
CGI12 manuscript No.
(will be inserted by the editor)

Multiple Kernels Noise for Improved Procedural Texturing

G. Gilet, J-M. Dischler and D. Ghazanfarpour

The final publication is available at www.springerlink.com

Abstract Procedural texturing is a well known method

to synthesize details onto virtual surfaces directly dur-

ing rendering. But, the creation of such textures is of-

ten a long and painstaking task. This paper introduces

a new noise function, called multiple kernels noise. It

is characterized by an arbitrary energy distribution in

spectral domain. Multiple kernels noise is obtained by

adaptively decomposing a user-defined power spectral

density (PSD) into rectangular regions. These are then

associated to kernel functions used to compute noise

values by sparse convolution. We show how multiple

kernels noise: 1) increases the variety of noisy procedu-

ral textures that can be modeled and 2) helps creating

structured procedural textures by automatic extraction

of noise characteristics from user-supplied samples.

Keywords Procedural textures · Rendering · Noise-
based texturing

1 Introduction

Since its introduction to the computer graphics com-

munity in the mid-eighties [13], procedural noise has

been successfully used to model the most various natu-

ral phenomena: ocean waves, terrains, etc. It represents

G. Gilet and D. Ghazanfarpour
Tel : +33 (0)555 45 72 50
Fax : +33 (0)555 45 76 97
XLIM, University of Limoges
123 Avenue Albert Thomas 87000 Limoges
E-mail: {Guillaume.Gilet,Djamchid.Ghazanfarpour}@unilim.fr

J-M. Dischler
Tel : (+33) 03 68 85 45 59
Fax : (+33) 03 68 85 44 55
LSIIT, University of Strasbourg
11, Bd Sebastien Brandt 67000 Illkirch Grafenstaden
E-mail: dischler@unistra.fr

an important tool for many applications such as tex-

turing, modeling and animation. The main characteris-

tic of noise is its spectral energy distribution (or PSD

for power spectral density). A good spectral control al-

lows one to increase the variety of phenomena that can

be modeled and permits a more accurate anti-aliasing.

Most works concerning procedural noise have been done

to improve spectral control. But in spite of these works,

creating a procedural noise that is characterized by

an arbitrary PSD yet remains an unsolved problem. A

common approach in signal processing trivially consists

in filtering by multiplication a discrete random spec-

tral domain with a filter matching the desired PSD and

then applying an inverse Fast Fourier Transform (FFT).

But such an approach does not produce fully procedu-

ral noise functions. In computer graphics, noise aims at

being a function returning pseudo random values and

should have the following properties: infinity, continu-

ity, low and constant computational complexity for an

evaluation at any random location of space, extreme

compactness, as well as easy extension to higher dimen-

sions. The recently introduced Gabor noise [8] matches

these properties. But the problem of providing noise

featuring an arbitrary PSD is still not addressed.

Our aim is to build a noise function characterized by an

arbitrary PSD using, as for Gabor noise, sparse convolu-

tion [10]. We study and compare different finite impulse

response (FIR) kernels (not only the Gaussian kernel of

Gabor noise) and show how an arbitrary PSD can be

decomposed adaptively according to the spectral char-

acteristics of these kernels. One key issue is that the

user can directly balance the quality and precision of

the resulting noise against computational cost.

Good spectral control allows us to improve the creation

of procedural textures. Users generally have to browse

the parameters of noise until a given desired result is

2 G. Gilet, J-M. Dischler and D. Ghazanfarpour

Fig. 1 Comparing procedural noises. Column (a): grid-based noises. Column (b1-b6): convolution noises based on different
kernels (from top to bottom Gaussian / Gabor (1), sinc (2) and Gaussian-sinc (3)).

obtained more or less experimentally. As this task can

be tedious and time-consuming, recent noise parameter

fitting techniques [9,4] have attempted to automate it.

But these methods only process limited spectral charac-

teristics and focus on purely noisy patterns for texture

synthesis. We propose new approaches, based on multi-

scale decomposition and perturbation, that allow us to

process efficiently a greater variety of textures. One key

contribution is that we are able to determine adequate

noise parameters automatically. We note that unlike [9,

4] our aim is not to provide an example-based texture

synthesis technique. Instead, our aim is to facilitate the

interactive creation of purely procedural textures.

