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Abstract

This paper presents a coherent multiscale model for real-time rain rendering which takes into account local and global properties
of rainy scenes. Our aim is to simulate visible rain streaks close to the camera as well as the progressive loss of visibility induced
by atmospheric phenomena. Our model proposes to correlate the attenuation of visibility, which is due in part to the extinction
phenomenon, and the distribution of raindrops in terms of rainfall intensity and camera’s parameters. Furthermore, this method
proposes an original rain streaks generation based on spectral analysis and sparse convolution theory. This allows an accurate
control of rainfall intensity and streaks appearance, improving the global realism of rainy scenes.
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1. Introduction

Rain rendering has been widely studied in computer graph-
ics. Rainy scenes include several effects such as streaks due to
the velocity of raindrops and camera’s exposure time or retinal
persistence. It also includes among other features a progressive
loss of visibility, due to suspended raindrops in the air spread-
ing light in a specific way. Thus, the realism of a rainy scene in
computer graphics depends on the raindrops appearance as well
as the global properties of this meteorological phenomenon.
These problems can be tackled by simulating the mesoscopic
and macroscopic views of a rainy atmosphere. In this paper, we
take into account these two scales.

The existing methods mainly focus on streaks rendering.
The most recent ones, such as [1] and [2], use a particle sys-
tem and a textures database to render streaks. Nevertheless,
such a database has a high memory footprint and also requires
complex mechanisms to control particles, in order to preserve a
constant and physical distribution of raindrops in space during
the rain simulation. Another technique for rain rendering [3]
consists in using one or several rainfall textures positioned at
different distances from the observer. These textures are defined
in a finite space. Such methods cause a repetition of rain pat-
terns as textures are moving and repeated over and over again.
All of these methods usually use fog models in an empirical
way to simulate the loss of visibility naturally present in rainy
scenes. Their attenuation is neither based on physically real-
istic extinction coefficients, nor correlated with rainfall inten-
sity. This paper addresses these issues and proposes a real-time
multiscale method relying on image-space post-processing (i.e.
independent of scene complexity) computations. The main con-
tributions of our method are:

e A procedural generation of streaks in the image space,
based on spectral analysis of real rain patterns. The sparse
convolution noise technique is used to control precisely
the rainfall intensity, and to manage only visible streaks.
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This generation also enables a constant and physical dis-
tribution of raindrops during the simulation.

e A density function to quantify the visible streaks in the
view frustum in terms of rainfall intensity and camera’s
parameters.

o A physical correlation between the density of visible streaks
and the attenuation of visibility. Only once distribution is
used to evaluate the density of raindrops and also to ren-
der the loss of visibility in the scene.

2. Previous works

We will focus on methods which propose streaks generation
and attenuation of visibility. These two phenomena are the key
elements of our multiscale model.

2.1. Rain streaks rendering

We can classify papers in two categories: the ones based
on scrolling rainfall textures and the others based on a particle
system.

The papers [3] and [4] fall into the first category of meth-
ods. The advantage lies in its simplicity and reduction of the
computation time. Nevertheless there are two recurrent prob-
lems with the rainfall textures. The repetition of the patterns
prevents the rain effect from being visually realistic while the
simulation is running. Indeed, those textures are finite and usu-
ally artistically-generated. This results in an empirical distribu-
tion of raindrops. Moreover the user cannot change the rainfall
intensity in real-time during the simulation, and it is impossi-
ble to evaluate collisions between raindrops and objects in the
scene.

Meanwhile, the papers [1], [2], [5], [6], [7], [8] and [9]
achieve streaks rendering by using a particle system. Those
methods are more computationally expensive. Generally, they
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either extract textures from video which are then mapped onto
particles, or use some precomputed ones. In this regard, Garg
and Nayar [2] are the first to propose a complete precomputed
streaks database. This method has been used by Tariq [7] and
more recently by Creus and Patow [1], yielding really convinc-
ing results. Textures are classified in terms of three different
angles depending on the position of the observer and the light
sources. The main downside is that a such database has a very
important memory footprint. Moreover a particle system costs
a lot of GPU ressources, being fill rate based, and rain anima-
tion is not a trivial task, managing only visible particles in the
view frustum while avoiding repetitive behaviour and having
an invariant distribution of raindrops. The random respawn of
particles does not guarantee a physically realistic spatial distri-
bution of raindrops. This implies an adapted implementation.

2.2. Attenuation rendering

Most methods use an empirical approach to simulate the at-
tenuation of visibility. Using an arbitrary fog model yields to a
non-physically realistic rendering. For instance, Tatarchuk and
Isodoro [3] and Tariq [7] propose an attenuation without using a
specific value for the so-called extinction coefficient. However
our research shows that this coefficient must be correlated with
the rainfall intensity and the distribution of raindrops.

