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Abstract
Hypertexturing can be a powerful way of adding rich geometric details to surfaces at low memory cost by using a
procedural 3D space distortion. However, this special kind of texturing technique still raises a major problem: the
efficient control of the visual result. In this paper, we introduce a framework for interactive hypertexture modeling.
This framework is based on two contributions. Firstly, we propose a reformulation of the density modulation func-
tion. Our density modulation is based on the notion of shape transfer function. This function, which can be easily
edited by users, allows us to control in an intuitive way the visual appearance of the geometric details resulting
from the space distortion. Secondly, we propose to use a hybrid surface and volume-point-based representation in
order to be able to dynamically hypertexture arbitrary objects at interactive frame rates. The rendering consists
in a combined splat- and raycasting-based direct volume rendering technique. The splats are used to model the
volumetric object while raycasting allows us to add the details. An experimental study on users shows that our
approach improves the design of hypertextures and yet preserves their procedural nature.

1. INTRODUCTION

Hypertextures were introduced about two decades ago by
Perlin and Hoffert [PH89]. They represent a special kind of
volumetric texturing technique that allows one to add true
geometric details to surfaces. Unlike volumetric texels or
displacement maps (see related works), both consisting in
explicitly texture mapping details with a certain depth over
surfaces, hypertextures are not based on texture mapping
principles. They subsequently necessitate no surface param-
eterization. Instead, they require a volumetric density-based
representation of the entire object. Hypertexturing basically
consists in distorting the 3D space of the object. The space
distortion, based on one or multiple density modulation
functions (DMF) (these can be, in turn, based on a pro-
cedural noise function) induces a distortion of the object.
The latter can completely alter the object space (as for
melting or dripping effects). Or it can result in a texture-like
appearance, as for fur or moss. Hypertextures may also be
used to create turbulent gazes, smoke, clouds or fire balls by
adding “meso-scale” details to coarsely defined volumetric
models. Some examples of complex real-world effects,
that potentially can be modeled with hypertextures are
shown on figure 1. None of these examples can be obtained
with simple techniques such as bump mapping [Bli78]
or displacement mapping [Coo84]. In turn, 3D texture

mapping techniques like volumetric texels [KK89] would
require an excessive amount of memory to store the full 3D
data or are not suitable for some effects that affect the entire
object, such as the cloud or the grass on this figure. Because
of the procedural definition of the DMF, hypertexturing
requires nearly no texture memory at all. In this sense,
hypertexturing remains a very interesting approach for
creating some volumetric details on objects that would be
too memory consuming if represented as explicit triangular
meshes or volumetric data (regular voxel grids, tetrahedral
meshes, etc.). However being able to hypertexture an arbi-
trary surface in a controlled way still remains a challenging
issue, because it is usually hard to correlate a given DMF
with a certain visual result. Hypertextures usually require
many experiments. In addition, procedural methods require
a good programming experience, that artists or users might
not have. Our aim in this paper is to address this issue. We
propose a new framework for an interactive modeling of
hypertextures, which requires no programming knowledge
and yet preserves the procedural nature of these textures.
Our work is based on two contributions.

Firstly, we introduce a combined splat-based and raycast-
ing based approach for interactive rendering purposes. Our
motivation is to allow users to get an instant feedback of
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Figure 1: Photographs of complex natural phenomena. From left to right, top to down: hedge, cave, cloud, wool, sponge, lawn,
clods on a field, cotton, porous stone and grass.

their manipulations. Unlike previous interactive hypertex-
turing techniques (see related works), we do not represent
the object by a full regular grid of voxels (usually stored
as 3D texture on the GPU). The motivation is that with
splats we adaptively fit better shapes. With a regular grid of
voxels, many voxels might be empty depending on how the
shape of the object fits into a box. Unstructured volumes
that would result in many empty voxels, like the Utah
teapot for instance (because of its handle and its spout), can
be more compactly approximated by an unstructured set
of splats, especially with an adaptive kernel size (surface
splats for the border and volume splats of different sizes
for the interior). It furthermore allows us to naturally skip
empty spaces, by focusing computations on useful object
parts. Our representation is bi-scaled. The splats are used
to model the coarse shape of the object. Then, we use a
hardware-based raycasting to add hypertexture details. We
propose two different methods for rendering the splats. The
first one aims at obtaining “good quality”results and is based
on EWA-splatting with overlapping kernels in screen space.
This results in antialiasing but increases computations
because multiple rays are cast on each pixel for the details.
Conversely, the second one aims at obtaining fast results by
casting a single ray per pixel.

Secondly, we propose a reformulation of the DMF, based
on a set of three transfer functions (a shape transfer function,
as well as color and transparency transfer functions). 1D, 2D
or even 3D transfer functions have been used a lot to render
volumetric data sets by associating color and opacity to
numerical scalar values, especially in the field of scientific
visualization (as for medical MRI data). Here, we propose
to add a new transfer function (in addition to the classical
RGBA one), which allows users to control the appearance
of the hypertexture details. This function, when edited
in real-time, allows users an easy exploration of various

results. We note that in order to keep the procedural nature
of hypertextures, we still use a noise function, but it will
be “filtered” by the shape transfer function. Experimental
studies that we conducted show that such a function can
significantly help users to reproduce complex natural effects
such as the ones illustrated in figure 1.

The remaining parts of the paper are organized as follows.
The next section presents an overview of related works.
Then, we recall the basic principles of hypertextures using
DMFs. Section 4 describes our new framework. We show
how the use of shape transfer functions can help to control
some visual aspects. Section 5 describes the two interac-
tive rendering techniques, both using a combined splat- and
raycasting-based approach. Finally, before concluding, we
present some graphical results, as well as an experimental
study.