The following section proposes a brief overview of re-

lated works. Then, we present noise functions based on

sparse convolution and compare filter kernels. Based on

an adaptive decomposition of spectral domain, we show

how to create multiple kernels noise functions. Then, we

introduce our procedural texture modeling technique

exploiting our previously defined noise. Finally, before

concluding, we present results and discuss limitations.

2 Related Work

Noise has been introduced by Perlin in [13] more than

two decades ago. Since then, various statistical, spec-

tral and visual aspects have been investigated in pa-

pers [13,10,11,17,15,2,5,8]. Mainly two approaches [7]

have been proposed to define noise functions: grid-based

techniques that use an interpolation function (for in-

stance a polynomial function) and sparse convolution-

based techniques that use a certain convolution kernel

function along with a random point distribution. More

recently hardware issues have been considered. Lagae et

al. [8] propose to compute procedural noise at real-time

rates using a convolution-based technique [10], and to

control some aspects of its spectral energy distribution

by using Gabor kernels.

The creation of procedural textures is not simple : users

have to learn shader programming languages and need a

good intuition concerning the behavior of noise. Whereas

many methods have been proposed to synthesize tex-

ture images from examples (see [16]), methods that help

users creating procedural textures are, conversely, rare.

In what follows, we review the few works that we are

aware of. Noise-based descriptions of displacement tex-

tures is addressed in [3]. Parameters of a sum of gradi-

ent noises are adjusted using a combined spectral and

histogram analysis of profiles. An approach that pro-

duces parameters for procedural color texture shaders

is proposed in [1]. It consists in browsing the multi-

dimensional space of parameters using a pre-existing

database of shaders. As a result the system outputs

the best matching shader with the corresponding best

matching parameters. But this system does not cre-

ate new shaders. In [9], Lagae et al. express isotropic

stochastic textures as a weighted sum of wavelet noises

[2] using example images. The approach does not need

any database. But it is limited by the small range of tex-

tures that it can deal with, since it assumes the input

texture is purely noisy and isotropic. Gilet et al. [4] pro-

pose a technique based on a more advanced subdivision

of spectral domain by fitting elliptical shapes related to

Gabor noise [8]. A greater variety of purely noisy tex-

tures can be processed, such as anisotropic ones, but

spectral control still remains limited.

Multiple Kernels Noise 3

Fig. 2 Example of isotropic multiple kernels noise approximation using a set of m = 3 kernels. We compare the use of sinc
and Gabor kernels. (a) desired PSD (we show a discrete noise image obtained by inverse FFT. It is not a function). (b),(c),(d)
and (e) are approximations of (a) using different kernels: (b) sinc, (c), (d) and (e) Gabor with varying σ for the Gaussian.
Unlike (a), these are continuous and infinite noise functions.

3 Convolution-based procedural noise

In the following, we assume the reader is familiar with

the Fourier Transform (FT). Figure 1 compares proce-

dural noise functions. For each noise, the upper right is

an approximation of the PSD computed using Welch’s

method and the Fast Fourier Transform algorithm (FFT).

The lower right is a close up view. Part (a) shows ex-

amples of grid noises, resp. from top to down, gradient

noise (1) [13], simplex noise (2) [14] and wavelet noise

(3) [2]. Parts (b1-b6) illustrate noises computed using

sparse convolution [10]. The corresponding spatial ker-

nel functions are shown in column (b1) and their FT

in (b2). Convolution noise consists in convolving an ap-

proximation of white noise nw(x) with a spatial ker-
nel function k(x). Randomly distributed points xj are