Changbo et al [10] offer the possibility to simulate the atten-
uation of visibility taking into account different sizes of rain-
drops in the air. They made computations for every type of
raindrops, and considered a uniform phase function to evaluate
how light is scattered. It is however difficult to know which
data must be precomputed, and set precisely the extinction co-
efficient in order to obtain a correlation with the distribution of
raindrops.

A different approach for snow or rain rendering is proposed
by Langer et al [11], using an infinite density function based on
a sum of 2D waves cosine to simulate the density of precipita-
tion. The density function is expressed in the spectral domain.
The Fourier Transform and its inverse are computed. The eval-
uation of this function in the spectral domain is not based on a
physical distribution of raindrops in the spatial domain.

These methods achieve an attenuation rendering by using a
macroscopic approach. Indeed, increasing the number of parti-
cles does not simulate the continuity of the meteorological phe-
nomenon. Generating more particles induces visual artifacts
due to the resolution, and does not naturally generate attenua-
tion of visibility. Nevertheless, most of these methods overlook
the distribution of raindrops to get a physically realistic solu-
tion. This prevents a correlation between the rainfall intensity
and the attenuation of visibility.

3. New multiscale model

A rainy scene is typically composed of many raindrops -
each with a size much larger than visible wavelengths - which
causes the light to spread in a specific way. Closer raindrops,
which have a projected size larger than a pixel, are individu-
ally visible, and further ones can only be seen in a macroscopic

view as a participating media. As a result, visibility decreases
until details blur into a fog like appearance. Taking into ac-
count these two rain features enables to propose a physically
based rain simulation. The main contribution of this paper is to
propose a correlation between the density of close and visible
raindrops and the attenuation of visibility.

According to the preceding observations, we decompose a
rainy scene in two areas. The first one corresponds to the region
of the scene where streaks have a projected size larger than a
pixel or thus are individually visible. We will refer further at
this region as the Visible Streaks Region (VSR). In this region,
our rain streaks generation has to take into account the prob-
lems inherent to particle systems and finite rainfall textures, as
we discussed in the section 2. Beyond this rain region, streaks
cannot be individually seen because it would require a subpixel
precision. Moreover, that would imply simulating a large num-
ber of raindrops. The idea is to develop a scattering method
specifically for this Scattering Rain Phenomena (SRP) in order
to indirectly simulate remote raindrops. This phenomenon is
continuous in the whole scene from the camera to the furthest
visible object in the scene. It simulates the raindrops too small
to be represented even in the Visible Streaks Region. There
is actually an attenuation effect in the whole scene, even in
the VSR where it could be assumed to be very close to zero.
All raindrops cannot be actually simulated even in the VSR.
This implies rendering this phenomenon with a macroscopic
approach to simulate how light behaves in contact with rain-
drops in the air. Such a multiscale method enables to represent
each phenomenon of rainy scenes with an adapted model, and
to correlate each model according to physically based parame-
ters. This part of the paper will discuss which models to use to
simulate the VSR and SRP, and which physical parameters will
allow us to correlate each model and control our rain simulation
in real-time.

We propose in the subsection 3.1 a generation of visible rain
streaks. This first model simulates only visible and individual
streaks close to the camera. The second model, presented fur-
ther in the subsection 3.2, takes into account the distribution of
far raindrops in the scene with a single scattering method, to
progressively attenuate the visibility.

3.1. The Visible Streaks Region (VSR)

Section 2 highlights the recurrent problems inherent to ex-
isting methods based on particle systems and finite rainfall tex-
tures. Particle systems offer the possibility to precisely control
rain streaks but require complex mechanisms to manage only
visible raindrops. Indeed, some of those raindrops may be vis-
ible after projection and some others may not, depending on
their size and distance from the observer. Complexity also lies
in both simulating a large number of particles with a constant
distribution over space and usually in storing a texture database
with a high memory footprint.

Meanwhile, finite rainfall textures reproduce the global ap-
pearance of this meteorological phenomena. Few calculations
are necessary but the number of available rainfall textures is
usually limited and therefore does not allow a precise control
over the rainfall intensity in real-time. Moreover, repetitions



appear due to finite resolution issues while rainfall textures are
scrolling down. To tackle these problems, we propose a middle
ground method to combine these two approaches. This tech-
nique is controlled by a density function in real-time, evaluated
in terms of rainfall intensity and camera’s parameters, and en-
ables to manage only visible rain streaks. It provides the fol-
lowing advantages:

e A control over the density of raindrops through physical
parameters,

o A physically based distribution of raindrops.

