix, we have first to reduce the matrix My t; + ...+ Msts to a
diagonal form (when possible) or a triangular form.

3.2. Reduction of Indecomposable Blocks

Suppose now that € is indecomposable. This implies (see [Ja53, Ch.4, 9]) that
there exists P € GL,(K) such that for all N € Q, the matrix P~' N P has the
reduced form:

Nig Nig ... Ny,
PINP= 9 ]YM : , (6)
: T . Nrfl,r
0 ... 0 N,

where, for all j, Xmin(V;,;) = F with F is irreducible over K.

Definition 8. Assume that Q is indecomposable. A (maximal) simultaneous reduc-
tion of Q is the given of P € GL,(K) such that, for all N € Q, P~1 N P has the

form (6).
To compute a simultaneous reduction of €2, we can once again use the matrix
M=t My +---+t; M.

We know that Xmin(M) = F™ with F irreducible over K (t1,...,ts). Reducing this
single matrix M over K (¢1,...,ts), we obtain a simultaneous reduction of £ (for
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details, see [C104]). This leads to the following algorithm:

Algorithm SimRed (Simultaneous Reduction)

Input: Q = {My,..., M,} (with M; € M,,(K)) indecomposable.
Output: P € M, (K) giving a simultaneous reduction of €.

1- Let M Zzthl ++t5M5

2- Compute the polynomial xyin (M) = F™.

3-Forie {l,...,m}, set y; := F'(M) and E; := ker(p;).

4- Compute a basis of V' adapted with the flag (E;);

(choose one that does not depend on the ¢;, see proof below).

5- Return the matrix P having the elements of this basis as columns.

Proposition 2. The algorithm SimRed above computes a simultaneous reduction of
Q.

Proof. Let p := F(M). We have ™ = 0 and u' # 0, for i € {1,...,m — 1}. Let
E; := ker(u'). It is clear that E,, = K™ and E; C E;; such that (E;); is a flag of
K™, Let £ be a basis of K™ adapted with this flag (i.e., a basis computed from
a basis of F extended into a basis of Fs, ...) and that does not depend on the
t;; this is always possible because simultaneous reduction exists. The matrix of u
with respect to % has a reduced form with zeros as diagonal blocks and the matrix
of M with respect to % has a reduced form. Calling P the matrix formed by the
vectors of A, the reduced forms of the M; can be retrieved by conjugating by P
(or by specializing (t1,...,ts) respectively into (1,0,...,0),...,(0,...,0,1) in the
reduced form of M). O

4. Factoring Partial Differential Systems in Positive Characteristic

Let [A1,...,Ap,] be a partial differential system with coefficients in (K, ©) with
K= k(z1,...,2m) and k =, for ¢ = p". We already know that factoring individ-
ually the system 0;(Y) = A; Y can be done by applying the algorithm developed
in [C103]. To achieve this, we use the partial p-curvature A? as well as the partial
eigenring &;(.5). This can be done since during the algorithm of [Cl03], we are
always reduced to performing linear algebra either on the p-curvature or on an
element of the eigenring. Now, if we want to factor the system [A1,..., A,,], then
we have to factor simultaneously the systems 9;(Y) = A; Y; we are thus naturally
lead to reduce simultaneously the partial p-curvatures A? which commute from
Lemma 1.

As in the ordinary differential case, we first give a method to decompose the
system and then, we show how to reduce indecomposable blocks.
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4.1. Simultaneous Decomposition

The first step to decompose a partial differential system consists in computing a
simultaneous decomposition of the system.

Definition 9. Let [A1, ..., Ay] be a partial differential system with coefficients in
(K,0). A simultaneous decomposition of [A1,...,A,,] is given by P € GL,(K)
such that:

B! 0
1. for all i, P[A;] = ,
0 B

7

2. for all i, the partial p-curvature of each system 0;(Y') = BZ[

teristic polynomial of the form FZ’;J with F; ; irreducible.

il Y has a charac-

Proposition 3. Let [A1,...,An] be a partial differential system with coefficients
in (K,0). The matrix P € GL,(K) obtained by applying Algorithm SimDec to
{AY, ..., AP } provides a simultaneous decomposition of [A1, ..., Am].

Proof. For any polynomial @, the spaces ker(Q(A?)) are stable under the A;
since for all 4, j, [A}, A%] = 0. So P obviously achieves Conditions (i) and (ii) of
Definition 9. (|

This induces an algorithm for computing a simultaneous decomposition of a
partial differential system [Aq, ..., Ay

e Compute the partial p-curvatures A? of [A;,..., A,,],
e Return P := SimDec({Af],... AL }).

