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Dissipative Kerr solitons based on microresonators have wide applications from optical communications to
optical ranging for the high-repetition rate and broad bandwidth. Restricted by the bending losses and dispersion
control of the optical waveguide, it could be hard to further realize ultrahigh-repetetion rate reaching several ter-
ahertz by simply reducing the size of microresonators. Soliton crystals, which completely fill the microresonator
with a series of equidistant temporal pulses, can be an effective approach to realize ultrahigh-repetition rate in the
common cavity length. In this paper, we investigate the generation of soliton crystals in the presence of nonlinear
mode coupling, which can induce a modulation on the background wave and modify the cavity dynamics. Under
the condition of suitable wave vector mismatch and nonlinear-coupling-coefficient, high-deterministic perfect
soliton crystals can be realized. Besides, the drifting behavior of the soliton crystals is demonstrated to be
determined by the match between the wave vector mismatch and nonlinear coupling coefficient. Finally, we
successfully observe the recrystallization of the perfect soliton crystals.
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I. INTRODUCTION

Microresonator (MRR)-based dissipative Kerr solitons
(DKSs), which are high-repetition-rate optical pulses circulat-
ing in the cavity, have wide applications for high-speed optical
coherent communications [1], spectroscopy [2,3], microwave
generation [4,5], astrocombs generation [6,7], optical ranging
[8,9], etc. Different from the dissipative solitons generated in
the mode-locked lasers [10], DKSs rely on the double balance
between anomalous cavity dispersion and Kerr nonlinearity
as well as parametric conversion of continuous-wave (CW)
pump and cavity losses [11–13]. Because of many special
properties such as chip-scale integration [14], broadband fre-
quency domains (GHz [15] to THz [16]), and complementary
metal-oxide semiconductor (CMOS) compatibility [17,18],
the relative physical mechanisms and nonlinear dynamics of
DKSs based on Kerr MRRs have been widely investigated to
obtain high-quality microcombs [14,19]. As is known to all,
the nonlinear dynamics of DKS are used to be divided into
several characteristic states including spontaneous modula-
tion instability (e.g., Turing patterns), spatiotemporal chaotic,
breather soliton, and stable soliton states [20–22]. However,
the spatiotemporal chaotic state often results in the stochastic
number of DKS in the MRRs, which is usually more than one.
The spectrum of multiple solitons shows many ditches due
to the interference from the interacting DKSs [23,24]. Thus,
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different schemes for single soliton generation have been in-
vestigated to obtain a smooth spectrum for better applications
[25–27].

Recently, a specific soliton state named soliton crystals
(SCs) has been experimentally demonstrated in the SiN [28]
and silica glass MRRs [29] as well as the silica whispering-
gallery-mode (WGM) resonators [30]. According to their
results, clearly discrete comb lines can be observed and the
corresponding temporal pattern displays a series of equidis-
tant DKSs, which fill the entire angular domain of the
resonator. Thanks to the highly ordered soliton configuration
and several primary comb lines distribution, high-repetition-
rate ultrashort temporal pulses and n2 enhanced comb power
can be obtained through SCs formation, which can effec-
tively avoid bending losses and dispersion management led
by small MRR [31]. It should be noticed that related work
[28] has demonstrated that avoided mode crossings (AMXs)
generally existed in MRRs are able to induce the SCs forma-
tion. AMXs originated from the interaction of fundamental
modes alter the localized MRR dispersion, which induces
(quasi)homogeneous modulations on the CW pumping of the
cavity [30,32]. Actually, the modulated wave can not only be
induced by AMXs but also Kelly sidebands [33], birefrin-
gence [34], and nonlinear mode couplings including second
[23] and third harmonic [24]. If we consider weak effects
of Kelly sidebands and birefringence in the MRRs, nonlin-
ear mode couplings could be of great potential to achieve
the SCs formation. Some works on nonlinear mode coupling
have been investigated including dark soliton formation [35],
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FIG. 1. Schematic diagram of nonlinear-mode-coupling-induced
SCs formation in monolithic Kerr MRRs. The MRR is externally
driven by a CW pump laser and the dimensions of the MRR satisfy
the PMC between the fundamental and the harmonic waves.

soliton regulation [24], and deterministic single soliton for-
mation [23]. Yet, to date, the dynamics of the SCs induced by
nonlinear mode coupling remains unexplored.