used, so that the noise nk(x) can be expressed as a sum

nk(x) = k(x) ∗ nw(x) ≈
∑
ζj(xj)k(x − xj), where ∗

represents convolution and ζj a random value. Because

of the convolution theorem, the resulting PSD of nk is

N0|K|2, N0 being the constant PSD of white noise and

|K|2 the PSD of k, i.e. K(ξ) = F(k(x)), F denoting

the FT . In other words, the choice of k allows one to

control directly the PSD of noise, which represents a

great benefit. A priori any spatial kernel function k can

be used. But for practical reasons, k must have a finite

support, so that, beyond a certain distance d, its value is

zero. Furthermore, it must be an analytical and contin-

uous function (at least C0) to avoid visual artifacts and

provide simple and rapid evaluations. We show three

kernels matching these conditions in figure 1. We have

focused our attention on these kernels since we found

them to be the most useful for creating multiple ker-

nels noise (see next section). Row (1) corresponds to a

clamped Gaussian kernel bg(x)cd, i.e. e−σx
2

for x < d

and 0 for x >= d. Row (2) shows a clamped cardinal

sinus function defined by bsinc(x)cd = sin(π·x)
π·x if x < d

and 0 otherwise. Row (3) corresponds to a clamped sinc

multiplied by a Gaussian. Theoretically, in row (1), the

FT of e−σx
2

is the Gaussian G(ξ) =
√

π
σ e

−π2ξ2

σ . But

since we have clamped g, some non-ideal frequencies

are introduced and only an approximation, Gd, is ob-

tained. Provided d is chosen correctly according to σ,

these frequencies are completely negligible. The sinc

function is well-known in sampling theory and recog-

nized as an ideal reconstruction filter. Theoretically, in

row (2), the FT of sinc(ax) is the rectangular function

R = 1
arect(

ξ
a). But since we clamped the sinc, the ob-

tained FT is only an approximation that we call Rd(ξ).

d has been chosen at a zero cross-point to make the

kernel C0 continuous. Introduced non-ideal frequencies

depend on d. We can reduce spectral errors related to a

low value of d by further multiplying the clamped sinc

with a Gaussian as shown in row (3),i.e. the rectangle

becomes smoother.

Column (b3) shows corresponding samples of 2D noise

functions obtained by extending the previous 1D ker-

nels to dimension two. For the Gaussian, the exten-

sion is e−(σxx
2+σyy

2

) and for the sinc it is sinc(axx)×
sinc(ayy). As previously demonstrated, the PSD of the

resulting noise is matching the corresponding kernel

PSD of column (b2). The noises of column (b3) only dif-

fer by their PSD, which explains visual differences. Note

that, unexpectedly, the improved spectral accuracy of

the Gaussian-sinc (row 3) does not have an important

impact in spatial domain. The noises of row 2 and row

3 are almost identical. Stated differently, for the chosen

d, spectral errors do not introduce any noticeable visual

artifacts. All noises of (b3) can be made anisotropic by

using different scaling factors σx 6= σy (resp. ax 6= ay).

4 G. Gilet, J-M. Dischler and D. Ghazanfarpour

Resulting ellipses and rectangles in spectral domain can

be further arbitrarily oriented by applying a rotation in

spatial domain, because rotations are preserved by the

FT. Column (b4) illustrates this. We can also shift the

spectral kernel to make it centered at any desired fre-

quency position by multiplying k with a cosine. In this

case, nk is defined by:

nk(x, y) =
∑
j

ζj(xj , yj)k(x− xj , y − yj)) · cos(θ) (1)

θ = ϕ · (cos(γ) · (x− xj) + sin(γ) · (y − yj)))
with (ϕ ∈ <,γ ∈ [0..2π]) the frequency and orientation

parameters of the cosine factor. When γ is chosen ran-

domly, a ring in spectral domain is obtained (see column

(b5)). Note that a Gaussian multiplied by a cosine is

called a Gabor function. Row (1) therefore corresponds

to Gabor noise as introduced in [8]. All three noises

of column (b5) look very similar because of the global

spectral similarity. Column (b6) finally illustrates the

case of a fixed value for γ. The kernels are shifted at

frequency position (ξ, ψ), ϕ and γ simply being the po-

lar coordinates of (ξ, ψ).

4 Building multiple kernels noise functions

with arbitrary PSD

We build multiple kernels noise nS by defining a given

desired PSD |PS |2. The user may either directly de-

fine the PSD or he may paint a discrete sample of

the desired spatial noise. In the latter case, a discrete

mean |PS |2 is obtained by computing sets of FFTs us-

ing Welch’s method. In what follows, we first describe

a property regarding sums of independent noises. Next,

we use this property to approximate an arbitrary PSD

using a weighted sum of strictly positive functions, thus

defining nS as a sum of independent convolution noises.

Let us consider following sum of noises nki :

nS ≈
m∑
i=1

winki (2)

wi are positive weights. We want to evaluate the PSD of

nS according to the PSDs of the noises nki . We use the

Wiener-Khintchine theorem that states that the PSD of

a signal f is linked to the autocorrelation R(f(x)) by

the FT, i.e. |F (ξ)|2 = F(R(f)). The autocorrelation of

a sum can be expressed as a sum of cross-correlations:

R(
∑

winki) =
∑

w2
iR(nki) + 2

∑
wiwjR(nki , nkj)

By definition, the cross-correlation of two independent

random stationary signals is null. The cross-correlations

R(nki , nkj) are subsequently null. We obtain:

|F(nS)|2 ≈ N0

m∑
i=1

w2
i |Ki(ξ − ξi)|2 (3)

In other words, the PSD of a weighted sum of indepen-

dent noises is the weighted sum of PSDs of these noises.