2. Related works

In computer graphics, it has been early understood that some
types of complex textures characterized by a pronounced
geometry cannot be rendered by bump mapping [Bli78],
or more generally normal mapping. Conversely, an explicit
modeling of such details in the form of triangles seems
not reasonable because of huge memory requirements and
strong aliasing artifacts. Therefore, “true 3D” textures were
introduced. These are generally based on a volumetric
representation of the natural structures. In the past, mainly
two different approaches (see [DG01] for more details on
3D texturing) were proposed:

Firstly, 2D texture mapping has been generalized to
3D texel mapping in [KK89]. This approach consists in
mapping repetitive semi-transparent volumetric elements,
called texels, onto surfaces. Besides efficiently modeling
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such textures [Ney98], recent work [CTW∗04] also tackled
the problem of further illuminating correctly volumetric
materials by introducing shell texture functions that include
subsurface scattering. 3D texturing techniques raise several
problems such as the need for a parameterization of the
surface (not only in 2D but also in 3D), which is not always
easy to obtain with arbitrary shapes. Furthermore, important
distortions (due to both, parameterization and curvature) as
well as self-intersection problems might arise, especially if
the surface has concavities with important curvatures and if
the texture depth is important compared to the size of the
object. Therefore, these textures are often limited to create
thin layers upon surfaces. This excludes “deeper” effects
like the cloud or grass of figure 1 which affects the entire
object. Volumetric textures are often explicitly represented
as discrete 3D arrays (or even higher dimensioned if some
visibility issues are pre-computed and stored explicitly), so
that texture compression is nearly always necessary. Despite
compression, only small samples can be stored and, thus,
must be repeated. So, especially for non-periodic textures,
more or less important repetition artifacts may also become
visible. Moreover, because of explicit storage, dynamic
editing of such textures seems difficult. Generally, the
creation of 3D texture samples is decoupled from rendering.

Secondly, Bump mapping has been generalized to
displacement mapping [Coo84]. Displacement mapping
consists in truly deforming the surface along its normal
by using an elevation map. Since it is based on texture
mapping, it raises problems similar to the previously
described 3D texturing techniques, namely need of surface
parameterization, problems of self-intersections and distor-
tions. In addition, it can only be used to model very simple
structures: height fields. This excludes more complex effects
as shown in figure 1. Actually, displacement mapping can
be considered as a special case of more general surface
and object deformation techniques, which is illustrated
in figure 2. Instead of displacing surface points along
the normal, one may displace them along any arbitrary
direction (shown on the middle of the figure) for instance
using a vector field [Lew89, Ped94]. Such a more general
deformation implicitly includes displacement mapping as a
particular case for which the vector field is simply matching
the normal distribution on the surface. Using an arbitrary
vector field allows one to recover more complex and also
more natural structures including concavities, which are
frequent in natural processes like erosion for example.
The right-most picture of figure 2 represents the most
general case of deformation. In this case, the full volume
is distorted according to a 3D vector field, e.g. all points,
including the interior of the object are displaced. This
allows one to further introduce changes of topology, such
as for example holes, which may also happen with natural
processes (see the cloud, the sponge or the stone of figure 1).

Figure 2: Three classes of deformation: simple displace-
ment mapping (left), surface deformation by an arbitrary
vector field (middle) and “full” volumetric deformation by
a 3D vector field with change of topology (right).

Hypertexturing [PH89] belongs to the second type of
texturing technique. It is the most general form of defor-
mation and based on a density modulation function (DMF)
directly defined throughout 3D space. The full volume is
deformed, which allows one to model concavities and holes.
The 3D definition of the DMF makes that no surface pa-
rameterization is required. So, no self-intersection problems
or texture distortions due to surface parameterization or
surface curvature arise. Because the DMF is procedurally
defined (generally based on 3D noise or turbulence), hyper-
textures are also extremely compact. Finally, the volumetric
representation allows for semi-transparent effects to be
rendered such as clouds, fire or fur for instance.

Because of the volumetric representation, hypertexturing
was mainly applied in conjunction with implicit surfaces,
as in [WH96]. But hypertextures may also be used to
create complex planet terrains with caves [GM08] or
trees [SG04]. In [DG95], polygonal surfaces are converted
into pseudo-implicit representations using an additional
skeletal structure in order to be able to hypertexture polyg-
onal objects by defining distance fields. Other approaches
consist in converting objects into a 3D regular grid of
voxels and then apply a thinning algorithm to build a
density variation according to the distance to the completed
skeleton [SJ02]. All volumetric texturing techniques require
complex rendering systems, like ray marching, a method for
the direct ray tracing of volumetric objects. This rendering
technique is extremely time consuming. Hence, recent
work was also concerned with the interactive rendering of
hypertextures. [MJ05] uses a voxel-based representation of
the object, stored as 3D texture on the GPU, and then applies
a hardware-based direct volume rendering technique (either
slice-based or, with increasing GPU power, pixel-shader
raycasting-based). The pixel-shader is in charge of applying
the procedural DMF directly uploaded as source code into
the GPU. As for [PH89], the DMF is defined procedurally
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in shader language, so programming knowledge is required.

A lot of past research has also focused on defining
noise functions with various statistical, spectral and visual
properties [Per85, Lew87, Lew89, Wor96, Per02]. However
the correlation with hypertextures and DMFs is not always
obvious. Most hypertextures are still obtained “by chance”.
In [DG97], profile curves are analysed in order to build
turbulence-like functions with some given visual charac-
teristics. Such functions can then be extended to 3D space
and can be used as underlying DMF for hypertexturing
purposes. However, the correlation with distortion fields is
not obvious and the control of the resulting visual effect on
an arbitrary object remains difficult.

In this paper, we propose a new framework for an inter-
active modeling of hypertextures, e.g. a method for easily
and interactively creating such textures. We do not address
issues like very efficient real-time rendering (our rendering
is limited to providing an interactive feedback to users) or
the problem of computing realistic illuminations and light-
ing effects.

3. Density modulation functions and hypertextures

In this section, we briefly recall the principles of traditional
hypertexturing as introduced by Perlin and Hoffert [PH89].
With hypertextures, an object O(x,y,z) needs to be defined
as a density variation throughout 3D space. Generally, a
bounding volume is set. Beyond this bounding volume the
density is considered as null. Inside the object the density
smoothly varies between 0 and 1, where 1 means totally
opaque and 0 totally transparent (e.g. no matter is present).
The in-between region is called the soft region of the object.
The key point consists in applying to this soft region one (or
multiple) density modulation functions (DMFs). The DMFs
are based on noise, turbulence, bias and gain. We do not fur-
ther describe these four basis functions here, but refer the
reader to [PH89] for more details. Note that any procedu-
ral definition may be used as DMF. In [PH89] no limitations
are given. A common example is a soft sphere of radius R
centered on the origin:

O(x,y,z) =

{
1− d

R if (d < R)
0 otherwise

(1)

d is the Euclidean distance d =
√

x2 + y2 + z2. On the origin
the density is 1 while it decreases towards 0 when moving
away and approaching the distance R. The soft sphere can
now be distorted by a DMF for instance based on noise in
the following way:

O(kx,ky,kz) , with k = 0.5+0.5 ·noise( f x, f y, f z). (2)

noise is a 3D noise function returning a pseudo-random
value between −1 and 1, and f represents its “frequency”.

