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ABSTRACT
Procedural noises based on power spectrum definition and random phases have been widely used for procedural
texturing, but using a noise process with random phases limits the types of possible patterns to Gaussian patterns
(i.e. irregular textures with no structural features). Local Random Phase (LRP) Noise has introduced control
over structural features in a noise model by fixing the frequencies and phase information of desired features, but
this approach requires storing these frequencies. Space distortion and randomization must also be used to avoid
repetitions and periodicity. In this paper, we present a noise model based on non-uniform random distributions of
multiple Gaussian functions for synthesizing semi-structured textures. We extend the LRP noise model by using a
spot noise based on a controlled distribution of kernels (spots), as an alternative formulation to local noises aligned
on a regular grid. Spots are created as a combination of Gaussian functions to match either a specific power
spectrum or a user-defined texture element. Our noise model improves the control over local structural features
while keeping the benefits of LRP noise.
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1 INTRODUCTION
Random signals have been widely used for procedu-
ral texturing since the marble pattern of Perlin [Per85].
Noise-based procedural textures inherit many proper-
ties of procedural noises, the most compelling ones be-
ing :
• No repetition is visible;

• The pattern produced is continuous over its evalua-
tion space;

• It can be computed during rendering on a per-pixel
basis;

• One texture model can produce various patterns by
tuning parameters

These advantages have led to a growing study of noise
applications in procedural texturing. A large variety
of patterns can be produced by a noise-based process
by defining a given power spectrum (Gabor noise
[LLDD09], Multiple Kernel noise [GDG12b]) but
shaping a pattern by directly tuning the spectrum of a
noise remains a difficult task, because the correlation
between a target pattern and the corresponding power
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spectrum cannot be straightforwardly deduced. A more
artist-friendly approach consists in computing the noise
parameters from a pattern sample [GLLD12].

Most of the recent "noise by example" methods con-
sider a given image as an input and aim at generating
a noise reproducing its power spectral density (PSD),
computed by spectral analysis. Visual variety in the
results is introduced by keeping the phase information
random. However, it is well known that structure can be
found in the phase information of the spectral analysis
[OL81].

The recently introduced LRP Noise [GSV∗14] tackles
the problem of structural features preservation by fix-
ing both phases and magnitudes in some areas of the
frequency spectrum approximating the structural com-
ponent of the input example. This approach has two
drawbacks. Firstly, it requires to store the phase infor-
mation of the relevant parts of the spectrum. Secondly,
as only a limited number of fixed frequencies are used,
periodicity of the structural components must be broken
by using turbulence [Per85] and random shifts.

In this paper, we present an alternative formulation of
the LRP noise based on a locally defined and control-
lable spot noise representation. We focus on struc-
tural features that can be defined by a repetitive struc-
tured kernel function (i.e. fabric textures with specific
stitches aspects and random small variations). Such
kernels can be created by an arrangement of the base
components of the features (i.e. the threads within a
stitch). This formulation retains the advantages of the



LRP noise : Both stochastic details and structural fea-
tures can be generated in real-time on a per pixel basis.
Simple structures can be reproduced through an auto-
matic process. The benefit provided by our representa-
tion is two-fold :

• The sum of cosines modeling the structural compo-
nent of the LRP Noise formulation is replaced by a
sum of few Gaussian kernels. This compact repre-
sentation reduces computation cost for local struc-
tures and yields a noise process with similar perfor-
mance but with enhanced control over the final vi-
sual appearance.

• The distribution of the structural features of the in-
put can be edited and is part of the definition of
the model. This extends the range of possible pat-
terns that can be produced, from very regular to
completely stochastic ones, but still featuring struc-
tural components. Repetitions and periodicity are
avoided for semi-regular patterns since the distribu-
tion of local noises is still based on a random pro-
cess.

The control over both distribution and kernel aspect in
the noise model allows for interactive edition of pat-
terns.

A comparison of local noise formulations is presented
in fig.1.We present the possibilities offered by our new
formulation through several examples of patterns as
shown in fig.3.

2 RELATED WORKS
2.1 Procedural patterns synthesis
To create procedural patterns, several approaches can
be used depending on the desired degree of "random-
ness". For structured and semi-structured procedural
patterns, patch-based approach can help artists expand-
ing a pattern sample with characteristic structural fea-
tures. In such approach, a procedural pattern is evalu-
ated by tiling the surface with patches (small textures)
[CSHD03, EF01, VSLD13]. Patches are randomly ar-
ranged to break repetitions, but results may lack of de-
tails variety : the same tiles / patches (i.e. rigorously
identical contents) are repeated over and over again
even for irregular textures .