We can exploit this property to approximate any multi-

ple kernels noise nS by a convolution of random points

with sets of different kernels ki. By substituting nki in

formula 2 by its definition (formula 1), we obtain:

nS ≈
m∑
i=1

wi
∑
j

ζ(i,j)ki(x− x(i,j), y − y(i,j)))cos(θi) (4)

Since all noises of this sum are based on a convolution

with random points, we can further replace the dou-

ble sum by a single convolution, thus defining multiple

kernels noise as follows:

nS ≈
∑
j

ζjwχjkχj (x− xj , y − yj))cos(θχj) (5)

with χj ∈ [1,m] being a uniform (equiprobable) ran-

dom kernel index associated to j. Figure 2 illustrates an

example of 1D PSD approximation with m = 3 kernels.

(a) represents the desired PSD. In 1D, it is defined as a

decreasing linear ramp starting from frequency ξ0 > 0

(a band-pass filtered pink noise). Its isotropic 2D ex-

tension is characterized by a ring. The second row of

(a) shows the corresponding noise image obtained by

computing a discrete inverse FFT. Note that it is a

discrete noise image, not a noise function. The noises

from (b) to (e), on the other hand, are infinite and

continuous functions. (b) illustrates an approximation

of the desired PSD using rectangular functions R. (c),

(d) and (e) use Gaussians G with increasing σ. By as-

suming G = Gd and R = Rd (meaning that we ne-

glect spectral errors), a multiple kernels noise function

is obtained using formula 5 with k = bg(x)cd (resp.

k = bsinc(x)cd). The previously described property is

well illustrated by this example. The convolution with

random points leads to a PSD close to the desired one

(see 2D PSDs on the right side). The visual quality of

our noise approximation strongly depends on the cho-

sen kernels and their parameters. As can be seen in

the 1D chart (e), the Gaussian kernel, linked to Gabor-

noise, provides a good approximation of the 1D linear

ramp in spectral domain. But in spatial domain, the

resulting noise (e) appears to be too noisy when com-

pared to the reference noise image (a). The reason is

that some energy is diffused towards undesired frequen-

cies because the Gaussian does not fall off sufficiently

rapidly on ξ0. On the other hand, the approximation

obtained using the rectangular kernels in (b) results in

a multiple kernels noise function that visually better

matches (a). In the case of Gabor-noise, it is possible

to reduce the width of the Gaussians by increasing σ,

thus diffusing less energy. This is shown in parts (c)

and (d). But when increasing too much σ, as in (c), the

Multiple Kernels Noise 5

Fig. 3 Adaptive decomposition of the PSD into rectangu-
lar regions to define multiple kernels noise approximations.
From left to right, top : desired PSD, Q = 3 energy classes;
down : set of m = 8 regions each being associated to one ker-
nel, spatial domain of obtained noise (based on sinc kernels),
corresponding PSD computed using Welch’s method.

global PSD approximation, and therefore the resulting

noise, becomes less precise. An acceptable compromise

is obtained for (d).

The previous principle can be generalized to an ar-

bitrary 2D PSD. Our objective is to approximate the

PSD using a sum of m user-defined convolution noises

according to formula 3. The challenge is determine best

parameters for the weights wi, as well as frequency po-

sitions ξi, ψi and scales for the Ki = R (or Ki = G).

Since the target PSD can be considered as a gray level

image, it could be efficiently decomposed using wavelet

analysis. But wavelet transforms imply negative values,

which are excluded in our case because PSDs are al-

ways strictly positive. In addition, wavelet transforms

consider a constant error threshold all over the domain.

This is not suitable in our case because low energy re-

gions in frequency domain do less contribute in spatial

domain, than high energy regions do.

Our approach is adaptive and allows us to differen-

tiate high and low energy regions. It is also suitable for

both kernels, G and R. Basically, it consists in decom-

posing the 2D PSD into rectangular zones for different

energy levels. First, the energies |PS(ξ, ψ)|2 of the PSD

are quantized into Q values Eq, q ∈ [1, Q], sorted by

increasing order and with E0 = 0. This allows us to

segment Q regions. Each region corresponds to the set

of frequencies (ξ, ψ) such that their energy is in the

range [Eq, Eq+1].