We consider rain as a set of raindrops, distributed in space.
Their size varies, and they overlap on screen once projection
is done. Therefore we can consider the color of a pixel of a
rainfall texture as a contribution of different overlapping pro-
jected streaks. We can thus rely on sparse convolution theory.
Sparse convolution techniques [12] have been widely used in
texture synthesis to produce non-repetitive content for infinitely
large surface. It provides a continuous definition of a given
phenomenon that can be evaluated on-the-fly at any resolution.
Sparse convolution techniques consist in uniformly sampling a
spatial domain and associating a local kernel function to each
sample. Each point of the spatial domain can then be evalu-
ated as the sum of all distributed kernel functions. Sparse con-
volution noise [12] is usually defined using a uniform Poisson
distribution of kernels [13]. As recently introduced by Gilet
et al [14], simpler distribution schemes, such as regular or jit-
tered grids, can also be used in conjunction with various differ-
ent kernels, thus providing an accurate control over local and
global features. As our goal is to represent an controllable rain-
fall texture, we propose to define the Visible Streaks Region as
a convolution of rain streaks kernels distributed along a simple
regular grid. Furthermore, to avoid the memory issues intro-
duced by texture databases, we propose to express rain streaks
kernels as a sum of cosine waves, extracted from real streak pat-
terns from a real rain video using Fourier theory. This theory
explains that any signal can be decomposed and reproduced by
summing all frequency components. Thresholding the Fourier
spectrum comes down to extracting fundamental frequencies,
and reproducing a signal close to the original one with the fol-
lowing formula:

N
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where N is the number of fundamental frequencies to repro-
duce a specific analyzed streak pattern, « is the magnitude, ¢ is

the phase, u v are the spatial coordinates in the range [0 ; 1],

and f g are the spatial frequencies.
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Figure 1: (a) Original streak pattern. Reconstruction of streak pattern with (b)
6 frequencies and with (c) 3 frequencies.

According to the theory, all frequencies should be used in
Equation 1 to exactly reproduce the input signal. However, as
shown in Figure 1, using 6 frequencies is sufficient to repro-
duce a visually similar rain streak (a lower number of frequen-
cies deteriorates the original signal, as shown in the right of
the figure). A finite rain pattern function is associated to each
distributed kernel. To reproduce accurate global results, the
density of kernels must be determined. The widely used Mar-
shall and Palmer’s distribution function [15] gives the number
of raindrops in volume unity for a given rainfall and a given
raindrop diameter. We have already explained that some rain-
drops may be visible after projection and others may not. In
the Visible Streaks Region, we will focus on knowing the den-
sity of streaks which projected size happens to be larger than a
pixel. Besides, the projected size of small and large raindrops
may be the same depending on their distance from the camera,
as shown in Figure 2.

screen

Figure 2: 2 different size of raindrops may have the same projected size de-
pending on their distance from the observer.

Thus the idea is to compute the density of streaks for a size
after projection sap and for a given raindrop diameter D, in
terms of camera’s parameters and rainfall intensity R. A closer
look at projection calculations shows that the final projected
size depends on camera’s field of view fov and y-axis resolu-
tion h. Moreover, exposure time 7 makes streaks height vary
in the scene. Taking all these factors into account enables to
simulate the entire region close to the observer where streaks



are individually visible. To do so, for a given projected size, we
use a dsap to simulate a part of the view frustum, as shown in
Figure 3. We assume that raindrops in this volume will have
the same projected size. By uniformly sampling the projected
size range and taking into account every raindrop diameters, the
entire Visible Streaks Region may be simulated (Figure 7).

Projected size of a raindrop diameter D

z (D, sap, fov, T, h)

sap, -

- >
Distance from the camera to
the raindrop diameter D
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z sapi+§6sap §

D +velocity * T

Figure 3: Simulation of a part of the view frustum for a given projected size
sap and for a given raindrop diameter D, in terms of camera’s parameters fov
and T.

Figure 3 introduces the z function defining at which distance
araindrop is positioned from the observer to project a size equal
to sap. Figure 4 shows that the z function curves profile changes
in terms of raindrop diameter D. These raindrop diameters are
presented in Table A.5 in the appendix.
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Figure 4: Curves profile depends on raindrop diameter D. Camera’s parameters
fovand T are set, respectively, at 120 degrees and 20 ms. The y-axis resolution
is set at 1080 pixels.