Example 1. Let K := F, (21, 22) with p = 3 and consider the D-finite partial dif-
ferential system [A1, As] where Ay and Ay are the following matrices:

_ 1 Xr1 T2
A1_<0 1 >a

Ay — 2a§2{ 5 fa(z2)zowt + 5 fa(2)a? + fa(z2) ,
—2fa(za) fi(@2) + fa(wo)x?

Z2

where afi _ xl—238?3:2)‘2(zg)—fg(xglai;—i-xlxz(ﬁ(982)+f2($2)$%) and f17 fz’

functions in the variable 5.

f3 and f4 are

Case 1: first have a look at the case

{fi(z2) = a3, fa(x2) = @2, f3(w2) = af, fa(wa) =225 + 223}

Following the algorithm given above, we compute the partial p-curvatures A}
and AL, and then, we apply SimDec to {AY, Ab}: to proceed with the second step,
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we form the matriz M = t1 A} + to AL and we compute and factor its character-
istic polynomial x(M). We find:

o X\(M)(X)=2towd® X+2t1 toxd2+2 X to x>+ X ta a3+ 2t 25t +t1 to a3+
X2+2X t1 + t12 + t22 CC%S + t221}%5 + t22x§4 + 2t22$§7.
The fact that x(M) is irreducible over K(ty,t2) implies that the partial p-
curvatures can not be simultaneously reduced (nor decomposed) and consequently,
the partial differential system [Ay, As] is irreducible over K.

Case 2: now, if

{f1(m2) =213, fo(m2) =0, fs(w2) = 228 + @, falz2) = w2 + 73}

then, applying the same process, we find:

° X(M)(X) = (X+t1 +2t2 +t2$%+t21’%5) (X—l—tl +2t2$§),

so that the system is decomposable.
Applying the method of Algorithm SimDec, we find

1 9 T2 (x2+a:24+x210+2 w23 a2t a5 42 $12+3712£C215)
P .=

2 x93 4241515

0 1

We can then verify that this matriz decomposes simultaneously the differential sys-
tems [A1] and [As] (and thus the partial differential system):

=3 )

and
120 + 2252 + 225 +1 0
P[AQ] = )
0 2.(172

More generally, we can see that the factorization of the system is the follow-
mng:
o If fa(xa) # 0, then the system is irreducible,
o If fo(xa) =0, then the system is decomposable.

4.2. Maximal Decomposition

Once a simultaneous decomposition has been computed, we may restrict the study
to each block separately. We are now confronted to the case when the partial differ-
ential system [Aq,..., A,,] has partial p-curvatures satisfying x(A?) = F/™* with
F; irreducible and m; > 1. If some m; = 1, then [Aq4,..., A;,] is irreducible and
the factorization stops.
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Let .# denote the (partial) differential module associated with the system
[A1, ..., An]. We want to find a mazimal decomposition of A , i.e., a decomposition

///:Wl@...@y/d’

where the %} are indecomposable. As a result, we will write the differential system
[A1,...,Ay] in block diagonal form where the modules corresponding to the di-
agonal blocks are indecomposable. Here, the techniques from the previous section
do not apply because a matrix P € GL,,(K) that decomposes simultaneously the
AP does not necessarily decompose the differential systems 9;(Y) = A4; Y.

To handle this case, we can use the eigenring. In [C103, Proposition 4.7], it is
shown that there exists a ”separating” element in the eigenring. This is a matrix
T with characteristic polynomial x(T') = F; - - - Fy such that ged(F;, Fj) = 1 and
x(T},,) = Fi. Applying a classical result of the eigenring factorization method (see
[Ba0l, Theorem 2] or [Cl04, Proposition 6]) to this element T yields a maximal
decomposition of .

In practice, such a separating element can be found by taking random ele-
ments in the eigenring. In case of failure, one can use the idempotent decomposition
of the eigenring from [GZ03] to obtain a maximal decomposition.