In this paper, the SCs formation induced by nonlinear
mode coupling is investigated in detail. We demonstrate the
formation of perfect soliton crystals (PSCs) are tightly linked
to nonlinear coupling coefficient and wave vector mismatch
between fundamental and harmonic modes, which determine
the conversion efficiency from pump to harmonic and phase
matching condition (PMC), respectively. With appropriate
choice of suitable wave vetor mismatch and nonlinear cou-
pling coefficient, high deterministic PSCs containing specified
numbers of solitons can be obtained. With further research,
we find that the match between wave vector mismatch and
nonlinear coupling coefficient play an important role for the
generation of the SCs, while determining the drifting direc-
tion of the PSCs. We reveal the threshold of pump power,
beyond which deterministic PSCs cannot be formed. In ad-
dition, we observe the SCs with different kinds of defects
such as vacancy (Schottky defects) and superstructure [30].
In order to demonstrate the robustness of the PSCs gener-
ated by the nonlinear mode coupling process, we report the
melting-recrystallization cycle of PCSs by accurately varying
the cavity detuning.

II. THEORETICAL MODEL

To visually observe the PSCs formation based on nonlinear
mode coupling, the process is depicted in Fig. 1. As can be
seen, the CW pump from the bus waveguide is coupled into
the cavity and then the PSCs at the fundamental wave and a
series of optical pulses at the harmonic wave can be excited by
scanning the pump wavelength over the cavity resonance. In
the frequency domain, the adjacent comb lines of the funda-
mental and harmonic waves are spaced by n time free spectral
ranges (FSRs) of the resonator, where n refers to the soliton
number in PCSs.

Actually, the microcomb generation based on the resid-
ual second-order nonlinearity has been theoretically and
experimentally demonstrated in SiN and AlN microcavities
[23,35,36]. Although the SiN-based materials are inherently
centrosymmetric, special manufacturing methods such as
sputtering and stressing can be used for the enhancement of
the second-order nonlinearity [37,38]. Here, we choose the
fundamental-second-harmonic (FD-SH) mode coupling as the

major example to investigate the dynamics induced by nonlin-
ear mode coupling. The propagation of the fundamental and
second-harmonic waves in the cavity can be described by the
coupled mean-field Lugiato-Lefever equations (LLEs) [35]:
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where Ej ( j = 1, 2) is the envelope of the electric field, 1
and 2 represent the fundamental and the second-harmonic
waves, respectively; |Ej |2 represents the power of the op-
tical field; z is the propagation distance in the cavity; α1
and α2 are the total losses including the intrinsic and the
coupling losses; δ1 = δ0/L, where L is the cavity length
and δ0 is round-trip phase detuning between the pump fre-
quency ωp and resonance frequency ω0, defined as δ0 = (ω0 −
ωp)τR; k′′

1 = d2kp/dω2|ω = ωp, k′′
2 = d2ks/dω2|ω = 2ωp are

the group velocity dispersions (GVD), where kp and ks are
wave vectors of the pump and second harmonic, respectively.
(k′ = dks/dω|2ωp − dkp/dω|ωp is the group velocity mis-
match; (k = 2kp|ω=ωp − ks|ω=2ωp is wave vector mismatch;
γ1, γ2 are the nonlinear coefficients of self-phase modula-
tion; γ12, γ21 are the nonlinear coefficients of cross-phase
modulation; κ is the second-order coupling coefficient, and
η1 =

√
θ1/L, where θ1 is the power coupling coefficient be-

tween the bus waveguide and the microcavity at the pump
wavelength.