Rendering of such a distorted object can be done using
software raymarching or by using the GPU in the form
of one of the existing hardware-assisted direct volume
rendering techniques. Direct volume rendering can be
based for instance on a 3D texture rendered with slicing or
raycasting. Or it can be based on a splatting / EWA splatting
technique. Programmable graphics hardware allows us to
evaluate noise functions directly within shader programs
so that the DMF can be applied straightforwardly during
the pixel shading computation. In order to apply a lighting
model, the gradient ∇O(kx,ky,kz) can be used as normal
vector with any reflectance model (for example the Phong
model). A phase function requiring no normal vector may
also be used instead.

As outlined by this example, hypertexturing is a very gen-
eral approach for adding procedural details to soft objects.
However, as can be seen as well from this example, hyper-
texturing is not always easy to bring into play with arbi-
trary objects, since it requires both: a volumetric functional
definition of the object and a density modulation function.
Concerning the first point, implicit surfaces are very close to
such a representation (e.g. a distance field, where the skele-
ton represents the innermost high density part). Therefore,
implicit surfaces can be generally straightforwardly used
with hypertextures. Other objects may also be converted into
soft objects, for example using a volumetric distance trans-
form.

The second point is more intricate. Firstly, the distortion,
if not carefully defined, might modify the actual bounding
volume of the object, e.g. the boundary beyond which
the density is sure to be always null. Knowing well the
bounding volume is however important for rendering
efficiency. The ray marching must start at some location
and a distant starting point would considerably increase
the rendering time (because the density might be null on
many locations before entering the actual object). In the
previous case for example, a point P outside the initial
radius R might have a density greater than 0 after distortion
by the DMF although the initial bounding volume was a
sphere with radius R. Indeed, take a point P = (2R,2R,2R)
(e.g. outside the bounding volume) and f = 1. If by chance
noise(2R,2R,2R) = −1, then k = 0, hence d = 0, so that
O(k2R,k2R,k2R) = O(0,0,0) = 1. So, because it depends
on noise, which is a random function, it seems difficult to
determine the new boundary of the distorted sphere. Tech-
niques, like for example Heidrich et al., proposed [HpS98]
to use affine arithmetics to approximate the bounding boxes
of the deformation for procedural displacement mapping.
But determining the new boundary of a distorted model
remains a difficult issue. One simple solution would consist
in choosing a DMF that does not expand the initial object.

Secondly, there is no intuitive way for correlating a DMF
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with a certain visual result. With a lot of experience, it is
naturally possible to guess, especially as experience grows
with time, better and better what DMF will approximately
result in what visual effect. Following question is even more
problematic: given a certain visual effect in mind, what DMF
should I program to obtain that exact result? The global “lack
of intuitive control” is in our opinion one of the major diffi-
culties.

In the following subsection, we describe our model. It is a
specialization and thus less generic than the original hyper-
texture model that we just described. But by trading gener-
ality for better usability, we intend to globally improve the
control of visual effects on arbitrary objects. Our interactive
rendering further allows users to dynamically explore solu-
tions.

4. Shape transfer functions and hypertextures

This section describes our new framework for modeling hy-
pertextures. In our framework, as for traditional hypertex-
tures, an object O(x,y,z) is defined in the form of a density
variation throughout 3D space, e.g. O(x,y,z) = d, where d
represents a scalar density between 0 and 1. Our space dis-
tortion model is defined as follows:

O(x− k× Vx

‖V‖ ,y− k× Vy

‖V‖ ,z− k× Vz

‖V‖ ) (3)

where V = (Vx,Vy,Vz) represents a 3D vector field and ‖‖ the
norm of a vector. k allows us to apply the actual distortion
by shifting points along V . k, which can be considered as a
distortion factor, is defined as follows:

k = aT

1+noise( x+rVx
f ,

y+rVy
f , z+rVz

f )

2

 (4)

a and f respectively represent an amplitude and a frequency.
T [] is the shape transfer function. This function, returning
a value between 0 and 1 is a table stored as texture on the
GPU. The formula is for the 1D case. A more complex
2D function will be shown in the next subsection. noise
represents any 3D noise function returning a pseudo-random
value between −1 and 1. Note that in our model, the noise
is not evaluated on (x,y,z) but on a shifted point, according
to the vector field V and a factor r (between 0 and 1).
Together, the vector field V and r allow users to control
the class and type of deformation as illustrated in figure 2.
With classical hypertextures the deformation is generally
applied along the gradient of density of the object or along
a noise-perturbed gradient (in the previous case of the soft
sphere the deformation is applied along the radius since the
sphere is centered on the origin, e.g. along the gradient). But
this somewhats limits the possibilities. Using in our case an
explicit vector field improves the design possibilities while
results remain intuitive (see subsection concerning vector

field).

For shading purposes, a color and transparency on
O(x,y,z) is given by another table RGBA[d]. This is a
classical color and opacity transfer function. In our case,
we do not directly use the density d of the soft object as
opacity coefficient, but propose to use a transfer function.
This allows us to decouple the actual transparency from the
density value defining the volumetric object, for instance
to apply hypertextures also on completely opaque objects
(e.g. objects with no semi-transparency at all). Such objects
will be defined by a density variation between 0 and 1, but
have an opacity of 1 for all densities greater than 0. The
opacity remains 0 where the density is 0. The gradient ∇O
is computed by discrete differentiation for shading purposes.

We now describe and explain the influence of the pa-
rameters of this model, especially the motivation of using
a vector field and a shape transfer function, which at first
glance seem to restrict the variety of DMFs compared to a
full procedural definition. a and f are classical parameters.
The former coefficient a represents the depth of the hyper-
texture. With a = 0, the depth is null, that is, the amplitude
of distortion is null. The latter coefficient f allows one to
determine the size of hypertexture features. The greater f ,
the more features are present per volume element unit and
the smaller are these features.