As noted in [C103], one can also adapt here the method proposed by van der
Put in [Pu97, PS03]. Let a; denote a root of F;, i.e., the image of X in K[X]/(F).
Let KT := K(ay,...,an). Applying the algorithm of Subsection 4.1 over K, we
are reduced to studying a differential module .Z+ over KT having p-curvatures
with characteristic polynomial of the form (X — a;)™i. The latter can be reduced
(over K1) using Subsection 2.3 and, thus, we obtain a differential module .#*
(over KT) with a maximal decomposition (and a complete reduction of the inde-
composable blocks). Now, KT has a structure of differential module over K and
we have # = 4 ®x KT: from this, we recover a basis of .# over K and, then,
a maximal decomposition of .# (and the indecomposable blocks are fully reduced).

This last method can turn out to be costly because it may require to work in
an unnecessary algebraic extension. In the next section, we give a simple rational
alternative to handle the reduction of indecomposable partial differential systems.

4.3. Reducing Indecomposable Blocks

Definition 10. Let [A4,..., Ay] be an indecomposable partial differential system
with coefficients in (K,0). A (maximal) simultaneous reduction of [A1,..., Ap]
is given by an invertible matrix P such that:
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Bz[l] * *
2] -. :
L foralli, PlA)=| O B |
o ... o BM

2. for alli, the partial p-curvature of each system 0;(Y) = Bl[j] Y has a minimal
polynomial of the form F; with F; irreducible.

Proposition 4. Let S = [41,..., Ay be an indecomposable partial differential sys-
tem with coefficients in (K, ©). The matriz P € GL,,(K) obtained by applying Algo-
rithm SimRed to {AY, ..., AP } provides a simultaneous reduction of [A1, ..., An].

Proof. In the proof of Proposition 2, we have constructed an element p and an
invertible matrix P such that P~y P = S where S is block triangular with
zeros as diagonal blocks. Now, we remark that, after turning (¢1,...,¢s) into some
(0,...,0,1,0,...,0) (the 1 is in the i-th position) the element ;¥ obtained is a
non-zero and non-invertible element in the partial eigenring &;(.S). Then, for the
same reasons as in the proof of [Ba0l, Theorem 1], a direct calculation shows
that, B; := P[A;] has a reduced form (compare to the proof of [Cl03, Proposition
5.1]). O

We obtain thus the following method to compute a simultaneous reduction
of indecomposable partial differential systems.

e Compute the partial p-curvatures A? of [Aq,..., A,
e Return P := SimRed({A7,..., AL }).

5. Two Other Generalizations

We have shown in the previous sections 3 and 4 how to generalize the algorithm of
[C103] to factor partial differential systems in characteristic p. We will now see that
this algorithm can be directly adapted to other situations as well. We will sketch
the algorithms corresponding to [Cl03] in the case of one variable but, following
the approach of Sections 3 and 4 to generalize [Cl03] to the multivariate case,
one would obtain algorithms for factoring (integrable) partial local systems and
(integrable) partial difference systems.

5.1. “Local” Factorizations

In this subsection, we give the elements needed to generalize the algorithm factor-
ing differential systems with coefficients in K = k(z) with £ = F, for some ¢ = p”
to the case where the coefficients belong to K((z)).

Let [A] be a differential system with A € M, (K((z))). The notions of p-
curvature and eigenring can be defined as in the ordinary differential case. Noting
that K((x)) is a C;-field ([Ja80, Definition 11.5, p.649]), we deduce that the clas-
sification of differential modules in characteristic p given by van der Put in [Pu95]
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(see also [PS03, Ch.13]) can be applied in this case. Consequently, to construct
an algorithm as the one given in [Cl03] when A € M, (K(z)), it only remains to
specify how to factor a polynomial with coefficients in F,((x)) where ¢ = p”: this
can be done using the standard Newton/Puiseux theorem (see [Abh90, Lecture
12] for example):

Lemma 6. Let F(Y) = Y" 4 an_1(2) Y" ™' +--- + ag(x) be a monic polynomial

with coefficients in k((x)) with k =F, and p > n. There exists r € N* such that p
does not divide v, and F(Y) = [[1_,(Y — v;) with v; € k((x/7)).

All the ingredients needed have thus been given and by applying this theo-
rem to the characteristic polynomial of the p-curvature, we obtain an immediate
generalization of the algorithm given in [Cl03] to the case where the system has
coefficients in K((z)).

Remark 5. In Lemma 6, if F denotes the characteristic polynomial of the p-
curvature, then the v; are related to what we call the exponential parts of the
system. More precisely, we can define a notion of exponential parts in characteris-
tic p in the same way as in characteristic zero and show that they are exactly the
reduction modulo p of the exponential parts in characteristic zero: this is detailed
in [CHO4] (see also [Cl04, Ch.2]).