This set of frequencies corresponds to a binary im-

age Iq(ξ, ψ). Each of these sets can be processed inde-

pendently using an adaptive recursive technique start-

ing with a root rectangle matching the bounding box of

Fig. 4 Same principle as in [9,4]. Multiple kernels noise is
directly used to define “by example” noisy procedural tex-
tures (in our case, the example can have any type of PSD as
opposed to [9,4]). (a) example with corresponding PSD, (b)
adaptive decomposition, (c) crop of the resulting procedural
texture. It is an infinite and continuous function that entirely
fits into the fragment shader using no texture memory.

Iq. The criterion to decide whether or not it is necessary

to further subdivide the rectangle consists in measur-

ing the ratio of frequency coverage, i.e. the ratio be-

tween the number of frequencies in Iq(ξ, ψ) and the

total number of frequencies covered by the rectangle. If

the ratio is below a certain threshold, then the rectan-

gle is subdivided. Otherwise the procedure stops and a

corresponding kernel is associated. For low energy re-

gions we allow a higher error than for high energy re-

gions, i.e. the error is made depending on q. Once a set

of rectangular regions has been computed, one kernel

is associated to each region. For the kernel R, which

already has a rectangular footprint, the association is

trivial. We can just use the length and width of the

rectangle to define the scaling parameters of R. For the

Gaussian kernel G, we also use the length and width to

define anisotropy and such that the Gaussians slightly

overlap neighboring regions, as done in figure 2. Fi-

nally, the weights wi are obtained by using an iterative

procedure that minimizes energy differences, i.e. such

that argmin(|PS(ξ, ψ)|2−
∑m
i=1 w

2
i |Ki(ξ−ξi, ψ−ψi)|2),

∀(ξ, ψ). The iteration works as follows: we start with wi
matching the energy of the corresponding region. This

defines the noise nS . We then compute an approximate

mean PSD
∣∣∣F̂(nS)

∣∣∣2 using Welch’s method to compare

it to the reference PSD |PS |2. According to energy dif-

ferences inside regions, the weights wi are adjusted by

a factor ε. For all examples in this paper, we applied a

6 G. Gilet, J-M. Dischler and D. Ghazanfarpour

fixed number of 25 iterations.

To reduce the amount m of kernels, we also consider

separately regions Iq(ξ, ψ) that are centered at the ori-

gin. We test if they approximately match an elliptical

disk or ring (using the same frequency coverage crite-

rion as for a rectangle). Indeed, for such regions, a single

scaled and rotated isotropic noise function (like the ones

depicted in figure 1 columns (b3-b5)) might provide a

better approximation compared to rectangles. Figure 3

illustrates an example of 2D PSD decomposition and

obtained multiple kernels noise.

5 Procedural textures based on multiple

kernels noise

In the works of [9] and [4], an example image is con-

sidered as a kind of noisy pattern and defined by using

a weighted sum of noises at different scales so that the

resulting sum leads to a power spectrum more or less

similar to that of the example I. Similarly to Heeger and

Bergen’s approach [6], color images are processed by de-

composition into principal components and histogram

equalization. As our noise permits an arbitrary PSD

approximation, we are straightforwardly able to use a

similar technique. Two examples, grass and carpet, are

shown in figure 4. We only show the PSD of the first

principal component of colors. Compared to [9] and [4],

our approach allows us a more precise approximation of

any arbitrary PSD. This increases the range of stochas-

tic textures that can be dealt with. Nevertheless, a spec-

tral and histogramm definition is not suitable for pro-

cessing most types of textures [12]. In the following,

we therefore propose procedural texture models that

are not only based on a sum of noises but rather use

multiple kernels noise as a tool to improve visual diver-

sity and quality of textures. We propose a perturbation-

based technique and a multi-layered texture definition.

