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Surface enhanced Raman scattering (SERS) technology has become a cutting-edge analytical tool 

for molecule detections. Nowadays, attractive SERS performance has been achieved on noble metal 

nanostructures, however these substrates usually suffer from the difficulties of direct adjusting the 

physical structures to achieve tunable SERS performance. Meanwhile, studies on the semiconductor 

oxides reveal that attractive SERS performance can be obtained on them, but strategies of 

engineering material property for SERS performance improvement still pose as a challenge. Here, 

an electrically programmable SERS substrate is prepared by depositing the hydrothermal 

synthesized MoOx/Ag hybrids within the electrodes as SERS active region. In the experiment, 

electrical field is applied on the electrodes to regulate the Ag+ ion migration and redeposition in the 

MoOx solid electrolyte. Through adjusting the leakage current level, the size of Ag NPs in the 
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MoOx/Ag hybrids is electrically controlled. The SERS performance of the substrate is evaluated by 

using the rhodamine 6G as the Raman reporter. Results evidence that Raman enhancement factor of 

1.13×105, 4.75×105 and 1.04×106 can be obtained by programing the leakage current level to 10-7, 

10-5 and 10-3 A, respectively. And maximum detection limit of 10-8 M is achieved on the 10-3 A 

substrate.  
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Surface enhanced Raman scattering (SERS) technology is renowned for the merits of non-

destructive analysis, ultrahigh sensitivity and molecular fingerprint specificity. It has gained 

extensive research interests for the potential applications in analytical chemistry, biochemical 

detection and food safety etc.[1] Today, the mechanism understanding of the SERS phenomenon is 

classified as electromagnetic mechanism (EM) and chemical mechanism (CM).[2] For the EM, the 

incident light interacts with the noble metals and induces surface plasmon resonances (SPRs). These 

SPRs bring significantly enhanced surface electromagnetic fields, which produces 106 or higher 

Raman intensity enhancement.[3] On the other hand, the CM is always triggered by the photo 

induced charge transfer (PICT) between the adsorbed molecules and the SERS substrate with the 

help of defect levels in the oxides.[4] As a result, the molecular polarizability is significantly 

amplified, producing attractive SERS enhancement.  

Up to date, noble metals (Au or Ag, etc.) in the form of nanoparticles or nanostructures are used 

as SERS substrates for the purpose of generating strong SPRs to gain admirable performance.[5] And 

methods like chemical synthesis or semiconductor fabrication techniques are widely used to prepare 

these nanoparticles or nanostructures. For example, Hiramatsu et al. reported a versatile and 

productive method of preparing nearly mono-dispersed gold or silver nanoparticles with adjustable 

sizes.[6] By modifying the chemical ratio of the tetrachloroauric acid/silver acetate and 

oleylamineoleylamin, large-scale synthesis of gold (6-21 nm) and silver (8-23 nm) nanoparticles 

with the relatively low polydispersities of 6.9% could be achieved. Similarly, Lv et al. reported the 

preparation of gold stars with the core sizes from 26 nm to 50 nm and branches from 7 nm to 10 nm 

by change the mole ratio of tetrachloroauric acid (HAuCl4), ascorbic acid (AA) and 4-(2-

Hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid (HEPES), and each morphology showed 

distinctive SERS performance, which was ascribed to the change of the localized SPRs frequency.[7] 

In the meanwhile, semiconductor fabrication processes of electron-beam-lithography patterning, 

metal sputtering deposition, selective etching and annealing are alternative ways used to fabricate 
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nanostructures for SERS application.[8] However, these approaches always require complex 

experiment designs and accurate parameter control. Furthermore, the above prepared noble metal 

nanostructures also hit the obstacle of flexible adjusting the physical structures to achieve tunable 

SERS performance for the detections of molecules with different SERS activities. 