5.2. Factorizations of Difference Systems

The algorithm developed to factor differential systems Y (z)" = A(z) Y (z) in char-
acteristic p can be generalized to the case of difference systems Y(z + 1) =
A(z) Y (z). The differential field (k(x),”) where k = Fy with ¢ = p" is replaced
by the difference field (k(z), o) where o is defined by o(z) =z + 1 and o(f) = f
for all f € k. The constant field {a € k; o(a) = a} is then k(aP — z) (see [PS97,
Ch.5] or [GZ03, Theorem 3.1]).

As in the differential case, there exists a natural notion of p-curvature:

Definition 11. Let 0(Y) = AY with A € GL,(k(z)) (k = Fq, ¢ = p") be a
difference system. Its p-curvature is the product of matrices A(x+p—1)--- A(z+
1) A(z).

A classification of difference modules in characteristic p (similar to that of
[Pu95] or [PS03, Ch.13] in the differential case) is given in [PS97, Ch.5]. It im-
plies that the Jordan form of the p-curvature gives all the factorizations of the
difference system. The equation y»~Y + y? = X\ with X\ € k(zP) is replaced by
ulz+p—1)-ulx+ 1u(z) = A with A € k(zP — x). When the p-curvature is
scalar, then the method used to improve [Cl03, Lemma 3.6] and to obtain [Cl03,
Theorem 3.7] can not be imitated; indeed, if we suppose p > n and try to adapt
the proof, the solution Tr(A)/n of y®~Y 4 y? = X is replaced by the solution
det(A)Y™ of u(z +p—1)---u(z + 1) u(z) = X and we lose the rationality of this
solution.
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One can define an eigenring as well (see for example [Ba01, GZ03]): let o(Y) =
AY Dbe a difference system with A € M,,(k(z)). The eigenring E(A) of [4] is the
set defined by

E(A) = [PeMy(k(x))|o(P)A=AP).

All the elements needed to develop an algorithm similar to that of [Cl03] are
collected and the algorithm follows naturally. Note further that:

o The results of [Ba01] stay true in the difference case ([Ba01] is written in the
general setting of pseudo-linear equations),

e The algorithm of Giesbrecht and Zhang ([GZ03]) can be used to factor Ore
polynomials thus, in particular, difference operators.

Acknowledgments: the authors would like to thank Alban Quadrat for helpful
explanations and references concerning D-finite partial differential systems and
Janet bases, and Marius van der Put for his comments and the appendix that
follows.
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Appendix: Classification of Partial Differential Modules in Positive
Characteristic.

By MARIUS VAN DER PUT,
University of Groningen, Department of Mathematics
P.O. Boz 800, 9700 AV Groningen, The Netherlands
M.van.der.Put@math.rug.nl

(1) Introduction. In [Pu95, PS03] a classification of differential (resp. differ-
ence in [PS97]) modules over a differential field K of characteristic p > 0 with
[K : KP] = p is given. The differential modules in question can be seen as ordi-
nary matrix differential equations. Here we show how to extend this to, say, the
case [K : KP] = p™ with m > 1 (compare [1], 6.6 Remarks (1)). The (partial)
differential modules are the partial differential equations considered in this paper.
In order to simplify the situation, we will, as in the paper, avoid the skew field
that may arise in the classification. The algorithmic results of the paper are made
more transparent from the classification that we will work out.

(2) Assumptions and notation. Let K be a field of characteristic p > 0 and
let Ko be a subfield such that the universal differential module Qg x,, has dimen-
sion m > 1 over K. There are elements x1,...,z,, € K such that {dzy,...,dx,}
is a basis of Qg k,. Then x1,..., 2, form a p-basis of K/Ky which means that
the set of monomials {z{'---z%" |0 < a; < p for all i} is a basis of K over
KPKy. We will write C := KPKj. For i € {1,...,m}, the derivation 9; of K/Kj
is given by 0;,2; = d; ;. Clearly, the {9;} is a set of commuting operators. Put
D := K|[b1,...,0mn]. This is a ring of differential operators and the partial differ-
ential equations that one considers (in the paper and here) are left D-modules M
of finite dimension over K. We note that M is a cyclic module (and thus M = D/.J
for some left ideal J of finite codimension) if dimyx M < p. If dimyx M > p, then
in general M is not cyclic (compare [2], Exercise 13.3, p. 319). For notational con-
venience we will write D-module for left D-module of finite dimension over K.