Perturbation is a simple technique introduced by

Perlin [13]. In consists in using noise to add random-

ness to well defined regular models, thus making them

look more natural. Our multiple kernels noise allows us

to improve this technique, by making the choice of the

noise parameters automatic. Instead of directly defin-

ing a procedural texture T (x) by noise, as in figure 4,

we define it by using a basis function P (x), perturbed

by noise nS(x), i.e. T (x) = P (x) + λnS(x), λ being the

magnitude of perturbation. An easy and intuitive way

to define P consists in painting it and then converting

it into a functional representation such as polynomials

(splines) and/or sums of cosines. P may also be directly

painted using vector graphics tools. Once P has been

defined, the user can further paint / supply an example

Fig. 5 Two examples of perturbation. I is the desired tex-
ture (with corresponding PSD), P is the user-defined regular
pattern, nS our multiple kernels noise computed from the
PSD of I, P + nS a crop of the resulting texture, n a scaled
Perlin noise and P + n a texture using n. Our approach pre-
serves spectral characteristics after perturbation (see P+nS).
The use of an arbitrary noise might not preserve these char-
acteristics (see P + n).

of the desired perturbation, that is, a sample of the de-

sired result P + nS . We propose to use the PSD of this

sample to directly define the PSD of nS , which can be
mathematically justified by assuming P and nS are in-

dependent stationary signals (i.e. the cross-correlation

is null). Figure 5 illustrates this principle. The first ex-

ample is knitwear and the second one a binary struc-

ture (dots). For each example we compare our approach

with the use of an empirically determined noise. For

knitwear, P has been defined automatically by a sum

of 25 cosines using the FFT. For the dots, the user has

painted P by using vector graphics. As can be seen,

multiple kernels noise allows us to preserve some visual

characteristics, yet breaking regularity by adding ran-

domness. Conversely, using an arbitrary noise pertur-

bation does not necessarily provide good results. Here,

we used a scaled Perlin noise [13].

Our multi-layered texture definition consists in ex-

pressing textures as hierarchical compositions of pat-

terns at different levels, the lowest level being a micro-

texture. A two-layered example is shown in figure 6.

The top shows a crop of a satellite image of a coastal

Multiple Kernels Noise 7

Fig. 6 Example of two-layered texture. We separate struc-
tural components from micro-patterns (row 2). Layers are
represented using multiple kernels noise (row 3). Row 4: Re-
combining the layers to obtain a purely procedural texture
that might be extended to 3D (see torus).

region. We illustrate how to produce a procedural tex-

ture that represents a landscape with similar color char-

acteristics using only a few interactive manipulations

combined with our automatic PSD decomposition. The

top-level corresponds to the shape of the coast. We call

it structural layer. On the land side, fields are visi-

ble. They represent one micro-texture, the other micro-

texture being the blue ocean side. We model struc-

tural layers by a function S(x) that is used as index

S(x) 7→ ι to associate a micro-texture µι(x) to posi-

tion x. µι(x) provides the color information at x. In

the case of two micro-textures, as in figure 6, a step

function is applied to S to obtain ι ∈ 0, 1. In fact, it

is generally more convenient to use a smoothed step to

make transitions between micro-textures smoother us-

ing a weighted sum. In row (2) the left and right sides

show the two user-selected micro-textures and the mid-

dle, the binary image corresponding to the coast. It

has been segmented using color quantization. This row

represents the user’s work. All other steps are then au-

tomatic. In row (3) the layers are processed as in fig-

ure 4, i.e. using directly multiple kernels noise. Note

that when layers contain structural components, they

must be rather processed using the previously described

perturbation technique. Row (4) illustrates the final

landscape texture T (x) obtained by recombining the

layers, i.e. T (x) = smoothstepth(S(x)) · µ1(x) + (1 −
smoothstepth(S(x))) · µ2(x). th is a threshold value se-

lected by the user to define the proportions of land-

and ocean-parts. Given that S, µ1 and µ2 are based

on noises, T (x) is completely procedural. It can also be

easily extended to 3D by extending the kernels k to 3D.

This is shown in row (4) on the torus object. The ocean

has been made transparent to highlight the volumetric

nature of the solid texture. The two-layered decompo-

sition that we just described can be generalized to an

arbitrary number of hierarchical layers. Each pattern

inside a given layer can be further separated into sub-

layers, and so on. This way complex multi-colored and

multi-layered textures can be easily painted and com-

posed by users.