Oxide semiconductors have been widely investigated for their admirable light-mater interaction 

capabilities and tunable optical property.[9] Recently, the out breaking of the material synthesizing 

and defect engineering methods has brought intensive researches on the oxide semiconductors as 

the SERS substrate.[10] In the literature, inspiring results have demonstrated that oxide materials like 

titanium oxides (TiO2), cuprous oxides (Cu2O), zinc oxides (ZnO), reduced graphene oxides (rGO), 

tungsten oxides (WO3-x) and molybdenum oxides (MoOx) show exceptional SERS characteristics, 

which are ascribed to the defect level assisted PICT and enhancing the CM.[11] Meanwhile, in order 

to prepare oxide semiconductors with prominent SERS activities, diverse oxide defect engineering 

strategies have been developed. For example, reductant like NaBH4, dopamine, ascorbic acid (AA), 

polyethylene glycol (PEG), glucose, ethanol etc. are experimentally used to tune the oxygen 

vacancy density in the chemical synthesized oxide.[12] In addition, methods like dopant intercalation, 

dopant implantation, light irradiation, crystal phase manipulating and electrochemical deposition 

are also extensively used to modify the material properties, introducing abundant defect levels in 

the band structure of oxides and promoting the PICT.[13] To date, despite the fact that the existing 

strategies give the widely tunable defect density and consequently the localized surface plasmon 

resonance (LSPR) properties in the oxides, most of the semiconductor oxides still suffer low SERS 

enhancement capability. Lately, hybrid SERS substrates prepared by combining both noble-metal 

materials and oxides have attracted increasing attentions. The SERS performances of oxide/noble 

metal hybrid structures, for example TiO2-Au, TiO2-Ag, MoOx-Au, graphene oxide/Ag, ZnO/Ag 

and MoOx-Ag hybrid substrates have been evaluated in the research. Relying on the synergetic 

effects of EM and CM, attractive SERS improved performance has been achieved.[14] Nevertheless, 
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it should be mentioned that preparation of metal-oxide/noble metal hybrids always involves multi-

steps of chemical synthesis or extra fabrication process. Additionally, similar as the noble metal 

nanostructures, most of these oxide/noble metal hybrids also confront the disadvantages of 

unchangeable structures, which impede the tunability of the material optical characteristics. 

Herein, we report an electrically programmable SERS substrate prepared by depositing the 

hydrothermal synthesized MoOx/Ag hybrids between the Au electrodes with 10-μm space. Then, 

electrical field is applied between the electrodes to regulate the Ag+ ion migration and redeposition 

dynamics in the MoOx electrolyte. Through adjusting the leakage current level between the 

electrodes, experimental results demonstrate that the size of Ag NPs in the MoOx/Ag hybrids could 

be precisely tuned. Moreover, the SERS performance of the prepared substrate is evaluated by using 

the rhodamine 6G (R6G) as the Raman reporter. The measured SERS spectra evidence that the 

detection capability of the substrate can be promoted when the leakage current increases, and with 

the continuous raising of the leakage current level to 10-3 A, maximum Raman enhancement factor 

of 1.04×106 and detection limit of 10-8 M can be achieved. In all, this novel SERS substrate provides 

an attractive way of preparing a dynamically tunable SERS substrate for high sensitivity sensing 

applications. 

MoOx/Ag hybrids were synthesized by a quick (3 hours) and low temperature (80 ºC) 

hydrothermal method (see the Material Synthesis in Experimental Section).[12] Scanning electron 

microscopy detection was first performed. As shown in the Figure 1(a) and (b), MoOx nanorods 

with the diameter of 250 nm are detected, and sparse Ag NPs randomly anchor on the MoOx 

nanorods, indicating that the MoOx provides good nucleation sites for Ag NPs. Thereafter, 

transmission electron microscopy (TEM) analysis in Figure 1(c) discerns that the average size of 

the synthesized Ag NPs is about 7.2 nm, while the high resolution TEM (HRTEM) image (inset of 

Figure 1(c)) reveals that the lattice space of the synthesized MoOx nanorode is 3.518 Å, which 

corresponds to the (200) face of the monoclinic MoO3. And the lattice space of the Ag NP is 1.139 
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Å, which reflects the (311) face of Ag metal. Selective area electron diffraction (SEAD) analysis 

was also performed on the hybrids. The obtained diffraction pattern shown in Figure 1(d) reveals 

that the (100), (101) and (200) face of the monoclinic crystal phase. Finally, the electron dispersion 

spectra (EDS) element mapping in the Figure 1(e) further confirms that the MoOx nanorods surface 

is covered by Ag NPs  

The optical properties of the MoOx/Ag hybrids were investigated as well. The UV-vis absorption 

spectra of the MoOx/Ag hybrids and pure MoOx are shown in the Figure 2(a). The spectra 

measured on MoOx/Ag hybrids display a strong absorption peak near 210 nm, which is induced by 

the light absorption of the tetrahedral MoOx. In the meanwhile, two weak and relatively broad 