The z function is expressed as follows:

sbp(D,T) x h
2 X sap X tan(fov x 0.5)

D, sap, fov, T, h) = 2
where sbp(D, T) is the size before projection function, ex-
pressed in m, computed as follows:

D
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where v(D) is the velocity function for a raindrop diameter
D. As it was recalled by Garg and Nayar [16], the velocity of a
raindrop can be expressed as:

D
_— 4
2000 @)
where D is in mm and T in ms. v(D) is expressed in m.s~!.
Using the z function presented above, a volume is computed
in the view frustum as shown in Figure 3, and the visible streaks

density function f is then deduced as follows:

w(D) = 200 x

f(D, sap,dsap, fov,T,h,R) =
V(D, sap,dsap, fov,T,h) X N(D,R)0D (®)]

where N(D, R)6D is a number of raindrops expressed in m~>

for a raindrop diameter range 6D. V(D,...,h) is a function to
compute the volume of a part of the view frustum using Equa-
tion 2. According to the Marshall and Palmer’s distribution of
raindrops [15]:

N(D,R) = Ny e =P (6)

where

Ny = 8000 m™> mm™! (7)

and

AR) = 41R7"?! mm™! 8)



Regarding the rain animation, this consists in translating
the kernels to get the desired rain effect. The distribution of
raindrops remains constant during the simulation. The veloc-
ity function 4 is also used to compute the scrolling velocity for
each projected size sap and each raindrop diameter D. The
rendered streaks will then be blended with the scene using an
artistic coefficient after the SRP computations in the next sub-
section. This coefficient aims to simulate the refraction of the
scene through each streak in the VSR, and thus how streaks
influence the overall lighting of the scene.

3.2. The Scattering Rain Phenomenon (SRP)

In the previous subsection we dealt with our streaks gener-
ation method to only simulate close and visible raindrops af-
ter projection. We are now going to indirectly simulate fur-
ther raindrops by rendering the complex interactions between
light and raindrops. Raindrops behave indeed like a participat-
ing media and this results in fog appearance. Light spreads in
a specific way that causes a visibility attenuation effect. We
will describe in this subsection the behaviour of light when it
hits raindrops in the air. Single scattering is commonly used for
simplicity in real-time simulations and to avoid too many com-
putations. We suggest a simple single scattering model to sim-
ulate the attenuation of visibility in a rainy atmosphere, accord-
ing to the same distribution of raindrops as the one described in
the previous subsection to deal with the density function.

Light is scattered by air molecules and aerosols particles
in the atmosphere. During sunny day, they are often assumed
nonexistent even for realistic rendering in computer graphics.
They actually induce a participating media which cannot be ig-
nored in a rainy atmosphere. Raindrops are much larger than
the particles usually found in the air. Thus this causes light to
be spread in a particular way decreasing visibility in the scene.
Garg and Nayar [17] explain light behaviour in contact with
raindrops. Depending on the size of particles, light is scattered
backwards or forwards. Concerning rain, light is rather diffused
in the forward direction because raindrops are much larger than
visible wavelengths. Figure 5 shows that the size of particles
influences light scattering.

INCIDENT
BEAM

-0

(a) SIZE : 0.01 micrometer

- > SCes

(b) SIZE : 0.1 micrometer (c) SIZE : 1 micrometer

Figure 5: Light behaviour in contact with particles depending on the size from
(17]

4 types of interactions can be defined in a participating me-
dia. Light absorption and out-scattering decrease radiance in
the incident direction, whereas light emission and in-scattering
increase it. The sum of absorption and out-scattering is called
extinction. The extinction phenomenon has to be estimated dur-
ing a rainy day to compute how light decreases in terms of dis-
tance and rainfall intensity, according to the distribution of rain-
drops. Extinction is generally considered constant through the
participating media for simplicity in real-time simulations. We

made this assumption by considering the atmosphere to be ho-

mogeneous.
A /{\ %r/

Out-scattering

Absorption Emission In-scattering

Figure 6: Types of interactions in a participating media from [18]

The extinction coefficient can be computed, as in [19], in
terms of rainfall intensity according to the Marshall and Palmer’s
distribution of raindrops [15]:

Bext = 0.312 R%®7 )

In the subsection 3.1, the density function is evaluated ac-
cording to the same distribution, thus providing a correlation
between the Visible Streaks Region and the Scattering Rain
Phenomenon. The extinction coeflicient usually depends on
wavelength. Raindrops being far larger than visible wavelengths,
we assume that the extinction coefficient is the same for each
one of them.