(3) Classification of the irreducible D-modules.

Similarly to [Pu95], one can prove the following statements. The center Z of D is
Clt1,...,tm]. The latter is a (free) polynomial ring in the variables {¢; := 97}, .
Consider any maximal ideal m C Z and put L = Z/m. Then L ®z D is a cen-
tral simple algebra over L of dimension p?™. The well known classification implies
that this algebra is isomorphic to a matrix algebra Matr(p™!, D) where D is a
(skew) field having dimension p?>™2 over its center L. Clearly mj + ma = m.
The unique simple left module M of this algebra is DP"' and has dimension
p~™[L : Clpm™i+2m2 = pm2[[ : C] over K. In particular, if the dimension of M
over K is < p, then L ®z D is isomorphic to Matr(p™, L).
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Let M be an irreducible D-module. Then M is also a Z-module of finite
dimension over C. The irreducibility of M implies that mM = 0 for some maxi-
mal ideal m of Z (write again L = Z/m). Hence M is a simple left module over
L ®y D. If one knows the structure of the algebras L ® z D, then the classification
of irreducible D-modules is complete.

(4) Isotypical decomposition.

Let M be any D-module. Put I := {a € Z | aM = 0}, the annulator of M. Then
I C Z is an ideal of finite codimension. Thus M is also an Z/I-module of finite
dimension. Let {m,, ..., m,} denote the set of maximal ideals containing I. This is
the support of M. Then the Artin ring Z/I is the direct product of the local Artin
rings Z,, /(I). One writes 1 = €1+ - -+e,,, where e; is the unit element of the ring
Zy,, [(I). Then M = &M;, with M; = e; M. This is a module over Z,, /(I). Since
Z is the center of D each M; is again a D-module. Moreover, the annulator of M;
is an ideal with radical m,;. The above decomposition will be called the isotypical
decomposition of M. The classification of D-modules is in this way reduced to the
classification of D-modules with are annihilated by a power of some maximal ideal
m of Z. The latter depends on the structure of Z/m ®z D.

(5) Restricting the class of D-modules.
Let S denote the set of maximal ideals s = m in Z such that the algebra Z/m® ;D
is isomorphic to Matr(p™, Z/m). In the sequel we will only consider D-modules
with support in S. The differential modules M, considered in this paper, satisfy
dimg M < p. According to (3), their support is in S. We note that S depends on
the fields Ky C K. There are examples where S is the set of all maximal ideals of Z.

(6) Classification of the D-modules with support in {s}, where s € S.
We fix a maximal ideal s = m € S. The above Tannakian category will be denoted
by (D, s). We note that the tensor product M; ® Ms of two object in this category
is defined as My ® x Mo, provided with the action of 9; (for i = 1,...,m) given
by 81(m1 ® m2) = (@ml) Q@ mo +my K (8Zm2)

Consider the category (Z,s) of the finitely generated Z-modules N, with
support in {s}. The Tannakian structure of this category is determined by the
definition of a tensor product. The tensor product of two modules Ny, N3 in (Z, s)
is N1 ®¢ Na equipped with the operations ¢; given by ¢;(n; @ na) = (t;n1) @ ng +
ny X (tz’ﬂ,g)

The aim is to produce an equivalence F : (Z,s) — (D, s) of Tannakian cate-
gories. Once this is established, the required classification is reduced to classifying
the objects of (Z,s). The functor F; is defined as F5(N) = M := K ®c N. The
right hand side is clearly a (left) K[t1,...,%y]-module. It suffices to extend this to
a left D-module by defining the operation of the d; on M.
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Let 2 denote the completion of the local ring Z,,. Let (23,3) denote the
category of the Z,-modules of finite dimension over C. The categories (Z, s) and
(Z s) are clearly the ‘same’. Put D, = Z,®,D and let ( ,s) denote the category
of the left Ds—modules which have finite dimension over K . Then the categories

(D, s) and (D, s) are the ‘same’. Therefore it suffices to construct an equivalence
~T.S : (Z75) - (DS’S).

For this purpose we need a free, rank one, 23 ®c K-module Q4 = 29 ®c Ke,
such that its structure of Z; ® ¢ K-module extends to that of a left D,-module.
Given Qg, the functor F; is defined by N — M := N @z, Qs. Then M is a

left D,-module by A(n @ pe) = n @ (Au)e. It is easily verified that Fs is indeed
an equivalence of Tannakian categories. We note that M is equal to N ®c K as
Z ®c K-module, and our construction extends this to a left D -module structure.