III. RESULTS AND DISCUSSIONS

To demonstrate the effects of the fundamental-harmonic
mode coupling, the Kerr MRR is assumed to sustain both
fundamental mode and harmonic mode nearly satisfying
the PMC. Then we choose the related physical parame-
ters the same to Ref. [23], which are listed as follows:
α1 = 3.038 m−1, α3 = 6.07 m−1, k′′

1 = −100 ps2/km, k′′
2 =

200 ps2/km, (k′ = 7.61 × 10−10 s/m, γ1 = 0.8 W−1m−1,
γ2 = 2.1 W−1m−1, γ12 = 0.6 W−1m−1, γ21 = 1.2 W−1m−1,
κ = 3 W−1m−1, η1 = 75.51 m−1. Besides, to successfully
obtain the PSCs, we set (k = −4.68 × 103 m−1 and Pin = 22
mW. The initial intracavity waveform is white Gaussian noise
and the detuning scanning speed ((δ0) is 1 × 10−7 per round
trip and the detuning is fixed when the PSCs state is estab-
lished. In this condition, the value of (k is estimated to satisfy
the PMC at mode number n = 5 according to the following
equations [23]:

(φ = φ(2ωp + n(ω) − φ(ωp) − φ(ωp + n(ω)

=
(

− (k − 2δ1 − (k′n(ω + k′′
2

2
(n(ω)2

+ γ2⟨|E2|2⟩ + 2γ21⟨|E1|2⟩
)

L, (3)

where φ(ωp) and φ(ωp + n(ω) are the round-trip phase at
the pump modes, which are equal to zero for the SCs state. n

023502-2



NONLINEAR-MODE-COUPLING-INDUCED SOLITON … PHYSICAL REVIEW A 103, 023502 (2021)

FIG. 2. (a) Spectra of fundamental (red vertical lines with
squares) and harmonic (blue vertical lines with circles) waves in the
PSCs state. (b) Temporal waveforms of fundamental (red solid line)
and harmonic (blue dashed line) waves in the PSCs state. (c)–(d) In-
tracavity waveform evolutions of fundamental and second-harmonic
waves, respectively.

is the relative mode number with respect to the fundamental
mode ωp(n = 0) and (ω = 2πFSR. φ(2ωp + n(ω) is the
round-trip phase of the second-harmonic wave. ⟨|E1|2⟩ and
⟨|E2|2⟩ represent the average power of the fundamental wave
and second-harmonic wave, respectively.

Based on the preciously defined parameters, we performed
numerical simulations by split-step Fourier method to solve
Eqs. (1)–(2). As can be seen in Fig. 2(a), the spectrum
of the fundamental wave is similar to the one induced by
AMXs [28] and the adjacent comb line space equals five
FSRs corresponding to the number of solitons (n = 5) in
Fig. 2(b), which are the temporal waveforms at 9.5 × 104th
round trip marked as white dashed lines in Figs. 2(c) and
2(d). The harmonic wave has the same comb line space and
it exhibits dark pulselike temporal waveform. Compared to
the combs in single soliton state, the PSCs have broader
spectra and higher intensity. For the intracavity waveform
evolution of fundamental wave shown in Fig. 2(c), partially
adjacent solitons start to collide and merge into one after Tur-
ing state (6 × 104th round trip). With the power of harmonic
wave increasing, shown in Fig. 2(d), the stronger interac-
tion between fundamental and harmonic waves leads to more
frequent soliton collisions till five solitons left (7 × 104th
round trip). Finally, the PSCs and the dark pulselike wave-
form are left-drifting with the same velocity of 1.24 × 10−5

ps/round trip. Such phenomenon is similar to the case in

FIG. 3. (a) Intracavity power of the fundamental wave with re-
spect to round-trip phase detuning δ0, Blue lines: PSCs, black lines:
SCs with one vacancy. (b) A statistical overview of the generated
soliton states out of 50 scans with the same parameters in Fig. 2.
(c)–(d) Two kinds of spectra evolutions of the fundamental wave for
PSCs and SCs with one vacancy, respectively.

the presence of AMXs. The mechanism of the process can
be interpreted as localized dispersion alteration of the funda-
mental sideband mode due to the substantial photon exchange
of sideband modes caused by the wave vector mismatch.
Such effect leads to a small modulation on the CW back-
ground wave, whose total periods are equal to the side-
band mode number. Then the modulation will arrange the
solitons to lie on the peak of the background wave leading to
the soliton collisions. Apart from the PSCs shown in Fig. 2, we
can obtain other PSCs containing different number of solitons
such as four solitons and six solitons corresponding to (k =
−3.77 × 103 m−1 and (k = −5.64 × 104 m−1, respectively.