The shape transfer function represents the core of our
model. It is represented as a 1D or 2D table T [] and al-
lows us to control the actual shape of the distortion, and
thus the resulting visual features added to the object. It is
indexed by noise in order to maintain the procedural nature
of the 3D distortion. 1D or 2D shape transfer functions can
be edited in real time using adequate tools. But in this pa-
per, our aim is not to focus on human-computer interaction
ergonomics, e.g. to show how such functions can be most
efficiently edited. Our aim is to show that the use of such
functions (however they do have been obtained) can help to
improve the control of visual results. For our examples, we
used simple spline curves editors, as well as image painting
tools (paint brushes). Indeed, a 1D function can be easily
edited like a 1D spline curve along the x axis with some con-
trol points and tangents. A 2D function can be either edited
like a grid of surface patches using the tensor product of 1D
curves or it can be painted as a grey scale image using photo-
editing techniques and tools. Once it has been painted by the
user, the transfer function (1D or 2D) can be instantly up-
loaded into the GPU, thus showing in real-time the effect on
the hypertextured object. In the following subsections we re-
spectively describe the influence of the shape transfer func-
tion in 1D and 2D cases as well as the influence of the vector
field.
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4.1. 1D shape transfer functions

As introduced in the previous formula 4, noise is used as in-
dex for the shape transfer function. So, the underlying aspect
of the noise function will play an important role concerning
the visual effect of the transfer function, and more specifi-
cally the probability and spatial distribution of the noise val-
ues. The basic shape of a classical Perlin noise function as
well as its probability distribution histogram are shown on
figure 3 respectively on the left and the middle. We can see
that values close to 0 are more probable than the extremi-
ties −1 and 1. The right part of this figure shows the same
noise, but instead of using the actual noise value, we draw
its corresponding probability. On this image the 0 isoline
is well highlighted (highest probability). Our shape transfer
function will allow us to modify the value distributions, but
without modifying the actual shape of the noise.

Figure 3: A 2D crop of a classical 3D Perlin noise (left), its
histogram of probability distribution (middle) and the same
2D crop of noise as on the left, but drawn with a grey in-
tensity related to the probability (right). On the latter the
extreme values −1 and 1 appear darker (less probable) and
values around 0 brighter (highly probable).

Figure 4 shows results obtained for different 1D transfer
functions, respectively depicted on the first column. We
applied the functions to a simple soft sphere with density
decreasing according to the increasing radius. For a better
visual comprehension, we used a step-function for the
opacity which results in extracting an iso-surface without
any semi-transparency effect. The second column shows
the result obtained by indexing the shape transfer function
with the noise function of figure 3 (we show a 2D crop of
a 3D noise function). The next columns show the result
when the shape transfer function is applied to the soft
sphere with a factor r = 0.0, r = 0.5 and r = 1.0 according
to the previously described model (the second picture is
obtained by using a clipping plane, which allows us to see
the interior of the perturbed sphere). For these examples, we
used a vector field projecting points onto the closest sphere
boundary (other vector fields will be shown later, since the
latter has a significant visual effect). The case r = 0.0 means
that the 3D noise is evaluated exactly on the location of the
considered point without any shift. Depending on the vector
field and on the amplitude of deformation, this can create
complex effects, including cavities and holes. Figure 3
helps us to understand the results of figure 4 and especially
to predict what effect a given 1D transfer function might

have. The first example of figure 4, on the first row, shows
an identity transfer function, e.g. T [x] = x. The result is a
classical noise-based distortion. This image can be used as
reference, showing what happens when no transfer function
is used at all. On the second example, second row, the
transfer function has a value of 1 everywhere, except on the
two extremities, where the value is decreasing to form holes.
This intuitively means that when the noise value reaches
these extremities (−1 or 1), holes will be formed in the
direction of the vector field. The cross section of the holes
is related to the noise shape (see right of figure 3: black
zones corresponding to −1 and 1 values). The obtained
result on the hypertextured sphere actually matches well
this intuition for all values of r. The next example, third
row, shows a transfer function that creates bumps with a
crater-like profile as the noise value reaches 1. The result
obtained on the sphere for all values of r is again intuitive.
The last example shows a transfer function that results in
bumps when the noise value approaches 0. The effect is that
isolines are created corresponding to the noise 0 isovalues.

The last column of figure 4 illustrates the extreme case
r = 1.0 and needs some more comments. Since the vector
field we used in this case projects towards the closest point
on the sphere, all points laying on a radius of the sphere
are given the same displacement factor. In addition, in
a sphere, the radius matches the normal direction of its
surface (e.g. the gradient). All of this leads to a final visual
result that looks like classical displacement-mapping. But
compared to displacement mapping, our approach differs
on several important points. Firstly, instead of using a
surface parameterization, difficult to obtain for arbitrary
surfaces, our approach is based on a vector field that, in this
particular case, points towards the surface. Such a vector
field is not only easier to compute compared to a surface
parameterization, but by modifying this field, as will be
shown in the next subsection, we give users the possibility
to obtain more complex visual results.

As illustrated by these examples, 1D transfer functions
represent an easy and straightforward tool to control visual
aspects. However, the possibilities for designing more com-
plex hypertextures are still limited. It actually allows us only
creating very simple and symmetric structures such as bub-
bles, bumps, peaks or holes, and not more complex struc-
tures like flames. In order to create more complex details
on surfaces, we can use a combination of multiple noises
with individual transfer functions at different amplitudes and
scales.

Figure 5 shows three examples of complex structures ob-
tained by using a combination of multiple transfer functions
and noises. To do so, we replace the previous formula 4 by
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Figure 4: Four examples of 1D shape transfer functions (left) and the corresponding results on soft spheres for values r = 0,
0.5 and 1 from left to right.