(7) The construction of Q.

By assumption A := Z/m ®z D is isomorphic to Matr(p™, Z/m). Let I be the
(unique) simple left module of Ag. Then the morphism Ay — Endz/,, (1) is a bi-
jection. In particular, the commutative subalgebra Z/m®¢ K of Ag acts faithfully
on I. By counting dimensions over C, one sees that I is in fact a free Z/m ®@¢ K-
module with generator, say, e. Thus we have found a left Ag-module structure on
Z/m ®c Ke. Now Q; is constructed by lifting this structure, step by step, to a
left Zss—module structure on Z, ®c Ke. This is in fact equivalent to lifting a given
isomorphism Ay — Matr(p™, Z/m) to an isomorphism 9, — Matr(p™, 25) The
method of [1] for the case m = 1, can be extended here. For notational convenience
we present here a proof for the case p = 2 and m = 2.

We note that 23 Qc K = 23[371,3:2] has a free basis {1,21,za, 122} over
ZS. Consider the free module ZS [x1, z2]e. We have to construct operators 0y and
d2 on this module such that 910, — 9201 = 0 and 9?7 = t; for i = 1,2. Put
d;e = l;e for i = 1,2. Then the conditions are 9;(¢;) + €7 —t; = 0 for i = 1,2 and
01(€2) — 92(¢1) = 0. Suppose that we have found {1, 5 such that these equalities
hold modulo m?®. Then we want to change the ¢; in ¢; +7; with r1, 79 = 0 mod (m?)
such that the required equalities hold module m**!. This step suffices for the proof
of the statement. It amounts to solving

di(r) = —0(t;) — £ + t; mod m**! and

81(7"2) - 32(7"1) = 62(61) — 81(52) mod ms+1.

The right hand sides of the equalities are already 0 mod m?®. Write r1 = r1(0,0) +
r1(1,0)x1 + r1(0,1)xs + r1(1,1)x122 and similarly for 5. The right hand side of
the first equation with ¢ = 1, is killed by the operator d; and therefore contains
only the terms 1, x5. This leads to a unique determination of r1(1,0) and r1(1,1)
and the r1(0,0),71(0,1) can be chosen freely. Similarly, the terms r3(0,1),r2(1,1)
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are determined and the terms r2(0,0),72(1,0) can be chosen freely. The second
equation reads

TQ(LO) - 7“1(0, 1) + 7‘2(1, 1)3?2 - 7“1(1, 1)1’1 = 62(51) — 81(@2) mod ms+1.

The right hand side R uses only the terms 1, x1, z2. Moreover, 01 (R) = 0102(¢1) =
0201 (£1) and this is equal to 9o (01 (¢1) +£3 —t1). Hence the coefficients of 2 of the
two sides are equal. The same holds for the coefficients of z5. The coefficient of
1 on the two sides can be made equal for a suitable choice of 71 (0, 1) and/or r3(1,0).

(8) Final remarks.

Let (Z,S) denote the Tannakian category of the Z-modules, having finite di-
mension over C' and with support in S. Let (D,S) denote the category of the
left D-modules having finite dimension over K and with support in S (as Z-
module). One can ‘add’ the equivalences F; in an obvious way to an equivalence
F:(Z,8) — (D,S5). For an object M of (D,S), there is an object N of (Z,5)
such that F(N) = M. Then M, as module over K[t1,...,ty], describes in fact the
p-curvature of M. Since N @ K = M, one can say that IV represents already the
p-curvature of M. In particular, the characteristic (and minimal) polynomials for
the t; have their coefficients in C = KyKP.

As observed before, classifying the left D-modules of finite dimension over
K and with support in S is equivalent to classifying the Z-modules of finite
dimension over C' and with support in S. The latter is done by decomposing
an object into isotypical components. Hence we may restrict our attention to
a single maximal ideal s = m € S. The modules N that we want to classify
are in fact the finitely generated modules over the complete regular local ring
Zy 2 L[[dy, . .., dyy]] which are annihilated by a power of the maximal ideal m. Un-
like the case m = 1, no reasonable classification (or moduli spaces) seems possible.
One observation can still be made. The module N has a sequence of submodules
0= Ny C Ny C---C N; = N such that each quotient N;y1/N; is isomorphic to
the module L = Z/m. In other words, N is a multiple extension of the module L.
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