Considering that the SCs is presumably to be generated
in the cavity with anomalous dispersion, we investigate the
determinacy of the PSCs formation induced by FD-SH mode
coupling. Figure 3(b) shows the statistical results out of 50
scans with the same parameters in Fig. 2. Forty-eight times
for the PSCs and two times for the SCs with one vacancy
indicate deterministic PSCs formation. All intracavity power
traces of the 50 scans are shown in Fig. 3(a), which are 48
blue lines for the PSCs and two black lines for the SCs with
one vacancy, respectively. The red dashed lines divide the
power traces into three parts marked from A to C indicating
Turing patterns, chaotic state, and SCs state, respectively. The
spectrum evolutions shown in Figs. 3(c) and 3(d) corresponds
to the PSCs and the SCs with one vacancy chosen from the 50
scans, which are also divided by the red dashed lines exactly
corresponding to the specific states in Fig. 3(a).

We would like to notice that (k = −4.68 × 103 m−1 and
κ = 3 W−1m−1 in Fig. 2 are exemplary parameters used in the
numerical simulations for PSCs formation. Actually, the phase
mismatch can be within the range from −4.73 × 103 m−1 to
−4.63 × 103 m−1 according to our simulations. Besides, we
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FIG. 4. (a)–(b) Intracavity waveform evolutions of fundamental wave induced by FD-SH mode coupling when (k = −4.68 × 103 m−1,
κ = 3 W−1m−1, and (k = −4.603 × 103 m−1, κ = 3.6 W−1m−1, respectively. (c)–(d) Intracavity waveform evolutions induced by AMXs
with ( = −12.7 MHz and 133.7 MHz, respectively.

can also obtain PSCs with the same number of solitons (n =
5) when (κ = −4.603 × 103 m−1 and κ = 3.6 W−1m−1 with
other parameters unchanged, as shown in Fig. 4(b). In the
FD-SH coupling case, the coupling strength is determined by
both (k and κ , which is different from the linear coupling
of AMXs. With larger absolute value of (k, the nonlinear
coupling coefficient κ should be larger to ensure sufficient
photon exchange between fundamental and second-harmonic
waves. Thus the match between (k and κ finally contributes
to the deterministic PSCs formation. Compared to the left-
drifting PSCs shown in Fig. 4(a), the PSCs shown in Fig. 4(b)
are right drifting. To understand the drifting direction of PSCs
induced by FD-SH coupling, we compare the nonlinear in-
duced PSCs to the one induced by AMXs, which also lead to
localized dispersion alteration. In the condition of AMX, we
ignore the harmonic wave (E2 = 0, κ = 0) and Eqs. (1)–(2)
can be simplified to a single LLE [39]. AMXs is included
by introducing an additional detuning variation per round trip
(() for a certain mode with mode number n defined as δn =
(ωn − ωp)τR = [(ω0 + 2π FSRn + () − ωp]τR. Keeping all
parameters of fundamental wave (E1) constant, we add an
additional detuning to the mode n = 5. As can be seen, PSCs
shown in Fig. 4(c) with (/2π = −12.7 MHz is left drifting
and PSCs shown in Fig. 4(d) with (/2π = 133.7 MHz is
right drifting. Thus the drifting direction is tightly linked to
the sign of (. Based on the results of AMXs, we can un-
derstand the drifting direction induced by FD-SH coupling in
this way: the localized dispersion alteration determined by the

match between (k and κ will introduce a negative/positive
detuning variation to the sideband mode of the fundamental
wave, which acts as a perturbation to excite the formation of
drifting PSCs.