Semi-structured pattern can also be synthesized as a
distribution of objects in texture space [GD10]. To cre-
ate a procedural pattern with this approach, a procedu-
ral distribution function is required to create an infinite
set of random position. Point jittering is often used as
distribution function for its simplicity and evaluation
speed [Gla04]. But it does not take in account spatial
dependencies (distance threshold between objects) so
distributed objects may overlap. Direct Stochastic tiling

[LD05] can produce some distance dependencies, to
create for example an infinite set of Poisson-disks. But
it still requires some tiles to be precomputed and stored.
For their assemblage creation, [GDG12a] proposed an
improvement of point jittering to take in account some
spatial dependencies : the squared lattice is replaced
by polygonal cells that forms a rectilinear tesselation
of the plane. Similarly to jittering, each cell contains a
different instance of an object with a random position
computed on-the-fly. Fully procedural semi-structured
pattern can be produced using both procedural objects
definition and procedural distribution function, but very
few techniques propose to extract such objects directly
from an input sample. Irregular and near-regular pat-
terns can also be generated with Markov Random Fields
[CJ83]. [VGR16] specifically consider Markov-Gibbs
Random Fields to create stochastic, irregular and near-
regular textures. This approach can reproduce patterns
with complex structural details from an example with
great accuracy. But the texture generation processes as-
sociated with such models are highly iterative and fo-
cus on statistical reproduction over generation speed. It
makes them unpractical to use in a rendering pipeline
for high resolution textures generation on-the-fly.

To create procedural pattern with greater randomness,
procedural noise functions are often preferred over spa-
tial description methods (more details in section 2.2).
But as modeling a power spectrum is no trivial exercise,
several noises "by example" use a self-configuration
process to approximate a specified power spectrum,
within the noise spectral capabilities. [LVLD10] de-
scribe a process to reproduce isotropic patterns by de-
composing a Power Spectral Density (PSD) into several
frequency bands to compute the weights of a multi-
resolution wavelet noise. [GDG12b] extract several
kernel configurations from an arbitrary PSD by decom-
posing a spectral domain into sub-regions of specific
magnitude range. As an extention of the Gabor noise,
[GLLD12] also describe a method to reproduce an arbi-
trary PSD in several band-limited Gaussian spectrums.
Each spectrum corresponds to a band limited Gabor
noise. These noises are nonetheless limited to Gaussian
patterns : as they are completely characterized by their
power spectrum, only micro-structural features are pro-
duced. Local Random Phase noise [GSV∗14] is of par-
ticular interest as it introduces structure preservation in
its noise formulation while allowing the "by example"
approach.

2.2 Procedural noises
Procedural noises have been widely used as a model-
ing tool for texture synthesis after the Perlin noise first
appeared in [Per85]. A procedural noise implies no dis-
crete data samples, a very low storage requirement (i.e.
a simple evaluation function), no periodicity nor rep-
etitions. Two families of procedural noises are gener-



ally considered (see survey [LLC∗10]) : lattice gradient
noises and sparse convolution noises. Lattice gradient
noises are based on the interpolation of randomly ori-
ented gradient ([EMP∗02]) dispatched on a regular grid.
Sparse convolution noises are based on the convolution
of a spatial filter function (kernels) with a random dis-
tribution of impulses (points).

Random distribution processes result in a white noise
in the frequency domain, so the control of sparse con-
volution noises can be achieved by spectral definition
of the kernel function. A sparse convolution noise can
be constructed around a specific evaluation functions
such as Gabor-[LLDD09], Gaussian-[Lew89], or Sync-
[GDG12b] kernels. The latter use multiple configura-
tions of the kernel to optimize spectral coverage. A
more spatial-oriented formulation of a sparse convolu-
tion noise was proposed by [vW91, dLvL97] with the
Spot Noise. It is based on an arbitrary spatial kernels.
Some micro-structural features can be produced by us-
ing structured kernel. But the quantity of the structural
features produced remains limited by the random distri-
bution process.