Figure 5: Combining multiple shape transfer functions with multiple noises at different scales (r = 0.5). Left and middle show
a straight sum. Right shows blending.

following one:

k =⊕n
i=1aivi, with vi = Ti

1+noise( x+riVx
fi

,
y+riVy

fi
, z+riVz

fi
)

2


(5)

⊕ represents a given operator chosen among a pre-
defined set of operators (in our case we defined only two
operators: sum and blending). For the first example on the
left, we used a sum of three noises (e.g. ⊕ is simply ∑)
with the same transfer function for each (the second shape
transfer function of figure 4, e.g. representing holes). Only
amplitudes and frequencies (scales) were changed, thus
creating holes of different sizes. On the second example
(middle), we used a sum of five noises, with two different
transfer functions. The first noise used again the holes-like
transfer function and the four following ones a V-shape
T [x] = abs(x) with increasing frequency (decreasing scale),
thus creating a turbulence. The last example (right) shows
again a combination of five noises, the four-last used a

V-shape transfer function and the first one an inverted
holes-like transfer function, thus creating bumps instead
of holes. In this case, however, we did not use a sum for
the first noise, but blending, which explains that the bumps
are smooth and not affected by the turbulence. Blending
between two values v1 and v2 is obtained using a traditional
blending formula v1 ⊕ v2 = v1 ∗ A + v2 ∗ B, where in our
case A = 1− v2 and B = 1.

Figure 6 shows another example using multiple noises (in
this case, three noises). It illustrates how meso-scale struc-
tures evolve when progressively modifying the shape trans-
fer function. It also shows a simple example of experimental
editor. The latter is based on spline curves. Tangents used
for editing are highlighted on the figure. For this example,
the basis object is an ellipse. We used a linear opacity trans-
fer function to account for semi-transparency. The amplitude
was set important with respect to the ellipse size (third of its
size) to create deep deformations and the coefficient r was
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set to 0 to create important topological changes. The first
column shows the result when only the first noise is acti-
vated. The second column shows the result when all three
noises are activated. Note that because additionnal details
are added in this case, the clouds appear bigger.

From a user point of view, multiple transfer functions
can be entered using a simple standard GUI without
requiring any shader code (as shown here). We adopted a
multi-texture pipeline by setting the maximum number of
transfer functions and noises to a fixed constant n (here
n = 3). Each noise can be individually activated by the user
by checking / unchecking a button as shown on figure 6. The
formula is then evaluated step by step according to whether
or not a noise is active. Each step consists in combining
the previous result (initially 0) in the pipeline with the next
one according to the selected operator. The amplitude and
frequency parameters can be entered with sliders (see right
part of figure 6), and the operator with a multiple choice
button (here ⊕). For more flexibility, additional simple
conditions could be added such as doing the combination
(sum / blending) only if the incoming value is within a given
range, where the extremities have been entered by the user.
Once the data has been entered by the user, a corresponding
pixel-shader code can be generated automatically and then
uploaded to the GPU in real-time. For experienced users,
it is naturally still possible to propose a simple parser and
shader language, that allows him or her to enter an own
combination formula instead of choosing among some
predefined operators.

Combining different noises and transfer functions allows
us to increase the variety of details on surfaces, but the pre-
cise control is still restricted. One way to further improve
the designing possibilities is to increase the dimension of the
transfer function by adding for example a second parameter,
which does not depend on noise but on the object itself.

4.2. 2D shape transfer functions

2D shape transfer functions consist in using a 2D table in-
stead of a 1D table. For a 2D table we need a second entry.
This entry can be for example related to the object itself,
such as its density. We replace the previous computation of
k given by formula 4 by the following new formula:

k = aT2D

1+noise( x+rVx
f ,

y+rVy
f , z+rVz

f )

2
,O(x,y,z)

 (6)

Figure 7 shows some 2D shape transfer function examples
applied to the soft sphere. In this case, the second entry of
the shape transfer function is the density of the soft sphere,
as described in formula 6. This density increases as we move
towards the center of the sphere. The first row of the figure
can be used as reference image: we used a constant 2D trans-
fer function that does not vary with the density of the object.

It is thus equivalent to a 1D transfer function. The coefficient
r has been set to 1 in order to highlight the variation along the
depth of the object (with a 1D transfer function and r = 1,
there is no variation along the depth). Complex structures
can be defined, like mushroom-similar structures for the last
example, but yet in an intuitive way (the correlation with the
2D transfer function is straightforward).

Figure 6: An example of interactive editing. The four pic-
tures illustrate the effect of editing the shape transfer func-
tion using spline curves. For each picture, the left column
shows the model deformed using a single noise and the cor-
responding transfer function (18 fps). The right shows the
result obtained by activating two more noises at finer scale
and higher frequency (7.1 fps).

.

As for the 1D transfer function, combinations of multiple
noises can be used to furthermore increase the possibilities.
Higher dimensioned transfer functions may also be possible,
but such functions would be certainly less intuitive. Mean-
ingful additional parameters must first be found. In addition,
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Figure 7: Examples of 2D shape transfer functions to obtain
complex variations along the depth.

designing a 3D-transfer function in real time and uploading
it to the GPU seems to be a complex issue.

4.3. Vector field

With usual hypertextures, the deformation is generally ap-
plied along the gradient direction of the density variation or
along a noise-perturbed gradient (the latter has been used
by Perlin and Hoffert [PH89] to obtain curled hairs for in-
stance). In our case, we use an explicit vector field V . In our
framework, this field has a twofold purpose.

Firstly, as for usual hypertextures, it defines a direction by
means of a unit vector V

‖V‖ , which is used to distort the space
by shifting points along this direction. The vector field al-
lows one to control the orientation of the distortion. It further
allows us to predict how the boundary of the object could be
maximally expanded. Indeed, since the shape transfer func-
tion T [] returns a value between 0 and 1, the amplitude fac-
tor a will represent a sort of a maximal shift value. That is,
a point P is maximally shifted by: P + a V

‖V‖ . If necessary,
this allows us to compute a new object boundary, e.g. a fron-

tier beyond which the density is always null, thus improving
ray casting. We note, however, that in our case we always
oriented the distortion towards the interior of the object, so
as to avoid any expansion (this is why we used a minus in
formula 3).