To gain more insights into the drifting direction of the
PSCs, we run the following simulations to figure out the co-
operation between the wave vector mismatch (k and the
second-order coupling coefficient κ , and the relevant results
are shown in Fig. 5. With 0.1W−1m−1 variation step of κ , we
obtain the complete suitable range of (k for PSCs formation.
The blue and red areas in Fig. 5(a) indicate the left-drifting
and right-drifting PSCs, respectively. The PSCs with other
number of solitons, SCs with vacancy and multiple solitons
state are classified into the cream areas. As can be seen, the
range of wave vector mismatch (k increases with increasing
the coefficient κ and the drifting direction always keeps to
the left corresponding to the blue area in Fig. 5(a). When κ
is more than 3.1 W−1m−1, beside the blue area, the range of
(k corresponding to the red area increases together with κ .
The results in Figs. 4(a)–4(b) exactly correspond to the black
circle and triangle, which are, respectively, marked as A and
C. For κ > 3.1 W−1m−1, there is an intersection between the
blue and the red areas indicating that both left-drifting and
right-drifting PSCs can be obtained with suitable wave vector
mismatch. Figures 5(b)–5(c) correspond to the black circle
and triangle marked as B and C in Fig. 5(a), respectively.
Comparing the two temporal evolutions, we can see that the
right-drifting PSCs display a faster-drifting velocity.
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FIG. 5. (a) Drifting direction depending on the range of the wave
vector mismatch (k and the second-order coupling coefficient κ .
(b)–(c) Temporal evolutions of the left-drifting and right-drifting
PSCs corresponding to the black circle and triangle marked as B and
C, respectively.

Apart from the wave vector mismatch (k and coupling
coefficient κ , the pump power has a significant impact on the
PSCs formation. When increasing the pump power Pin to 32
mW, the statistical results shown in Fig. 6(a) indicate that the
determinacy of the PSCs decrease a lot compared to that in
Fig. 3. Further increasing Pin to 50 mW, the generation of
the SCs with vacancies is dominated as is shown in Fig. 6(b).
Thus the threshold of the pump power Pin is estimated to be
32 mW based on our simulations. Besides, we investigate the
dynamics of the SCs with one vacancy when Pin = 50 mW, the
temporal waveform evolutions of fundamental and second-
harmonic waves are shown in Figs. 6(e)–6(f). Compared to
the results shown in Figs. 2(c)–2(d), the intracavtiy field of
the fundamental wave with higher pump power transforms
into the chaotic state after the Turing pattern, which makes
the evolution process become erratic. By gradually scanning
the round-trip phase detuning, the SCs with a vacancy finally
appear and the harmonic wave also shows a corresponding
vacancy [Fig. 6(d)], which are different from the waveforms
shown in Fig. 2(b). References [29,30] have reported that the
SCs with defects induced by AMXs are sensitive to the pump
power, which will intensifies the fluctuations in the chaotic
state thus changing the initial conditions. For nonlinear-mode-
coupling-induced SCs formation, a larger pump power will
also lead to a more complex interaction between solitons [cf.
Fig. 6(e)]. Besides, we find that a larger wave vector mis-
match will also lead to the SCs with defects. Figure 7 shows
two kinds of SCs exhibiting one vacancy and superstructure,
which are under the conditions: Pin = 22 mW, (k = −4.74 ×
103 m−1 and Pin = 22 mW, (k = −1.03 × 104 m−1, respec-
tively. It should be pointed out that the time windows of
Figs. 7(a) and 7(c) correspond to one round trip of the res-
onator. From this point of view, Fig. 2(c) demonstrated the
full process of crystallization of cavity solitons, which fill the
full angular domain of the resonator. Figure 7(b) illustrates
the characteristic saw-teeth intensity profiles and palmlike

FIG. 6. (a)–(b) The statistical overviews of the generated soliton
states out of 50 scans when Pin = 32 mW and Pin = 50 mW, respec-
tively. The characteristic generation of SCs with on vacancy when
Pin = 50 mW: (c) Spectra of the fundamental (red vertical lines with
squares) and the harmonic (blue vertical lines with circles) waves,
(d) Temporal waveforms of the fundamental (red solid line) and the
harmonic (blue dashed line) waves in SCs state. (e)–(f) Intracavity
waveforms evolution of fundamental and second-harmonic waves,
respectively.

spectrum of soliton crystals in MRRs [29]. And Fig. 7(d)
describes a characteristic scalloped spectrum, which with spe-
cific FSR has recently been proved to have high performance
in ultradense optical data transmission [40].