Although raindrops cause extinction and therefore decrease
radiance in the incident direction, light in-scattering has to be
also considered, using the appropriate phase function. This en-
ables to take into account how light from the sun reaches the
observer’s eyes, through the rain, to reproduce rainy sky and
also aerial perspective. This function replaces the so-called
BRDF for atmospheric rendering. Contrary to the BRDF, the
phase function performed the integration over the whole sphere.
Moreover there is no cosine term since no surface is present.
For the given incident light and viewing directions, the phase
function provides the quantity of light that is scattered, in con-
tact with particles, toward the camera. Jarosz [18] dealt with the
commonly used Henyey-Greenstein phase function when light
is in contact with larger spherical particles than air molecules.
We assume, for simplicity, that raindrops are spherical to re-
spect this constraint. The Henyey-Greenstein phase function is
much simpler to use than the original Mie phase function, and
represents a good approximation according to most of the pa-
pers. The Henyey-Greenstein phase function is expressed as
follows:

(1-g7?
4r(1 + g2 — 2gcos(9))3/2

where g is the eccentricity or more precisely the scattering
distribution. The value must be in the range [-1 ; 1]. By
varying this parameter, users can choose if the light distribution
is rather in the backward or the forward direction. Considering
rain, g has to be greater than 0.

As Hoffman and Preetham [20] and Cozman and Krotkov
[21], the Beer-Lambert law is commonly used to simulate ex-
tinction in participating medias. This law is based on the idea
that light transmission in a participating media decreases expo-
nentially with pathlenght.

Buc(0) = (10)



Fext(s) = e_ﬁws (11)

where s is the distance between the object and the observer,
and B, is the extinction coeflicient of the media. As the Mie

theory deals with large spherical particles, meanwhile the Rayleight

4.1. CPU

All of these calculations are done in CPU before the simu-
lation starts. Some of them are recalculated in real-time if the
rain parameters are updated.

The magnitude of the extracted streak patterns is computed

theory attends to simulate very small particles such as air molecules. through the 2d discrete Fast Fourier Transform. Only the fun-

The Rayleight coefficients could be expressed to reproduce light
absorption and out-scattering by those particles. Nevertheless,
it are ignored in this model. The reason is that the Rayleight
coefficients turn out to be far smaller than the previous com-
puted rain extinction coefficients, and thus they do not strongly
contribute to the rainy atmosphere. The contribution of in-
scattering can be expressed as an additional term as follows:

Lin(sa 9) :ﬁHG(H) Esun (1 - Fext(s)) (12)

where Ej,, is the solar irradiance, Sy (6) is the Henyey-
Greenstein phase function and 6 the angle between the light and
viewing directions.

By adding the extinction function F,,; and the light in-scattering

function L;,(s, 6), the final equation for the attenuation render-
ing is obtained:

L(s,60) = LoFexi(s) + Lin(s, 6) (13)

This is finally not a basic fog with an arbitrary fog color,
only based on the distance between observer and objects, as it
was often suggested in previous papers. It takes into account
the light source and the type of particles in the air to render
how light is scattered in the scene. Users can set and update
in real-time the sun’s position, the solar irradiance Ej,, and the
scattering distribution g to adjust the simulation.

The rainfall intensity parameter R is the common parameter
of the Visible Streaks Region (Equation 5) and the Scattering
Rain Phenomenon (Equation 9). Varying this parameter does
not only change the density of kernels, but also makes the atten-
uation of visibility increase or decrease depending on its value.
The two rain models introduced in this section simulate each
one a region of a rainy scene, and the rainfall intensity param-
eter R gives us a correlation between the loss of visibility and
the density of visible streaks.

4. Implementation and results

We will describe in this section our CPU and GPU imple-
mentations for streaks and attenuation rendering. User has the
possibility to update in real-time the simulation by using the
three main parameters : the camera’s field of view fov, the
exposure time 7" and the rainfall intensity R. The extinction co-
efficient is computed from the rainfall intensity to render light
spreading. The single scattering model enables to change the
scattering distribution or eccentricity g and the solar irradiance
E,, to control more precisely the simulation.

damental frequencies are preserved and stored with their mag-
nitude and phase information in files. The data are then sent
only once to GPU for the rendering pass.

The density of streaks is precomputed for several projected
sizes and for each raindrop diameter (Table A.5) according to
rainfall intensity and camera’s parameters.