Local Random Phase noise [GSV∗14] states that struc-
tural features are contained in both the magnitude and
the phase spectrum of specific frequencies. To pro-
duce structures within a noisy pattern, LRP noise model
propose to fix their corresponding frequencies. While
it achieves to produce structures accurately, this noise
model suffer from several drawbacks : 1) frequencies of
structures selected for reproduction need to be stored;
2) Local cosine-based noises need a great number of
cosines to cover the spectrum.

We extend the LRP noise formulation to produce a
more compact representation of local structures by re-
lying on a spot noise formulation. Our local spot noises
use a sum of quadratic Gaussian functions to create
structured or unstructured kernels, so a wide range of
possible spot aspects can be produced. Locally defined
structural features are further enhanced by the introduc-
tion of a constrained random distribution.

3 NOISE MODEL
We now present our alternative formulation of the LRP
noise model based on spot noise. As a reminder, the
original formulation of the LRP noise is the following

n(x) =
I

∑
i=1

w
(
||x− xi||

∆

) J

∑
j=1

Ai, j cos(2π fi, j · x+ρi, j)

(1)
It is a mix of J× I local cosine-based noises with ran-
dom phases and windowed over a regular lattice (xi is
the position over the spatial lattice corresponding to a
spectral stratum i) : randomness is obtained by the ran-
dom phases while the spectrum is controlled by the fre-
quencies sampling of each noise. We now propose an

alternative formulation based on a fully procedural spot
noise to limit the number of cosines. We also present a
new procedural distribution function to control the lo-
cality of the noise produced. The extended range of
patterns that can be produced using this distribution is
presented in fig. 3.

3.1 Procedural Multiple-Gaussian spot
noise

Sparse convolution noise [Lew89] is originally based
on the random distribution of impulses convolved with
an isotropic Gaussian kernel. Such kernels, created as
the multiplication of a sample texture by a Gaussian en-
velope, only produce isotropic Gaussian patterns due
to the fixed Gaussian envelope of the kernel used. To
improve spectral control, Gabor kernel [LLDD09] can
be used as it unifies spectral and spatial characteris-
tics. But spatial control is reduced at the same time. It
can produce only Gaussian textures, which is an exces-
sively narrow subset of procedural patterns. Spot noise
[dLvL97] can produce a wider range of patterns, in-
cluding non-gaussian patterns containing structural fea-
tures, by using an arbitrary spatial kernel instead.
We aim at spatial characteristics that cannot be pro-
duced by the sole power spectrum definition. [vW91]
noted that structural characteristics present in the ker-
nel itself, such as (an)isotropy or a structural feature,
result in similar characteristics within the texture pro-
duced by the spot noise. In other words, when the ker-
nel contains some structure, this structure is transferred
to the texture. A formulation of spot noise is given by
[dLvL97] as :

ns(p) =
J

∑
j

w j(p j)ks ((p−p j)Rs(p j)Ss(p j)) (2)

Where p j is an impulse position, and ks is the kernel
function of the spot s. Orientation Rs and scale Ss are
related to underlying data fields. Impulse positions p j
are uniformly distributed using a Poisson process and
the weights w j are equiprobably drawn in [−1,1].
For our kernel formulation, we use a sum of ellipsoidal
N-dimensional Gaussian functions with arbitrary scale
and orientation. Gaussian functions (and kernels by ex-
tension) are commonly used in noise literature to cre-
ate Gaussian noise patterns. It has also been used for
modeling surfaces and volumes [JBL∗06]. In computer
vision, Gaussian kernels can be used as a reconstruc-
tion primitive after a Gabor-wavelet decomposition of
an image [WM03]. For spot noise modeling, a wide
range of kernels can be produced by combining a few
simple Gaussian functions. Some examples of kernels
are presented in figure 2. Our kernel k is defined for a
dimension N as:

k(p) = ∑
Vi

gVi gV (p) = Ae
−1

2
pT V−1p

(3)



Figure 1: Examples of noises generated by sparse con-
volution, with their respective kernel and impulse dis-
tribution. Unlike Gaussian (a) and Gabor (b) noise, spot
noise (c) can also produced semi-regular structural fea-
tures using a single arbitrary spatial kernels.