Based on the linearly forward tuning, the PSCs induced
by the nonlinear mode coupling has been demonstrated to
be deterministic. Moreover, the robustness can be another
important parameter for the PSCs. The phenomenon known as
recrystallization of the PSCs state has theoretically and exper-
imentally been demonstrated in the PSCs formation induced
by AMXs [28]. Here, we utilize this process through back-
ward tuning to the chaotic state and forward tuning back to
the PSCs again to show the robustness, the temporal evolution
of which is shown in Fig. 8(a). We first increase the pump
power of the PSCs shown in Fig. 2 to 30 mW to introduce
a more complex interaction between the solitons during the
chaotic state. Then the initial stable PSCs with clearly discrete
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FIG. 7. Vacancy: (a) Temporal waveforms, (b) spectrum. Super-
structure: (c) Temporal waveforms, (d) spectrum.

comb lines shown in Fig. 8(e) is obtained. With the backward
tuning to the chaotic state, the additional comb lines begin
to appear as is shown in Fig. 8(d) and gradually changes to a
disordered spectrum shown in Fig. 8(c), which are also termed
“PSCs melting” in Ref. [28]. After that, the forward tuning
brings the intracavity waveforms back to the initial stable

FIG. 8. (a) Temporal evolution of the PSCs melting and recrys-
tallization through the backward tuning to the chaotic state and
forward tuning back to the initial PSCs state. (b)–(e) The spectra
at different tuning stages corresponding to the specific round trips
in (a).

PSCs state shown in Fig. 8(b) indicating the success of the
soliton recrystallization.

IV. DISCUSSION AND CONCLUSION

The above statistic analysis and the melting-
recrystallization cycle of the PSCs state have not only
strongly proved its robustness, but also confirmed the high
repeatability for the generation. Compared to the scheme
based on AMXs [28–30], the proposed one in this paper
is able to generate two combs at both fundamental and
harmonic wavelength regimes. More importantly, it provides
another promising approach to obtain the frequency comb at
shorter wavelength range by overcoming the limits of strong
normal dispersion of the common photonics materials such
as SiN and silica [41,42]. It is worth mentioning that we
have mainly discussed the contributions of second harmonics.
However, we would like to emphasize that other nonlinear
coupling such as the third-harmonic generation (THG) will
have similar effects. Previous work has proved that third
harmonic is able to introduce a modulation on the background
wave to arrange the temporal positions of the solitons in the
MRRs. In fact, our additional numerical simulations have
revealed that fundamental-third-harmonic (FD-TH)-induced
crystallization of cavity solitons can also occur in the MMRs.
It means that the generation of the SCs via the mode coupling
between fundamental mode and higher-order harmonics
are universal. However, the waveguide structures that fulfill
the requirements of FD-TH-based nonlinear coupling still
need to be developed. From this point of view, it removes
many restrictions for the materials and geometrical design of
MMRs.

In summary, we theoretically and numerically investigate
the SCs formation induced by nonlinear mode coupling. With
suitable wave vector mismatch and coupling coefficient, a
deterministic PSCs can be obtained by simply sweeping the
pump wavelength. We also find the drifting direction of the
PSCs are tightly related to the match between the wave vec-
tor mismatch and the nonlinear coupling coefficient, which
will introduce different detuning variation to a certain side-
band mode. Besides, there is a threshold of pump power for
the generation of the SCs, which is similar to that in the
presence of AMXs. The nonlinear-coupling-induced soliton
generation can be realized in the presence of either SHG or
THG. This work can be a complementary part of the cavity
soliton dynamics and provide a potential approach for high-
repetition-rate pulse and dual-band comb generation.
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