6 Results

All results in this section have been obtained with a

PC using a NVidia GeForce GTX 480. Figure 7 shows

examples of multiple kernels noise functions created by

using user defined PSDs. Column (a) is the input PSD

with corresponding discrete noise sample. The user ei-

ther defined directly the PSD (as for row 4) or sup-

plied a discrete noise image. Our aim is to evaluate

our spectral decomposition technique (column b), and

the visual quality of the resulting noise functions using

the sinc (left) and Gabor (right) kernels. This figure

also compares our result with previous noise param-

eter fitting techniques. Column (c) illustrates the use

of shader parameter fitting [1]. We defined a generic

shader based on a weighted sum of scaled and rotated

Perlin noises. The parameters of this shader are two

scaling factors, the rotation angle and the weights. [1]

attempts to find best parameter values using an iter-

ative optimization technique based on a gradient de-

scent. This approach generally required more than an

hour for computing parameters. Because of the limited

spectral control of Perlin noise, results are generally of

low quality. Column (d) illustrates the approach of [9],

which uses sums of Wavelet noises to model stochastic

patterns. As expected, it fails for all anisotropic cases

and does not allow one to consider complex spectral

characteristics. Parameters are, however, computed in

a few milli-seconds only. Column (e) illustrates [4],

which uses sums of scaled and rotated Gabor noises (re-

sulting in ellipses in spectral domain). Because of the

use of Gabor noise, this approach allows one to create

noises with more complex spectral characteristics. But

the fact that the spectral domain is approximated by

only one or two ellipses for each region, still strongly

limits the complexity of PSDs that can be dealt with.

Parameters required from 5 to 10 seconds to be com-

puted. Our approach (column b) is able to deal with

all types of PSDs. The decomposition into rectangles is

very fast and requires less than a second. The iterative

8 G. Gilet, J-M. Dischler and D. Ghazanfarpour

Fig. 7 Multiple kernels noise synthesis. (a) user supplied PSD and corresponding noise image. (b) approximation using our
adaptive decomposition technique based on a sum of convolution noises using the sinc (left) and Gabor (right) kernels. (c)
approximation using Gradient noise, parameters being computed using [1]. (d) approximation using wavelet noises [9]. (e)
approximation using only one or two ellipses [4]. Unlike (a), (b)-(e) are infinite and continuous noise functions (see zooms
demonstrating that there are no pixel artifacts).

Fig. 8 Procedural textures based on multiple kernels noise perturbation.

wi computation technique requires up to 20 seconds,

depending on m. Looking more specifically at differ-

ences between the sinc and Gabor kernels, we can see

that sometimes Gabor noise tends to diffuse energy, so

that the result is perceived as too noisy. An additional

difficulty related to the Gabor kernel is the choice of

the σx and σy parameters. As already seen in figure

2, too small values introduce spectral errors, while too

high values tend to diffuse energy. Finding a good com-

promise between energy diffusion and accuracy is not

straightforward and depends on the PSD. When energy

is concentrated on little spectral parts only, there are

generally no visual differences between the two kernels

(as for row 5 for instance).

Multiple Kernels Noise 9

Figure 8 illustrates the use of noise for defining proce-

dural textures by perturbation. The top three examples,

resp. representing knitwear, raffia weave and wood, use

sums of resp. 40, 60 and 12 cosines for defining P . The

three lower examples, resp. representing clouds, leop-

ard skin and pavement, use splines for P . In all cases,

our noise is computed automatically and allows us to

add controlled randomness, while preserving main vi-

sual characteristics. Note that the resulting textures

are continuous and free of pixel artifacts (see zoom on

clouds).

Examples of procedural textures applied to 3D objects

are shown in figures 9 and 10. In figure 10, (a),(b) and

(c) illustrate a direct use of multiple kernels noise for

bump texture synthesis and purely stochastic color tex-

ture synthesis. One key advantage of convolution noise

is that is can be extended to higher dimensions by

extending the kernels, as well as the point distribu-

tions, thus also extending the underlying procedural

texture. The kernel scaling and position parameters can

be copied from one of the two other dimensions. By us-

ing solid (3D) texturing, artifacts related to 2D surface

parametrization, such as texture distortion and/or dis-

continuities, can be avoided as shown by the zoom on

the neck of the bust (c). Subfigures (d), (e) and (f) il-

lustrate texture synthesis using perturbation. Finally,

(g), (h) and (i) show multi-layered textures. The cor-

responding micro-textures and structural layers were

computed from photographs of materials and binary

images.