Here A is the Gaussian magnitude, and V is a (N+1)×
(N+1) matrix, such that V−1 = (M R S)−T (M R S)−1

and |V| is the matrix determinant. M,R and S respec-
tively correspond to shift, rotation and scaling matri-
ces. The isocountour of the kernel is given by pT V−1p,
which describes an implicit surface given that V is a
semi-positive matrix (p is a point in dimension N + 1
with last component set to 1). We show in figure 1.c
an example where using a simple grid-kernel composed
of four ellipsoidal Gaussian can effectively produce a
texture with semi-regular structural features. With the
sparse convolution process, the evaluation window is
considered to be induced by the kernel formulation (i.e.
each Gaussian function falls below a threshold before
the maximum evaluation distance of a kernel). Consid-

Figure 2: Spot noise with various kernel aspects, com-
posed of several elliptic Gaussian function. Each ori-
ented Gaussian within a kernel generates an oriented
component within the results. The center tile shows
their random distribution of impulses. Performances
are around 85 fps for the 2-Gaussians spots (top row)
and 65 fps for the 3-Gaussians spots (bottom row).

ering this and equation 2, the new formulation of our
complete noise model becomes :

n(p) =
I

∑
i=0

wini(p) (4)

Where ni is a local noise composed of random impulses
of the kernel i. Here wi is an energy normalization fac-
tor computed for each noise. Our noise model is a com-
position of several spot noises. Each spot noise can be
used to model a specific set of features of a pattern.

Texture generated by this formulation produces local
structural features (see the "grid-shaped" micro-pattern
in figure 1(c)) while keeping the randomness introduced
by the Poisson distribution of impulses. To further
widen the range of possible patterns generated by this
formulation, we propose to extend the previous spot
noise by introducing a non-uniform random distribution
of impulses.

Let p = (X ,1), a point of coordinates X in a specified
dimension, we propose a new formulation :

ns(p) = ∑
j

δ (ξ (p j)< d(p j)) |w j(p j)|K j(p) (5)

with K j(p) = ks ((p−p j)Rs(p j)Ss(p j)). d is a scalar
field and represents a probability. δ denotes the Kro-
necker delta and || the absolute value. ξ is a random
variable selected independently of w j. d allows us
to control the density of impulses in given regions.
Because we use an absolute value, high density regions
imply noise values close to 1 whereas low density
values result in values close to 0.



Figure 3: Examples of pattern produced with our distri-
bution, from irregular (top row) to regular patterns. For
each example, the top images of the the left column are
the kernel (left) and the periodic density (right) profiles
used, the bottom left image shows the resulting impulse
distribution. The image of the right column shows the
noise result.

The global appearance of the produced texture is di-
rectly correlated to the shape of d : the energy of
the pattern is concentrated around higher density ar-
eas within the density field. It introduces a new level
of control over the various appearance of the generated
texture and can be used to introduce global structure
at a large scale. To model structural regularity, we de-
fine d as a periodic density field tiling the evaluation
space (i.e. fig. 3,6,7), or as a global density field (i.e.
fig. 8). For convenience, periodic density fields used
in this paper are represented by the density for a single
period and referred as density or distribution profiles.
The profiles are created using simple shapes functions

to allow interactive authoring and fast evaluation. Fig-
ure 3 demonstrates the range of appearance produced
by this control over the distribution of impulses using
different periodic density profiles. Our formulation en-
compasses previous noise formulations and is thus able
to produce various patterns, from irregular patterns (by
using a random distribution, cf. figure 3 top) , to near-
regular patterns(cf. figure 3, bottom).

Note that in spite of regularity in global appearance, this
texture preserves randomness : impulses are still gener-
ated using a random distribution process: only the den-
sity of impulses varies spatially. We experienced that
the shape of density profiles allows an easy and intu-
itive control of texture structure : structural alignments
result in small irregular gaps or aligned variations in the
pattern. Such insights can be used to visually estimate
the elements positioning margin within an area and to
recreate the density profile accordingly. The user can
also edit kernels in real-time, getting an instant texture
feedback while creating or modifying the pattern.

4 BY EXAMPLE PROCEDURAL TEX-
TURING

As shown in section 3, our spot noise model is well
suited to manage some types of structural features.
We have further shown that the structure can be
represented either by the kernel itself or by the distri-
bution of impulses (using non-uniform distributions).
However analyzing the input texture to obtain both the
distribution and the shape of the kernel is a difficult
and challenging task: both are strongly linked and they
can only hardly be decoupled. A solution consists in
fixing one of the two. In this paper we propose to use a
similar approach as for LRP noise: we extract complex
kernels from examples that are then distributed over a
regular grid.