Secondly, the vector field is used to determine the actual
location at which the noise function is applied, namely on
P + rV . In the case of the previous soft sphere, we have for
example defined a field that shifts all space points exactly on
the sphere boundary along the line passing through its center
(closest point on the surface). This case is again illustrated
on the top of figure 8. The shape of the resulting deformation
is correlated to the shape transfer function (in this case it cre-
ates peaks). The factor r controls how far points are shifted
to evaluate the noise function. When r equals 0 no shift at all
is applied. If r = 1 the maximal shift is applied.

We note that in formula 3, we used a normalized vector
field to shift the object points. This can potentially be prob-
lematic for locations where the vector field is null (no nor-
malization is possible). For example, if the field points to-
wards the surface, all points on the surface have a null vector
value. In this case, we use a null vector, which has no graph-
ical influence at all, since the points on the surface have a 0
density value (in turn an opacity of 0), and are consequently
invisible.

Unlike traditional displacement mapping, where only
points on the surface are shifted along the normal direction,
hypertextures provide more flexibility as shown on figure 8.
The first example (top, left) shows the previously described
case: a field that projects points onto the sphere boundary
along the radii. The second example (second row, left) shows
a field projecting points from a upward-shifted center. The
next example (last row, left) illustrates a field with constant
vertical direction. Then, we show an example of a noise per-
turbed field. For this fourth example (first row, right) we
used a field pointing towards the border but perturbed by
a noise-based random vector field. This makes the peaks tra-
jectories become more random, and even creates branching
structures. The fifth example (second row, right) illustrates
a curvilinear field making the peaks rotate around a verti-
cal axis. Finally, the last example illustrates the case of the
previous field, but with orientation and magnitude perturbed
by noise. As outlined by this example, allowing the field not
only to follow the gradient and surface normal direction sig-
nificantly increases the design possibilities. Random pertur-
bations of fields can be furthermore straightforwardly inte-
grated into the shader and do not need to be stored explicitly
since they can be based on noise.

5. Interactive Rendering of hypertextured objects

In this section we describe our two interactive splat-based
rendering techniques. We recall that splats are used to model
the global shape of the object. Both of these methods then
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Figure 8: Influence of the vector field. The latter can be fur-
ther perturbed by a vector noise to get more complex effects.

further use hardware-accelerated raycasting to add some
procedural volumetric details. The principle of both methods
is to compute the contribution of viewing rays emanating
from the viewpoint and intersecting the object deformed
by the hypertexture. To this end, these methods consider
one or several segments along the viewing rays. Along
these segments, evenly spaced sampling points are placed
and evaluated using our deformation formula, which yields
for each sampling point a color and an opacity. These are
then combined using a traditional raymarching scheme to
compute the contribution of the segment to the final image.
The generation and the number of segments are different for
both methods, as described in the following two subsections.

We note that we use an illumination based on Phong shad-
ing. The latter requires a normal, e.g. the gradient of the den-
sity. Since the gradient of the actual deformation induced by
the procedural hypertexture is not known beforehand (and
cannot be pre-computed), we have to compute it through dis-
crete differentiation during the shading stage. Using central
differences, this requires six more evaluations of the hyper-
texture model and has therefore an impact on the rendering
performance for both rendering techniques.

5.1. Using an extended EWA splatting rendering
method

The first splat-based rendering method is straightfor-
wardly inspired by the well-known EWA splatting
framework [CRZP04], which is naturally suited to render
volumetric point-based datasets. EWA splatting consists in
associating a 3D interpolation kernel (usually a truncated
3D Gaussian) to each point sample defining the volumetric
object. Theses overlapping kernels are used to express the
density on any location inside the volume as a weighted sum
of the values of neighboring point samples. The resulting
image is obtained by computing a weighted combination
of the projection of these kernels (2D footprints) onto the
screen, e.g. the overlapping footprints are blended in screen
space. Because of blending, and in order to maintain a
coherent visibility, the point samples must be depth-sorted.
To do so in an efficient way, they are usually processed
sequentially using a slice-based clipping approach. The
choice of the slice depth has an influence on visibility
accuracy and on rendering speed.

We can extend this framework to render hypertextured
splat-based objects (figure 9) as follows. For each pixel
of the 2D footprint, we compute a segment (defined by
the entry and exit points of the kernel) and apply a local
raymarching along this segment to determine an individual
color and opacity, while using the previously presented
hypertexture formula. Concretely, we consider for each
pixel of each 2D footprint the viewing ray going from the
camera center of projection and passing through the pixel.
Since this pixel is part of the footprint, the corresponding
viewing ray intersects a reconstruction kernel in object
space. We consider the intersection of the viewing ray
with a sphere Bi centered at the sample location. This
yields a segment pa pb in object space, with pa (resp. pb)
being the entry (resp. exit) of the sphere. The subdivision
of the segment pa pb allows us to apply raymarching and
to evaluate the hypertexture. The number of samples n is
dependent on the radius of the sphere and a global quality
setting s defined by the user. This setting has an impact on
the quality/performance tradeoff. As of now, s is set to be
constant for the whole object and is defined as the sampling
step, e.g. the distance between two consecutive samples
along the segment. s is chosen empirically and can be mod-
ified interactively according to the need of the application
(from fast experimentation to good quality rendering). We
note that the spheres are overlapping in screen space, so
more than one segment per pixel might be computed. But
the corresponding samples are different for each sphere.
This causes an overdrawing, but since all contributions
are blended by the Gaussian kernel in screen space, we
obtain oversampling with Gaussian reconstruction kernel
rather than straightforward redrawing. This yields a natural
anti-aliasing and better signal reconstruction along the
viewing rays. Therefore visual results are generally of good
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quality with this approach. Of course, the amount of over-
sampling depends on how much the spheres are overlapping.

Figure 9: Principle of the hybrid splat-based volumetric
rendering method. Hypertexture details are added with a lo-
cal hardware ray marching.