Algorithm 1 Procedural generation of the rainfall texture

for each frame do
recover the database of frequencies
recover the number of kernels for each projected size and
for each raindrop diameter
for each pixel do
for each projected size and each raindrop diameter do
retrieve index of current cell
initialize the pseudo-random number generator with
the corresponding seed
distribute kernels inside the cell
for each kernel do
compute parameters (depth, pattern, etc.)
evaluate contribution to the pixel (reproduce the
streak pattern by summing cosine waves using the
database of frequencies)
use a gaussian window to avoid edge effects
end for
end for
sum and display the contribution of every projected size
and every raindrop diameter
end for
end for

4.2. GPU

A single post-processing GPU pass is used to generate the
rainfall texture and another one for the attenuation of visibility.

The streaks generation reproduces a rainfall texture from
the database of frequencies. Each streak is recreated by adding
cosine waves. The density function gives the density of streaks
in terms of the rainfall intensity and the camera’s parameters.

As in texture synthesis by sparse convolution noise, the im-
age is decomposed in a regular grid to avoid closest kernels
search. Each grid cell has a unique seed number determined
from texture coordinates. The pseudo-random number genera-
tor offers the possibility to always obtain the same random val-
ues for kernels inside a given cell.

The discretization of our screen in grid cell avoids evaluat-
ing the contribution of streaks too far from the current kernel.
Examples of the rainfall textures are presented in Figure 7. Al-
gorithm 1 presents the method.



R=5mm/h - FOV = 120 degrees - T =20 ms R =10 mm/h - FOV = 120 degrees - T = 20 ms

R =20 mm/h - FOV = 120 degrees - T = 20 ms R =30 mm/h - FOV = 120 degrees - T = 20 ms

Figure 7: Generation of streaks using the sparse convolution noise technique, varying the rainfall intensity.

With extinction and With extinction and
in-scattering in-scattering + rain

Original scene With extinction

Figure 8: Steps for attenuation rendering with a strong extinction.



Very heavy rain - Rainfall : 50 mm/h
Fov : 120 degrees - Exposure time : 20 ms

Heavy rain - Rainfall : 25 mm/h
Fov : 120 degrees - Exposure time : 20 ms

Very heavy rain - Rainfall : 50 mm/h
Fov : 70 degrees - Exposure time : 20 ms

Heavy rain - Rainfall : 256 mm/h
Fov : 70 degrees - Exposure time : 20 ms

Moderate rain - Rainfall : 10 mm/h
Fov : 120 degrees - Exposure time : 20 ms

Moderate rain - Rainfall : 10 mm/h
Fov : 70 degrees - Exposure time : 20 ms

Figure 9: Rain and attenuation rendering varying the rainfall intensity and the field of view.

The attenuation rendering consists in using Equation 13.
That equation is composed by two terms. The first term is re-
lated to the extinction phenomenon, including light absorption
and out-scattering. Meanwhile, the second term corresponds to
light in-scattering. Because our method uses a post-process ap-
proach, the scene and its depth map are required and stored in
a buffer. The void pixels in the original scene correspond to the
sky pixels. For sky rendering, we consider the atmosphere as
a sphere around the scene. This simplification enables to avoid
using a complex mesh. The shader computes the intersection
between the viewing direction and the virtual sphere to evalu-
ate the distance, and thus to simulate our atmosphere without
adding complex calculations. Algorithm 2 describes the scene

rendering, including sky. We present in Figure 8 the results that
we obtained with the single scattering model to render the loss
of visibility.

4.3. Results

The results are presented in Figure 9. The scene represents
a vast mountainous terrain in order to perceive the attenuation
of visibility far from the observer with various parameters. The
more the rainfall intensity increases, the more the visibility de-
creases far from the observer and the more the number of visi-
ble streaks increases. In this figure, we can easily observe how
raindrops scatter light, and thus produce a loss of visibility de-
pending on the rainfall parameter. Moreover, the results show



Algorithm 2 Attenuation of visibility rendering
for each frame do
store scene and depth map in buffers
for each pixel do
recover the depth of the pixel
if current pixel = sky pixel then
compute distance s between the observer and the sky
else
compute pixel’s position in the space world
compute distance s between the observer and the ob-
ject
end if
compute the angle 6 between the light direction L and
the viewing direction V
recover the pixel color Ly
Compute LOFext(S) + Linvcattering(e’ S)
end for
display the scene
end for

that decreasing the field of view results in increasing the density
of visible streaks.

A phenomenological approach makes us decide to represent
streaks between 30 and 200 pixels. We made this empirical
choice which offers visually convincing results. However the
user could represent streaks with a larger or a lower projected
size. That would mean simulating very close or very far rain-
drops. Regarding the raindrops under 30 pixels, we consider
that they will be rendered indirectly by the attenuation of visi-
bility. Moreover, this avoids simulating raindrops which are not
visually significant.