First, we briefly present a summary of the LRP Noise
by example approach introduced to process some types
of structured textures.

Summary of by-example LRP Noise

By-example LRP Noise is based on a spectrum segmen-
tation to extract the magnitudes and phases of structural
features : the input spectrum is stratified according to
energy levels, and then subdivided in sub-strata to com-
pute local noises.

A stratum R corresponding to the highest energy area in
the power spectrum is considered as defining the struc-
ture of the pattern. This region is seen as the frequen-
cies ”containing the structure” and is chosen by a tun-
able parameter r ∈ [0;1] such that the proportion of to-
tal energy contained within R is r. The most important



structural features are preserved by fixing the phases
and amplitudes over the corresponding frequencies. At
the extremities, the resulting texture varies from a fully
procedural (r = 0) to a copy of the original sample
(r = 1). In practice and for weakly structured random
textures, authors report a value of r ≈ 20% as an ef-
ficient value for preserving both the structural features
and the randomness of the pattern. Final noise (texture)
computation is done by summing the noises approxi-
mating all energy strata :

n = nR +∑
S

nS (6)

Two types of noises are thus considered : noises nS
relying completely on power spectrum and purely ran-
dom phases (they keep storage requirements minimal),
while the noise nR has fixed phases and amplitudes.

One drawback is that a high amount of cosine waves
are needed to accurately represent nR, thus generating
an important computational overhead. Gilet et al.
[GSV∗14] deal with this issue by trading continuity for
computational efficiency. Basically, the structure im-
age (the inverse Fourier transform of nR) is iteratively
decomposed into a regular grid of blocks. A block-wise
FFT of this structure image is computed and a fixed
amount of highest-amplitude frequencies are selected
and stored for each block. nR is finally evaluated by
block in the spatial domain and re-assembled during
rendering using the windowing function. We refer the
reader to [GSV∗14] for more details about LRP Noise
by example.

4.1 Reproducing structure with Locally
Controlled Spot Noise

First we have to separate the input texture into the struc-
tural part and the Gaussian random part. To this end, we
propose to use the same technique as for the LRP Noise
method, i.e. to consider a structure image constructed
as the inverse Fourier transform of the highest energy
region of the spectrum. The goal of our method is to
compute a collection of I local kernels, each encoding
a part of the structure. We achieve this by subdividing
the structure image following a regular grid of arbitrary
resolution and computing a Gaussian-based representa-
tion for each of the resulting blocks.

This ends up in computing a compact elliptical
Gaussian-based representation of a given image, which
is a difficult process when images are complex. By
using a standard ellipse fitting algorithm, such as
the method proposed in [AWF95], the pixels of the
input image are approximated by J ellipses, which
are then expressed as elliptical Gaussian functions of

Figure 4: Noise by example : an input sample (left
image) is subdivided into smaller samples. Each sub
samples is decomposed in Gaussian functions (around
20 for this example), giving for each sub-samble a spe-
cific spot (center). Resulting pattern (right) is obtained
by random distribution of the spots. Performances are
about 10 fps.

corresponding radius. As illustrated in figure 4, these
functions are the basis of our local spot noise kernel.
The efficiency of ellipse fitting is strongly depending
on the complexity of the image and is able to work
only on simple features such as presented in figures
4 and 5. A deeper analysis and segmentation of the
image could further lead to an increase of the quality of
the approximation and could in future work allow the
reproduction of more complex structural features.

The number J of Gaussian functions is constant for
all blocks of the image and impact the accuracy of
the approximation of each structural feature and the
performance of the spot-noise during rendering. The
rendering speed is linearly dependant on the number
of Gaussian functions composing each kernel. This
trade-off between accuracy and performance is a
parameter of our model and chosen by the user. In
practice, all results in this paper are computed with J
between 4 and 8, and up to 20 for very complex spots.

4.2 Combining structure and noise
During rendering, the impulses are distributed using jit-
tering (random displacement of points defined on the
integer lattice). The resolution of the lattice corre-
sponds to the resolution used during the subdivision
process of the structure image. Each impulse is as-
sociated with a kernel, that can be chosen as the ker-
nel approximating the block (in the structure image)
corresponding to the integer lattice of the impulse or
randomly chosen to increase randomness. By using
the kernel approximating the corresponding structure
block, low frequency structural features can be repre-
sented by the combination of kernel across the output,
at the cost of the randomness.
The Gaussian random part of the input texture is then
added by a cosine-based kernel noise as in the standard



LRP Noise method or as a random distribution of sim-
ple kernels defined as in figure 1.