5.2. Using depth peeling for rendering

Our second splat-based rendering method aims at avoid-
ing overdrawing by generating only one sampled segment
per viewing ray and pixel. This method relies on the hard-
ware accelerated raycasting method proposed by Scharsach
[Sch05]. The principle is to compute the segment using a
rasterization process. All splats are sequentially projected to
render the global shape of the object, while writing for each
pixel into an intermediate buffer two depth values: one for
the closest entry and one for the farthest exit point. Both
depths then allow us to reconstruct the corresponding seg-
ment. But, obviously this technique works only for con-
vex models. For concave objects, we must consider multi-
ple segments along one viewing ray. Indeed, a ray can enter
and leave the model several times. We thus propose to use
a depth-peeling similar principle [Mam89] as in the recent
work of Kanamori et al. [KSN08]. This multi-pass approach
processes sequentially each intersection between the view-
ing ray and the object to obtain sets of consecutive entry and
exit points. In our case, this consists in rasterizing the surface
splats and storing for each pixel the depths of the nth front-
faced and back-faced splat,i.e. during the nth rendering pass,
the depths necessary to compute the coordinates of the nth

segment. Since our surface splats are oriented (as described
in figure 9), we can thus easily determine if the viewing ray
is entering or leaving the model by comparing the normal
of the surface splat with the viewing direction. To efficiently
detect the current segment to process, we maintain a depth
buffer storing for each pixel the depth of the last processed
segment. Thus, we are able to discard during the rasteriza-
tion fragments with a depth less than the stored value for this
pixel. This naturally discards segments processed during the

previous passes. The algorithm stops when no new segment
is created, which can be automatically detected using occlu-
sion queries. In practice, we define a fixed number of passes
(usually 4), which is sufficient for most models. This second
method does not suffer from overdraw and is thus inherently
faster than the previous rendering method for a similar sam-
pling step along the ray (e.g. a similar factor s).

5.3. Implementation details

This section describes the GPU-compatible implementation
of the rendering methods and some technical details nec-
essary to gain benefits from latest hardware acceleration.
For both algorithms, the hypertexture is evaluated at each
sample using a GPU implementation of the simplex noise
described in Perlin [Gus05, Per01]. Due to the compact
definition of hypertextures (related to the procedural nature
of noise), the GPU memory usage remains globally low.
The model in itself is defined as a collection of 3D vertices
and corresponding radius values, and thus can be efficiently
stored into a Vertex Buffer Object. Furthermore, we need
to store onto the graphical memory the vector field and
the various transfer functions (1D-2D textures). The vector
field is used to compute a coarse displacement direction.
Therefore, this vector field does not need to be of high
resolution. In practice, it is defined as the RGB channels
of a low resolution 3D texture (for all examples presented
here, a 643 texture). Finally, the density, which varies also
only coarsely, is further stored in the alpha channel of this
3D texture.

Each interpolation kernel is represented by a simple
OpenGL point primitive. At rendering time, the vertex
shader conservatively estimates the size di of the projected
splat, based on a perspective division of the larger of the el-
lipse radii by the eye-space depth value of the splat center
followed by a window-to-viewport scaling. This causes the
single OpenGL vertex to be rasterized as a di × di image
space square. Each pixel fi,x,y of this square is then tested by
a pixel shader to lie either inside or outside of the projected
elliptical splat contour. Each pixel inside the splat contour
is then, in turn, associated with a color and opacity using a
fragment program that is implementing raymarching. As we
use a front to back sequential process, segments generated
for a pixel with a current opacity of 1 should be discarded.
To achieve this, we write into the depth buffer an arbitrary
maximal value for completely opaque pixels. Since a depth
comparison is made during the process, it automatically dis-
cards subsequent (occluded) fragments, thus saving compu-
tation time.

6. Results

Our test setup consisted of an Intel Core 2 Quad and a
NVIDIA GeForce GTX280 on a 512× 512 window. All
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Bunny (7608 splats) Teapot (4483 splats) Cube (8000 splats)
HQ IE HQ IE HQ IE

EWA splatting
No Shading 12.8 fps 30.0 fps 15.3 fps 35.0 fps 13.1 fps 30.0 fps

Phong Shading 8.5 fps 20.8 fps 9.5 fps 20.0 fps 7.4 fps 13.9 fps
Phong Shading w/ Shadows 6.3 fps 14.5 fps 8.7 fps 19.1 fps 6.2 fps 13.0 fps

Depth Peeling
No Shading 12.8 fps > 60.0 fps 17.0 fps > 60.0 fps 20.2 fps > 60.0 fps

Phong Shading 12.2 fps 51.0 fps 15.1 fps 60.0 fps 14.8 fps 48.0 fps
Phong Shading w/ Shadows 9.0 fps 32.4 fps 12.1 fps 58.1 fps 11.8 fps 20.9 fps

Figure 10: Comparing both rendering methods. The framerates depend on the sampling step and vary with the desired quality,
e.g. between quality images (HQ) and fast interactive exploration (IE). Corresponding visual differences are presented in
figure 13.

Figure 11: Influence of amplitude (top) and frequency (bot-
tom) parameters.

framerates have been measured with the model covering
approximately 75 % of the window. Our method uses
several parameters allowing a precise and intuitive control
of the final result. Firstly, the effect of the amplitude a and
frequency f parameters are illustrated in figure 11.

The sampling rate s of the raycasting affects the quality
and performance. It allows one to modulate between
interactive exploration or better-quality rendering. A table
on figure 10 shows the frame rates obtained for different
parameters on three objects with the same hypertexture
(shown on figure 13), using the two proposed rendering
methods and two different sampling rates for different
shading techniques with and without shadowing (shadows
have been obtained by casting a secondary ray into the light
source direction). As illustrated by this table, the framerates
decrease with the introduction of a Phong shading process.
This is due to the estimation of the gradient, computed
by central differences, thus requiring 6 more evaluations
of our hypertexture formula on each sample. In the same
way, this table shows that the framerates are more strongly
dependent on the value of the sampling step s than on the
number of splats composing each object. Actually, the main

bottleneck of our application lies in the local raycasting
technique, and in particular, in the evaluation of noise.
The drop in performance due to noise has been evaluated
(independently of other parameters) at roughly 65 %. When
using a combination of several noises (three), even more
than 85 % of the computation time is spent on the simplex
noise computation. Our measurements confirm that the main
computational cost lies in per fragment processing. These
high computations are however necessary to guarantee that
the textures can be edited dynamically by users.

