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ABSTRACT
Procedural noises based on power spectrum definition and random phases have been widely used for procedural
texturing, but using a noise process with random phases limits the types of possible patterns to Gaussian patterns
(i.e. irregular textures with no structural features). Local Random Phase (LRP) Noise has introduced control
over structural features in a noise model by fixing the frequencies and phase information of desired features, but
this approach requires storing these frequencies. Space distortion and randomization must also be used to avoid
repetitions and periodicity. In this paper, we present a noise model based on non-uniform random distributions of
multiple Gaussian functions for synthesizing semi-structured textures. We extend the LRP noise model by using a
spot noise based on a controlled distribution of kernels (spots), as an alternative formulation to local noises aligned
on a regular grid. Spots are created as a combination of Gaussian functions to match either a specific power
spectrum or a user-defined texture element. Our noise model improves the control over local structural features
while keeping the benefits of LRP noise.
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1 INTRODUCTION
Random signals have been widely used for procedu-
ral texturing since the marble pattern of Perlin [Per85].
Noise-based procedural textures inherit many proper-
ties of procedural noises, the most compelling ones be-
ing :
• No repetition is visible;

• The pattern produced is continuous over its evalua-
tion space;

• It can be computed during rendering on a per-pixel
basis;

• One texture model can produce various patterns by
tuning parameters

These advantages have led to a growing study of noise
applications in procedural texturing. A large variety
of patterns can be produced by a noise-based process
by defining a given power spectrum (Gabor noise
[LLDD09], Multiple Kernel noise [GDG12b]) but
shaping a pattern by directly tuning the spectrum of a
noise remains a difficult task, because the correlation
between a target pattern and the corresponding power
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spectrum cannot be straightforwardly deduced. A more
artist-friendly approach consists in computing the noise
parameters from a pattern sample [GLLD12].

Most of the recent "noise by example" methods con-
sider a given image as an input and aim at generating
a noise reproducing its power spectral density (PSD),
computed by spectral analysis. Visual variety in the
results is introduced by keeping the phase information
random. However, it is well known that structure can be
found in the phase information of the spectral analysis
[OL81].

The recently introduced LRP Noise [GSV∗14] tackles
the problem of structural features preservation by fix-
ing both phases and magnitudes in some areas of the
frequency spectrum approximating the structural com-
ponent of the input example. This approach has two
drawbacks. Firstly, it requires to store the phase infor-
mation of the relevant parts of the spectrum. Secondly,
as only a limited number of fixed frequencies are used,
periodicity of the structural components must be broken
by using turbulence [Per85] and random shifts.

In this paper, we present an alternative formulation of
the LRP noise based on a locally defined and control-
lable spot noise representation. We focus on struc-
tural features that can be defined by a repetitive struc-
tured kernel function (i.e. fabric textures with specific
stitches aspects and random small variations). Such
kernels can be created by an arrangement of the base
components of the features (i.e. the threads within a
stitch). This formulation retains the advantages of the



LRP noise : Both stochastic details and structural fea-
tures can be generated in real-time on a per pixel basis.
Simple structures can be reproduced through an auto-
matic process. The benefit provided by our representa-
tion is two-fold :

• The sum of cosines modeling the structural compo-
nent of the LRP Noise formulation is replaced by a
sum of few Gaussian kernels. This compact repre-
sentation reduces computation cost for local struc-
tures and yields a noise process with similar perfor-
mance but with enhanced control over the final vi-
sual appearance.

• The distribution of the structural features of the in-
put can be edited and is part of the definition of
the model. This extends the range of possible pat-
terns that can be produced, from very regular to
completely stochastic ones, but still featuring struc-
tural components. Repetitions and periodicity are
avoided for semi-regular patterns since the distribu-
tion of local noises is still based on a random pro-
cess.

The control over both distribution and kernel aspect in
the noise model allows for interactive edition of pat-
terns.

A comparison of local noise formulations is presented
in fig.1.We present the possibilities offered by our new
formulation through several examples of patterns as
shown in fig.3.