absorption humps appear near 236 and 275 nm (band 1 and 2), which are contributed by the Mo6+ in 

an octahedral structure. While the fourth weak absorption peak near 330 nm is ascribed to be the 

interaction between the Ag NPs and incident light (band 3). On the other hand, the UV-vis 

absorption spectra measured on MoOx only show the band gap absorption edge (wavelength < 350 

nm), and the absorption induced by the defects at the long wavelength (wavelength > 500 nm) is 

very weak, indicating the MoOx prepared in this work is defect deficiency.[15] The Raman spectra of 

the MoOx/Ag hybrids were collected and shown in Figure 2(b). It can be observed that the spectra 

are comprised by complex Raman vibrational modes. The characteristic peaks at 366 cm-1 can be 

assigned to the vibrational modes of σ (Mo=O), and peaks at 596 and 63  cm-1 are attributed to the 

γ (Mo-O-Ag) vibrational mode, indicating the formation of the Ag-O bond during the reduction 

process. In addition, the peak at 870 cm-1 is assigned to ν (Mo-O-Mo) vibrational mode, whereas 

peaks at 910 and 938 cm-1 are ascribed to the ν (Mo=O) vibrational modes.[16]  

To realize the electrical tuning of the MoOx/Ag hybrids, in the subsequent steps, the MoOx/Ag 

hybrids (wt%: 2.5%) were dissolved in H2O and ethanol (5:3) mixed solution again, sonicated for 

10 min, and then spin coated on the Si wafer with prefabricated 100-nm thickness of paired Au 

electrodes. The prepared substrate was annealed at 80 °C for 0.5 h in the air to improve the 
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adhesion. Figure 3(a)-(c) shows the optical image, schematic structure and SEM image of the 

prepared SERS substrate. It can be found that the spin-coated MoOx/Ag hybrids remain the 

nanorods morphology and form thin film on the wafer surface with 92-nm physical thickness 

(Figure 3(d)). More specifically, the MoOx/Ag hybrids in the space between the Au electrodes with 

the dimension of 10×10 μm2 composes the SERS active region, while the two electrodes are used to 

electrically program the active region.  

Electrical tuning of the MoOx/Ag hybrids in our work was conducted by using a Keithley 4200-

SCS semiconductor parameter analyzer. As an electro-active material, the anodic dissolution rate of 

the silver metal under the electrical field can reach 35.6 nm·s-1.[17] In the experiment, when the 

electrical bias was applied on the electrodes, the Ag anodically dissolved and Ag+ ions migrated 

along the electrical field towards the cathode in the MoOx oxide electrolyte. During the migration 

process, the Ag+ ions were reduced when they met the electrons from the cathodes, and redeposited 

near the cathodes side again.[18] Relying on the above electro-migration mechanism, the dissolution 

rate of Ag+ ions were controlled through adjusting the current level between the electrodes during 

the programing period, and consequently the size of the redeposited Ag NPs were regulated within 

the oxide electrolyte. Therefore, in our experiment, the current level through the SERS active region 

was controlled by setting the current compliance during the voltage sweep on the two electrodes 

(Figure 4(a)). Typically, three similar SERS substrates with the designated leakage current level 

(10-7, 10-5 and 10-3 A) were programmed, respectively. At this stage, it was worth noting that, for 

the purpose of preventing catastrophic breakdown of the MoOx/Ag hybrids when the voltage 

exceeded a certain threshold voltage (>100 V), our voltage sweeps were carried out in multi-steps. 

In the first step, when the MoOx/Ag hybrids was in the pristine state, the current compliance was set 

to 10-7 A. When the sweep voltage climbed, the leakage current simultaneously increased until it 

reached the first compliance of 10-7 A, then the sweep voltage was stopped. Thereafter, for the 

device needed to be programmed to higher leakage current, the current compliance was tuned to 10-
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5 A and 10-3 A, respectively, and the voltage sweep was applied again until the leakage current 

finally reached the specific level. At this moment, it could be found from the I-V curve in Figure 

4(a) that, below the threshold voltage, all three devices own relatively low leakage current (<1×10-

10 A@1V). This indicates that, although Ag NPs are stationed on the MoOx nanorods, the density of 

the Ag NPs is relatively low, and thus they are not connected with each other to form the current 

path. However, only after the voltage sweep, the migration of Ag+ ions and gradual increase of the 

Ag NPs size forms the current path, resulting in the rising of the device leakage current.  