The first and second columns of figure 13 show for both
methods a visual estimation of the differences between
good quality (HQ) settings (s = 0.002) and fast interactive
exploration (IE) settings (s = 0.015). As can be noticed,
the EWA splatting method (top row) is generally slower
but tends to produce smoother results. This is confirmed by
the last column of figure 13, where we used an identical
sampling rate s along the casted rays for both methods. Due
to overalpping kernels, the EWA splatting method results
in much overdrawing. The framerate is consequently much
slower compared to depth peeling although the sampling
step is the same. But the kernel convolution introduces a
natural antialiasing and smoothing. Even when the sampling
step s is decreased with the depth peeling method (e.g.
more samples are taken), the result yet remains different
from splatting, since no convolution (blending of values)
is performed. So beyond oversampling, splatting also acts
like a Gaussian filtering and signal reconstruction kernel.
We note that since we use for both rendering methods an
opacity-based ray termination acceleration technique, highly
transparent transfer functions are usually characterized by
much lower framerates.

In order to evaluate how well transfer functions, espe-
cially the opacity and shape transfer functions, can help to
model and reproduce natural effects, we conducted a test
series on users previously familiarized with our modeling
system. The users have been given the possibility to edit and
modify the transfer functions and to change the parameters
amplitude a, frequency f and shift r. The 1D transfer
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(a) wool, r = 0.2, 6.2 fps (b) lawn, r = 0.9, 9.4 fps (c) hedge, r = 0.2, 19.9 fps

(d) sponge, r = 0.5, 8.3 fps (e) clods, r = 0.6, 8.0 fps (f) cave, r = 0.85, 6.8 fps

Figure 12: Result of an experiment concerning the capacity of reproducing natural phenomena by letting users edit transfer
functions during about 20mn.

Figure 13: Visual comparison between EWA splatting (top
row) and Depth-Peeling (bottom row). The first and second
column correspond respectively to Interactive Exploration
(IE, top 20 fps ,bottom 50 fps) and High Quality (HQ, top
8 fps, bottom 12 fps) settings. The last column shows results
with the same sampling step used along a ray for both meth-
ods (top, 12 fps, bottom 60 fps).

function editor is based on spline curves and the 2D one
on simple paint brushes. The goal of the experiment was
to ask them to reproduce some of the natural effects shown
in figure 1. Concretely, we asked to reproduce something
that looks like wool, a lawn, a hedge, a sponge, clods and
a cave. The obtained results after about 20 minutes of free
manipulation are shown on figure 12. As outlined by this
figure, this experiment demonstrates that transfer functions
can indeed help to reproduce natural phenomena without
using any programming language. The wool, lawn and
hedge have been obtained with a 1D shape transfer function.
The sponge and clods were obtained with three noises.
Finally, for the cave we specifically asked to use a 2D
transfer function, which is well adapted to such a situation.
However, 2D functions have turned out to be globally less
intuitive than 1D functions. In fact, we experienced that
2D transfer functions are only intuitive when the value r is
close to 1. We have also experienced that a shift value of
r close to one (at least greater than 0.5) generally allows
one to avoid that the object breaks into disconnected pieces.
With a longer manipulation, more advanced shading, and
additional 3D color textures, these examples could be
probably further improved to make them better match the
examples of figure 1, but obtaining an exact one-to-one
match was not the goal of our experiment.
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More results are shown on figure 14. These are purely syn-
thetic. We show them on different shapes to illustrate that
our hypertextures can be applied to arbitrary objects. Figure
15 shows that once a hypertexture has been edited, it can be
used in software rendering systems. Here, we show an exam-
ple of the clods of figure 12 applied to a field and rendered
using Monte Carlo ray tracing with a synthetic environment
map including global illumination effects. Note that because
of the procedural nature of the hypertexture, objects of arbi-
trary size can be textured without repetition effects.

(a) Eroded stone, 15 fps (b) Wool, 30 fps

(c) Moss, 11 fps (d) Mud/Soil, 9.3 fps

Figure 14: Examples of purely synthetic effects.

7. Conclusions

We have introduced a new framework for the interactive
exploration, creation and design of hypertextures applied
to arbitrary objects. This framework increases the control
of results as it has been outlined by our experimental
user-study. In addition, rendering is sufficiently fast to allow
for interactive manipulations. Our approach is based on a
reformulation of the density modulation function, especially
the real-time edition of the shape and opacity transfer func-
tions, allows a user to control, along with other parameters
(amplitude, frequency, vector field, etc.) the final appearance
of hypertextures in an intuitive and straightforward way.
One specificity of our approach is that no particular shader
programming knowledge is required. Simple curve, patch or
image editing tools are sufficient to create the most various
effects (wool, grass, clouds, etc.). Because of dynamic
editing, it should be possible to further obtain hypertexture
animations, for example by making the transfer functions
time-dependent, or by using a 4D-noise instead of a 3D one
or even by making the vector field dynamically change.

Figure 15: Once hypertextures have been edited, they can
be used in software raytracing with global illumination sys-
tems to texture objects that can be very large.

This is one of the future works that we would like to explore.

Several other problems need to be tackled in order to fur-
ther improve the global efficiency of our framework. Firstly,
the quality setting of the user, namely the sampling step s
defined as the distance between two consecutive samples
along a ray, could be better exploited to obtain improved per-
formances. As for traditional volume rendering, an adaptive
sampling step would be highly valuable in order to concen-
trate computations an useful parts. By defining for exam-
ple this parameter on a per reconstruction kernel basis, it
would allow us to increase the quality of hypertexture de-
tails on some important parts (parts of the object relevant
to its shape, facing the user, or on the silhouette of the ob-
ject) while rendering other parts with a coarser sampling
resolution, thus increasing performance without losing vi-
sual quality. Once a given hypertexture has been modeled by
users on an object, and it remains “static”, we could further
imagine pre-computing some data to accelerate rendering.
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Some visibility information could be pre-computed to im-
prove empty space skipping, or even the gradient and noise
values to avoid their explicit computation. Secondly, con-
cerning shape transfer functions, it would be certainly highly
valuable to propose in future a method that would automat-
ically build such a function, by using examples. That is, we
could imagine a system where the user designs a sample of
the details with traditional 3D modeling tools, and supplies
it to the system. The latter would, in turn, analyze this geom-
etry and construct automatically an adequate shape transfer
function to recover a similar visual effect. But, as of now,
this seems to be an extremely difficult and non-trivial prob-
lem, because of the random (e.g. highly non deterministic)
nature of noise.
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