2 RELATED WORKS
2.1 Procedural patterns synthesis
To create procedural patterns, several approaches can
be used depending on the desired degree of "random-
ness". For structured and semi-structured procedural
patterns, patch-based approach can help artists expand-
ing a pattern sample with characteristic structural fea-
tures. In such approach, a procedural pattern is evalu-
ated by tiling the surface with patches (small textures)
[CSHD03, EF01, VSLD13]. Patches are randomly ar-
ranged to break repetitions, but results may lack of de-
tails variety : the same tiles / patches (i.e. rigorously
identical contents) are repeated over and over again
even for irregular textures .

Semi-structured pattern can also be synthesized as a
distribution of objects in texture space [GD10]. To cre-
ate a procedural pattern with this approach, a procedu-
ral distribution function is required to create an infinite
set of random position. Point jittering is often used as
distribution function for its simplicity and evaluation
speed [Gla04]. But it does not take in account spatial
dependencies (distance threshold between objects) so
distributed objects may overlap. Direct Stochastic tiling

[LD05] can produce some distance dependencies, to
create for example an infinite set of Poisson-disks. But
it still requires some tiles to be precomputed and stored.
For their assemblage creation, [GDG12a] proposed an
improvement of point jittering to take in account some
spatial dependencies : the squared lattice is replaced
by polygonal cells that forms a rectilinear tesselation
of the plane. Similarly to jittering, each cell contains a
different instance of an object with a random position
computed on-the-fly. Fully procedural semi-structured
pattern can be produced using both procedural objects
definition and procedural distribution function, but very
few techniques propose to extract such objects directly
from an input sample. Irregular and near-regular pat-
terns can also be generated with Markov Random Fields
[CJ83]. [VGR16] specifically consider Markov-Gibbs
Random Fields to create stochastic, irregular and near-
regular textures. This approach can reproduce patterns
with complex structural details from an example with
great accuracy. But the texture generation processes as-
sociated with such models are highly iterative and fo-
cus on statistical reproduction over generation speed. It
makes them unpractical to use in a rendering pipeline
for high resolution textures generation on-the-fly.

To create procedural pattern with greater randomness,
procedural noise functions are often preferred over spa-
tial description methods (more details in section 2.2).
But as modeling a power spectrum is no trivial exercise,
several noises "by example" use a self-configuration
process to approximate a specified power spectrum,
within the noise spectral capabilities. [LVLD10] de-
scribe a process to reproduce isotropic patterns by de-
composing a Power Spectral Density (PSD) into several
frequency bands to compute the weights of a multi-
resolution wavelet noise. [GDG12b] extract several
kernel configurations from an arbitrary PSD by decom-
posing a spectral domain into sub-regions of specific
magnitude range. As an extention of the Gabor noise,
[GLLD12] also describe a method to reproduce an arbi-
trary PSD in several band-limited Gaussian spectrums.
Each spectrum corresponds to a band limited Gabor
noise. These noises are nonetheless limited to Gaussian
patterns : as they are completely characterized by their
power spectrum, only micro-structural features are pro-
duced. Local Random Phase noise [GSV∗14] is of par-
ticular interest as it introduces structure preservation in
its noise formulation while allowing the "by example"
approach.

2.2 Procedural noises
Procedural noises have been widely used as a model-
ing tool for texture synthesis after the Perlin noise first
appeared in [Per85]. A procedural noise implies no dis-
crete data samples, a very low storage requirement (i.e.
a simple evaluation function), no periodicity nor rep-
etitions. Two families of procedural noises are gener-



ally considered (see survey [LLC∗10]) : lattice gradient
noises and sparse convolution noises. Lattice gradient
noises are based on the interpolation of randomly ori-
ented gradient ([EMP∗02]) dispatched on a regular grid.
Sparse convolution noises are based on the convolution
of a spatial filter function (kernels) with a random dis-
tribution of impulses (points).

Random distribution processes result in a white noise
in the frequency domain, so the control of sparse con-
volution noises can be achieved by spectral definition
of the kernel function. A sparse convolution noise can
be constructed around a specific evaluation functions
such as Gabor-[LLDD09], Gaussian-[Lew89], or Sync-
[GDG12b] kernels. The latter use multiple configura-
tions of the kernel to optimize spectral coverage. A
more spatial-oriented formulation of a sparse convolu-
tion noise was proposed by [vW91, dLvL97] with the
Spot Noise. It is based on an arbitrary spatial kernels.
Some micro-structural features can be produced by us-
ing structured kernel. But the quantity of the structural
features produced remains limited by the random distri-
bution process.