5 RESULTS
We implemented our noise as a GPU fragment shader
using OpenGL. Random numbers were generated by
a linear congruential PRNG initialised by a Morton
coded seed similarly to [LLDD09]. Performances are
strongly dependant on the impulses density and kernels
complexity. All results in this paper are rendered be-
tween 10 and 165 fps in a 1200× 1200 window on a
GeForce 980.
Figures 4 and 5 shows examples of structure repro-
duction obtained from an input example. As can be
seen, the simple shape of the input structural feature
is accurately reproduced by our automatic process. As
stated earlier, our method relies on automatic segmen-
tation and computation of Gaussian representation of
an input pattern. Using a straightforward ellipse fitting
technique provides results for simple patterns but auto-
matic analysis of a complex pattern remains a difficult
challenge. We however believe that this is a first step
toward fully automatic by-example procedural textur-
ing of complex patterns using locally controlled spot
noises.

Figure 5: A simple example of pattern modeling ob-
tained from the input example (left). The shape of
the structural pattern is computed by ellipse fitting and
expressed as a sum of Gaussian functions (middle) to
produce the final structure (right). Performances are
around 165 fps.

Several patterns can still be represented using an user
provided kernel. Figure 6 shows several examples of
pattern reproduction through a given periodic distribu-
tion and an adequate user-defined kernel.

Unlike recently introduced noise methods, our tech-
nique focus on the edition of pattern in the spatial do-
main. Indeed, interactive modeling in the spatial do-
main is easier than the direct edition of a power spec-
trum. Figure 7 illustrates our edition pipeline and shows
how the kernel and distribution can be edited to impact
the global structure of the target pattern with instant
feedback for the user. Figure 8 illustrates the control
capabilities of our noise model over multiple structures
distribution within a single pattern. Figure 9 illustrates

Figure 6: Examples of a near-regular features reproduc-
tion by a single spot noise. The kernel profile (left col-
umn,top left profile) is provided as a user-guided Gaus-
sian decomposition of a texture element (i.e. a mesh of
fabric). The distribution profile (left column, top right
profile) is either directly authored or provided as a small
texture. The top right tiles show the original pattern
from which the sample to reproduce as a kernel were
extracted. Performances are around 60 fps for the top
pattern and 40 fps for the bottom pattern.

an application of a pattern on a 3D object with a sim-
ple bump mapping. This figure uses the top row con-
figuration of the figure 6 to compute a noise used as a
height field. Normals used for the bump mapping were
computed by finite differences over 3 evaluations of the
noise in a fragment shader.

6 CONCLUSION
We have introduced a new noise model based on locally
controlled spot noises to reproduce from near-regular to
irregular pattern features. Near-regular features are pro-
duced by combination of structured kernel and a con-
trolled random distribution process. As it extends the
Local Phase Noise model, it can still reproduce irregu-
lar patterns with structural features.

Our noise function contrasts with most recent research
papers concerning noise models because our focus is
not to match a given power spectrum, but rather to fo-
cus on spatial structure control : sculpting interactively
a pattern shape in spatial domain is an easier creation
process than editing a given power spectrum. Noise is
hard to control, and generally ill suited for the model-
ing of structured procedural textures. We believe that



Figure 7: An example of edition process. Giving an input spot and distribution (top left), the user can interactively
modify each Gaussian function of the spot and the distribution profile to change the appearance of the result.
Performances are around 45 fps.

Figure 8: An example of mixed kernels for structures
repartition within a single noise pattern. A global den-
sity field (bottom left), generated by a secondary spot
noise, is used to control the distribution of spots : for
an impulse distributed, the corresponding spot (top left
profile or middle left profile) is selected according to a
random density test. Performances are around 55 fps.

our locally controlled spot noise could provide a first
hint to address the difficult problem of modeling struc-
tured patterns. In particular, one important extension
for future work would be the exploration of an auto-
matic example-based method. Such a method would
use as input a photograph of surface details and then
attempt to derive a corresponding set of kernels and im-
pulse density distributions.
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