The SERS performance was evaluated by using the rhodamine 6G (R6G) as the probe molecules. 

During the measurement, a 532-nm semiconductor laser was used as the excitation source, and the 

spot diameter of the laser on the substrate was 12.5 um (100× objective lens), which could cover the 

SERS active area. The Raman spectra were collected under a laser power of 1 mW with an 

integration time of 10 s. The measured Raman spectra were shown in Figure 4(b). It can be found 

that no detectable Raman peak can be observed on the silicon substrate when the concentration of 

R6G is 10-4 M. On the other hand, relatively faint Raman peaks originate from R6G were observed 

on the pristine MoOx substrate and pristine MoOx/Ag hybrids device, which can be ascribed to the 

weak Raman signal enhancement of these two substrates (see Figure S1 in the Supporting 

Information). Furthermore, when the leakage current increase to 10-3 A, the fingerprint peaks of 

R6G are enhanced remarkably, indicating the SERS performance of the MoOx/Ag hybrids is 

improved through the electrical programing. In detail, prominent Raman peaks of R6G at 609, 769, 

1193, 1355, 1471, 1538, 1605 and 1646 cm-1 are observed on the collected SERS spectra. The peaks 

located at 609 cm-1 is due to the C-C-C ring in-plane bending, and 769 cm-1 is assigned to out-of-

plane bending of the C-H atom on the xanthene’s skeleton. Moreover, peak at 1193 cm
-1 arises from 

the C-H in-plane bending. And the peaks from 1355 to 1646 cm-1 belong to aromatic C-C stretching 

vibration modes. In addition to that, the Raman signals intensities on substrates with the 10-5 A and 

10-7 A programmed leakage current were also collected and shown in Figure 4(b). Impressively, the 
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measured Raman intensity decreases with the reducing of the leakage, revealing that the change of 

MoOx/Ag hybrids SERS property is closely related to the leakage level and the Raman enhancement 

capability of the substrate can be electrically programmed by fine control of the voltage sweep. The 

enhancement factors (EFs) of the three substrates with 10-7, 10-5 and 10-3 A leakage current are 

calculated by integrating the Raman peak at 1355 cm-1 (see the Supporting Information). Through 

the calculation, Efs of 1.13×105 (10-7 A), 4.76×105 (10-5 A) and 1.04×106 (10-3 A) are achieved for 

the respective leakage current level, which further verifies the tunable SERS performance (Figure 

4(c)). The detection limit of the substrate with 10-3 A is also accessed by detecting the R6G 

solutions with different concentrations. It shows in Figure 4(d) that the intensities of the 

characteristic peaks coincidentally drop with the decrease of the R6G concentration, and the 

minimum detectable concentration of 10-8 M can be achieved when the substrate leakage is 10-3 A.  

In the end, to explore the physical mechanism of the improved SERS performance of the 

MoOx/Ag hybrids after electrical programming, the optical and SEM image were first investigated 

and shown in Figure 5(a) and (b). It can be observed in the optical image that discernible change of 

the MoOx/Ag hybrids happens near the cathodes. In the meanwhile, from the SEM detection on the 

electrically programmed substrate (Figure 5(b)), it further illustrates that the size of Ag NPs 

(average size: 38.97 nm) significantly grows up as compared to that (average size: 7.25 nm) in the 

pristine state, which can be ascribed to the Ag+ ion electro-deposition on the initial Ag NPs during 

the voltage sweep step. Moreover, it also can be observed on the SEM image that the MoOx 

changes from monoclinic phase (nanorods) to orthorhombic phase (nanoflakes), resulting from the 

thermal effect during the programing phase.[19] On this basis, it is observed that Ag NPs and MoOx 

forms more robust heterojunction after electrical programing, however, band edge alignment 

between Ag NPs and MoOx reveals that they form ohmic contact kind of heterojunction, resulting 

in little help on promoting the charge transfer (see Figure S2 in the see the Supporting 

Information).[20] In the meanwhile, as shown in the Figure S1, the chemical enhancement from the 
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pure MoOx is also insignificant when compared to the total SERS enhancement, thus it can be 

inferred that SERS enhancement of the of the MoOx/Ag NPs hybrids is main contributed by the EM 

from Ag NPs. Therefore, finite-difference time-domain (FDTD) simulation is performed to 

investigate the Ag NPs’ surface electromagnetic field. The MoOx/Ag hybrids before and after 

electrical programing were modeled based on the SEM detection images (see Figure S3 in the 

Supporting Information), and the surface electromagnetic fields were extracted. As it is shown in 

Figure 5(c) and (d) that LSPR are generated on both MoOx/Ag hybrids under the light irradiation. 