Local Random Phase noise [GSV∗14] states that struc-
tural features are contained in both the magnitude and
the phase spectrum of specific frequencies. To pro-
duce structures within a noisy pattern, LRP noise model
propose to fix their corresponding frequencies. While
it achieves to produce structures accurately, this noise
model suffer from several drawbacks : 1) frequencies of
structures selected for reproduction need to be stored;
2) Local cosine-based noises need a great number of
cosines to cover the spectrum.

We extend the LRP noise formulation to produce a
more compact representation of local structures by re-
lying on a spot noise formulation. Our local spot noises
use a sum of quadratic Gaussian functions to create
structured or unstructured kernels, so a wide range of
possible spot aspects can be produced. Locally defined
structural features are further enhanced by the introduc-
tion of a constrained random distribution.

3 NOISE MODEL
We now present our alternative formulation of the LRP
noise model based on spot noise. As a reminder, the
original formulation of the LRP noise is the following

n(x) =
I

å
i=1

w
(
||x− xi||

D

) J

å
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Ai; j cos(2p fi; j · x +ri; j)

(1)
It is a mix of J× I local cosine-based noises with ran-
dom phases and windowed over a regular lattice (xi is
the position over the spatial lattice corresponding to a
spectral stratum i) : randomness is obtained by the ran-
dom phases while the spectrum is controlled by the fre-
quencies sampling of each noise. We now propose an

alternative formulation based on a fully procedural spot
noise to limit the number of cosines. We also present a
new procedural distribution function to control the lo-
cality of the noise produced. The extended range of
patterns that can be produced using this distribution is
presented in fig. 3.

3.1 Procedural Multiple-Gaussian spot
noise

Sparse convolution noise [Lew89] is originally based
on the random distribution of impulses convolved with
an isotropic Gaussian kernel. Such kernels, created as
the multiplication of a sample texture by a Gaussian en-
velope, only produce isotropic Gaussian patterns due
to the fixed Gaussian envelope of the kernel used. To
improve spectral control, Gabor kernel [LLDD09] can
be used as it unifies spectral and spatial characteris-
tics. But spatial control is reduced at the same time. It
can produce only Gaussian textures, which is an exces-
sively narrow subset of procedural patterns. Spot noise
[dLvL97] can produce a wider range of patterns, in-
cluding non-gaussian patterns containing structural fea-
tures, by using an arbitrary spatial kernel instead.
We aim at spatial characteristics that cannot be pro-
duced by the sole power spectrum definition. [vW91]
noted that structural characteristics present in the ker-
nel itself, such as (an)isotropy or a structural feature,
result in similar characteristics within the texture pro-
duced by the spot noise. In other words, when the ker-
nel contains some structure, this structure is transferred
to the texture. A formulation of spot noise is given by
[dLvL97] as :

ns(p) =
J

å
j

w j(p j)ks ((p−p j)Rs(p j)Ss(p j)) (2)

Where p j is an impulse position, and ks is the kernel
function of the spot s. Orientation Rs and scale Ss are
related to underlying data fields. Impulse positions p j
are uniformly distributed using a Poisson process and
the weights w j are equiprobably drawn in [−1;1].
For our kernel formulation, we use a sum of ellipsoidal
N-dimensional Gaussian functions with arbitrary scale
and orientation. Gaussian functions (and kernels by ex-
tension) are commonly used in noise literature to cre-
ate Gaussian noise patterns. It has also been used for
modeling surfaces and volumes [JBL∗06]. In computer
vision, Gaussian kernels can be used as a reconstruc-
tion primitive after a Gabor-wavelet decomposition of
an image [WM03]. For spot noise modeling, a wide
range of kernels can be produced by combining a few
simple Gaussian functions. Some examples of kernels
are presented in figure 2. Our kernel k is defined for a
dimension N as:

k(p) = å
Vi

gVi gV (p) = Ae
−1
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