The procedural streaks generation in Figure 7 provides non-
repetitive and infinite rain patterns. The density function ex-
presses accurately the density of visible streaks depending on
rainfall intensity and the camera’s parameters. Only visible
raindrops are handled and occlusion by close objects can be
taken into account by using on-screen depth information.

The memory footprint depends on the number of extracted
streaks and the number of chosen frequencies. We do not treat
precisely how many different extracted rain patterns are neces-
sary to achieve a realistic final rainfall texture. In practice, we
empirically observed that about a dozen streaks is sufficient to
get visually interesting results. Considering a dozen streak pat-
terns, each one requiring about 6 2D frequencies with amplitude
and phase, memory requirements average around 1 Kb.

The performance of the system are presented in Table 1, de-
pending on the field of view fov and rainfall intensity R. We
set the exposure time 7' to 20 ms. Our GPU computations are
made with a Nvidia Geforce GTX 980. The scene is composed
by about 300k triangles and is running at 380 fps without the
streaks and the attenuation of visibility. The performance of
the system shows that a very heavy rain with an usual field of
view value, 120 degrees, runs in real-time at 30 fps. This corre-
sponds to 10 thousand distributed kernels. A light rain with the
same field of view runs at 60 fps and corresponds to 1200 ker-
nels. The SRP computations remain unchanged whatever the

rainfall intensity and camera’s parameters. Only the number
of rendered streaks makes the number of FPS vary. Moreover
the number of rendered streaks does not vary linearly with the
number of FPS.

Table 1: Performance of the system in FPS.

2 |5 25|75

120 60 | 48 | 37 | 30
100 55 |45 (35| 27
80 50 | 42 | 31 | 24
60 45 | 39 | 28 | 22

4.4. Comparison with a particle system

We provide a rain simulation using a particle system for a
comparison. Our extracted streak textures are mapped onto the
particles which are simulated around the camera. We show in
Figure 10 that the results are visually quite similar. The ma-
jor feature of our rain model is its intrinsic quality to render
only visible streaks as well as keeping a physical distribution of
raindrops. This is not trivial by using a particle system, and thus
requires a specific implementation to be achieved. Our method
has also the advantage over particle systems that it does not di-
rectly depend on the number of particles rendered. Contrary to
the vertex-bound methods, we are not limited in the number of
streaks that we can render. The computation cost of the VSR is
defined in a per-pixel basis according to the number of rendered
streaks, computed from the field of view value and rainfall in-
tensity. Moreover we propose a post-process technique in the
image space with all the consequential benefits. This rain model
is compute based while a particle system is rather fill rate based.
The overdraw can be a limitation in usual real-time simulations
such as video games using many particle system based effects.
Our paper has the advantage of offering an alternative compute
based method to render streaks and visibility.

5. Conclusion and future works

We introduce the first multiscale rain model which takes
into account the local and global physical properties of a rainy
scene. The streaks generation and the attenuation rendering, de-
pending on the rainfall intensity and the camera’s parameters,
are based on the same distribution of raindrops in order to cor-
relate the density of visible streaks and the loss of visibility in
the scene.

However, some limitations remain in our method. Concern-
ing the rain animation, we do not match the rainfall texture with
lateral movements of the camera. Furthermore, we do not pre-
serve coherency of raindrops position while the camera is mov-
ing. However, this does not impact the visual quality of our
method as the velocity of raindrops is an order of magnitude
faster than the camera movements.

A difficulty of the method lies in rendering the streaks in the
VSR when the user looks upward or downward. Streaks cannot



Our method

A particle system based generation

Figure 10: A visual comparison of particle system based methods and our image space streaks model. We simulate a heavy rain with about 8000 visible streaks.
The particle system implementation runs at 200 FPS and our image space model runs at 30 FPS. The field of view fov and the exposure time 7 are respectively set

to 120 degrees and 20 ms.

be generated and animated in the same way. This would imply
to see the streaks far from the observer falling toward him. For
the moment, we do not address this problem. We think that a
specific analysis has to be done in order to evaluate how streaks
are perceived according to the orientation of the camera, and
perhaps build a new database of frequencies to reproduce and
animate streaks according to the elevation angle.

The simulated cloud covered sky may be a little too uniform
regarding the single scattering model. Thus it would be inter-
esting to break this homogeneity. This could be achieved by
adding real clouds in the scene, e.g. clouds could be correlated
with the type of rain.