All textures of this paper entirely fit into the frag-

ment shader program and thus require no texture mem-

ory. On the performance side, a texture based on a sin-

gle kernel (i.e. m = 1) leads to a performance of more

than 600 frames per seconds for a framebuffer of size

800× 800. However, framerate rapidly drops as texture

complexity increases. With m = 10 the performance is

20 fps while with m = 50, the performance drops to

5 fps. Performances further decrease when bump map-

ping or displacement mapping is used. For instance, the

gargoyle of figure 10(i) or the tree trunks depicted in

figure 9, are displayed at 2-4 fps. They use on-the-fly

tessellation for displacement mapping and three layers

of color micro-textures. Low framerate is related to the

fact that, as for all procedural shader-based textures,

values are recomputed from scratch for each frame at

rendered pixel level. Therefore, time-consuming proce-

dural textures might not be suited for straightforward

use in real-time applications. Computational require-

ments, but extremely low memory usage, might explain

why procedural textures are currently rather used in

high quality off-line rendering systems for media pro-

duction.

Fig. 9 Complete scene where all objects are decorated with
procedural textures. No texture memory is used. Because of
the continuous definition of procedural textures, close zooms
are possible without pixel-artifacts (see tree bark).

7 Conclusions

We have presented multiple kernels noise, a new noise

function built from sums of convolution noises. One

benefit of this noise is to facilitate the creation of pro-

cedural textures. In practice, users can define complex

textures while avoiding the most experimental task,

namely the determination of adequate noise parame-

ters.

Our results show that the quality of multiple kernels

noise is depending on whether or not there is a good

match between the spectral characteristics of the kernel

and the spectral energy inside the corresponding rect-

angular region. By exploring other types of kernels, we

would like to reduce their amount without reducing ac-

curacy. Indeed, one drawback of procedural textures is

to trade memory consumption for higher computational

resources. Some procedural textures are only hardly us-
able in real-time applications. Their main application

remains high quality off-line rendering. Rich databases

of procedural textures demonstrate their wide use. We

hope our approach will help further growing the content

of existing databases.

References

1. Bourque, E., Dudek, G.: Procedural texture matching
and transformation. Computer Graphics Forum 23(3),
461–468 (2004)

2. Cook, R.L., DeRose, T.: Wavelet noise. ACM Trans.
Graph. 24, 803–811 (2005)

3. Dischler, J., Ghazanfarpour, D.: A procedural descrip-
tion of geometric textures by spectral and spatial analy-
sis of profiles. Computer Graphics Forum 16(3), 129–139
(1997)

4. Gilet, G., Dischler, J.M., Soler, L.: Procedural descrip-
tions of anisotropic noisy textures by example. In: Euro-
graphics (Short) (2010)

5. Goldberg, A., Zwicker, M., Durand, F.: Anisotropic noise.
In: ACM SIGGRAPH 2008, pp. 1–8

10 G. Gilet, J-M. Dischler and D. Ghazanfarpour

Fig. 10 Examples of procedural textures applied to 3D objects.

6. Heeger, D.J., Bergen, J.R.: Pyramid-based texture anal-
ysis/synthesis. In: SIGGRAPH, pp. 229–238 (1995)

7. Lagae, A., Lefebvre, S., Cook, R., DeRose, T., Drettakis,
G., Ebert, D., Lewis, J., Perlin, K., Zwicker, M.: A survey
of procedural noise functions. Computer Graphics Forum
29(8), 2579–2600 (2010)

8. Lagae, A., Lefebvre, S., Drettakis, G., Dutré, P.: Procedu-
ral noise using sparse gabor convolution. In: SIGGRAPH
2009, pp. 1–10 (2009)

9. Lagae, A., Vangorp, P., Lenaerts, T., Dutré, P.: Procedu-
ral isotropic stochastic textures by example. Computers
& Graphics 34(4), 312–321 (2010)

10. Lewis, J.: Generalized stochastic subdivision. ACM
Trans. Graph. 6(3), 167–190 (1987)

11. Lewis, J.: Algorithms for solid noise synthesis. In: ACM
Siggraph, pp. 263–270 (1989)

12. Navarro, R., Portilla, J.: Robust method for texture
synthesis-by-analysis based on a multiscale gabor scheme.
In: SPIE, pp. 86–97 (1996)

13. Perlin, K.: An image synthesizer. In: ACM Siggraph, pp.
287–296 (1985)

14. Perlin, K.: Noise hardware. In: M. Olano (ed.) Real-Time
Shading SIGGRAPH Course Notes (2001)

15. Perlin, K.: Improving noise. ACM Trans. Graph. 21(3),
681–682 (2002)

16. Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the
art in example-based texture synthesis. In: Eurographics
2009, State of the Art Report (2009)

17. Worley, S.: A cellular texture basis function. In: SIG-
GRAPH 96, pp. 291–294 (1996)