In this paper, we only focused on rain rendering in daylight,
in a diffuse scene. The rain video was captured under a cloud
covered sky, considering the illumination as globally diffused
and so independent of the position of the sun. Our method ren-
ders a rain simulation under a similar illumination. The position
of the sun in our real-time simulation enables to compute how
light is scattered toward the camera, and so enables to physi-
cally simulate the behaviour of light in contact with particles
in the air. Moreover, the artistic coefficient mixing the streaks
and the scene approximates the refraction for each streak. It is
actually necessary to capture streaks patterns under a covered
sky to guarantee a correlation between both models.

Our method may be able to hide streaks occluded by closer
objects. A distance in the range [Zsp,—ssap; Zsapi+sapl, figure
3, could be computed for each generated streak, for each pro-
jected size and each size of raindrop. This would result in a
depth information for each streak computed on-the-fly. More-
over, we think that we could take account for spaces with cover
from rain as Rousseau et al [6]. This is a visibility problem
that could be solved by using a global depth map, as in shadow
maps techniques.

Some previous works [2] [10] take into account several light
sources in the scene. As this increases the realism of the scenes,
such phenomenon must be integrated in our future rain model.
This will lead to more varied climatic conditions. Moreover,
numerous effects such as water splashes on the ground, change
of appearance of wet objects and light sources could be added
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to our model to increase realism. The challenge will be to solve
these problems using a coherent multiscale approach.

Appendix A. Distribution of raindrops in m=3

Different values of rainfall intensity are proposed in Table
A2.

Table A.2: Rainfall intensity R.

Rainfall intensity | R (mm hr=')
Light 2
Moderate 5
Heavy 25
Very heavy 75

By using Equation 9, Table A.4 gives the extinction coeffi-
cient B,y in km™! for each rainfall intensity R in mm h~'.

Table A.4: Extinction coefficients B,y in km™" for each rainfall intensity R

Rainfall | R (mm h™") | Boy (km™T)
Light 2 0.50
Moderate 5 0.92
Heavy 25 2.70
Very heavy 75 5.63

We propose Table A.3 in case that the user wants to only use
specific rainfall intensities, hence avoiding CPU calculations to
evaluate the distribution of raindrops. The distribution in Ta-
ble A.3 is computed using Equation 6 from rainfall intensity in
Table A.2 and the size of raindrops in Table A.5 according to
Bentley [22].



Table A.3: Distribution of raindrops in terms of rainfall intensity and size of raindrops, computed from Equation 6. The values are expressed in (m™>).

Very small | Small | Medium | Large | Very large

Light 448 225 46 0 0

Moderate 613 380 122 0 0

Heavy 939 772 463 6 1

Very heavy 1168 1111 917 29 6
Table A.5: Diameter of raindrops D according to Bentley [22]. . Then tl,le, n,O rmahzed, coorQ1nates in the viewport are ob-

tained by dividing each dimension by w;;,.
Size of raindrops D (mm) Yelip
Very small [0.51 ; 0.85[ Yviewport = Weli ®B7
Small [0.85; 1.41] , " o
Medium [1.59 ; 3.18] sap corresponds to the size of a streak after projection in
Large [3' 63 ; 5.08] pixels. We have to remind that the viewport coordinates are in
Very large | 15.08 ; 8.47] the range of [—1; 1].
viewport X h

sap = yth (B.8)

Appendix B. Distance function z(D, sap, fov, T, h) sap is reformulated as:

. : . fXyxh
The velocity of a raindrop can be expressed as: sap = 5 (B.9)
D y can be replaced with the function sbp(D, T) to obtain the
D)=2 \ = B.1 . L ’

V(D) =200 2000 (B.1) size of a streak before projection. Thus we can express the

where D is the diameter in mm. v(D) is expressed in m s7'.

Using Equation B.1, we compute the size of a streak as:

bp(D,T) = D +v(D) X T
SOPY )= T000 T 1000

where the function sbp(D, T') gives the height of a streak in
meters taking into account the exposure time of the camera.

A typical OpenGL projection computation can be expressed
as follows:

(B.2)

f
aspect 0 0 0 x Xclip
0 f 0 0 y | _ Yelip
zFar+zNear — 2xzFarxzNear - .
0 0 zNear—zFar zNear—zFar < Lelip
0 0 1 1 Welip
(B.3)

where aspect is the aspect ratio, znear and zfar define the
frustrum view and:

1
f=— (B.4)
tan(=-)
We are only interested in the computations in the y dimen-
sion. Indeed, only the height of the streaks is important to us.
We will deduce the width by a simple ratio.

Yelip = f Xy (BS)

Welip = 2 (B.6)
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distance z as:

sbp(D,T) X h
2 X sap X tan(fov x 0.5)

z(D, sap, fov,T,h) = (B.10)

where / is the y-axis resolution, fov is the camera’s field of
view and T is the exposure time.
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