However, it also can be clearly found that much stronger surface electromagnetic field exists on the 

Ag NPs with larger size compared to that on the pristine Ag NPs with relatively smaller size, which 

consequently boosts the SERS performance significantly.  

To summarize, an electrical programmable SERS substrate prepared by the MoOx/Ag hybrids is 

demonstrated. Through controlling the leakage current level, the size of Ag NPs in the MoOx/Ag 

hybrids can be precisely controlled. The SERS performance with different programmed leakage 

levels is evaluated by using the R6G as the Raman reporter. Experimental results show that tunable 

Raman enhancement factor of 1.13×105 (10-7 A), 4.75×105 (10-5 A) and 1.04×106 (10-3 A) can be 

obtained. And maximum detection limit of 10-8 M can be achieved on the 10-3 A substrate. In the 

end, physical simulation reveals that the increase of Ag NPs size after electrical programming shifts 

the LSPR frequency towards the 532-nm laser excitation source, which significantly promotes 

surface electromagnetic field of Ag NPs and enhances the SERS performance. 

 

Experimental Section  

Materials: Glucose (99%) was purchased from Macklin; ammonium heptamolybdate 

(AHM, >99%), silver nitrate (AgNO3, 99.8%), ethanol (99.7 %) and nitric acid (HNO3, wt%: 68%) 

were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used without 

further purification. In all the experiments, deionized water (resistivity of 18.2 MΩ ·cm) was used 

to prepare the solutions. 
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Material Synthesizing: MoOx/Ag hybrids were prepared by a low temperature chemical synthesis 

reaction. Basically, AHM (882.7 mg) was used as molybdenum source and dissolved into deionized 

water (25 ml), then the mixed solution was stirred slowly (8000 rpm) at 80 °C. Thereafter, glucose 

solution (20 ml, wt%: 2.57%) was slowly added into the above mixed solution and stirred for 10 

minutes. After that, HNO3 (150 ul, wt%: 68%) was added into the mixed solution. After one-hour 

reaction, the mixed solution turned dark blue, and then AgNO3 solution (25 ml, wt%: 1.94%) was 

slowly added to the above solution, and the stirring rate was accelerated to 15000 rpm for two hours. 

After the reaction was completed, the product was centrifuged, washed with acetonitrile, ethanol 

and deionized water, respectively, and finally dried in the oven at 80 °C for 8 hours. 

Characterization: Voltage sweep and leakage current measurements were performed using a 

Keithley 4200-SCS semiconductor parameter analyzer system (Tektronix, US). The SEM images of 

the substrates were acquired by a Hitachi SU-70 system (Hitachi, Japan) under an accelerating 

voltage of 5 kV. The TEM images were obtained on a JEM-2100F transmission electron 

microscope (JEOL, Japan). The UV-vis spectra were collected with a spectrometer (TU1901, P-

General, Samutprakarn, Thailand). SERS measurements were made by a Raman microscope 

equipped with a spectrometer (QE Pro, Ocean Optics, USA). A 532-nm semiconductor laser was 

used as the excitation source, and the diameter of the spot size of the laser on the substrate is 12.5 

μm (100× objective lens). The Raman spectra were collected under a laser power of 1mW, and an 

integration time of 10 s.  

Supporting Information  

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. a) and b) The SEM images of the MoOx/Ag hybrids with different magnifications. c) The 

TEM image of the MoOx/Ag hybrids. The inset in (b) shows the lattice space of MoOx and Ag, 

respectively. d) The SEAD pattern of the MoOx/Ag hybrids. e) The EDS mapping images of the Mo, 

Ag and O element on the MoOx/Ag hybrids. 
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Figure 2. a) The UV-vis absorption spectra of the MoOx/Ag hybrids and pure MoOx. The inset in (a) 

shows the optical image of the MoOx/Ag hybrids solution. b) The Raman spectra of the MoOx/Ag 

hybrids.  
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Figure 3. a) The optical image of the pristine substrate. b) The schematic structure of the SERS 

substrate. c) The SEM image of the pristine substrate. d) The SEM cross-section image of the 

substrate.  
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Figure 4. a) The I-V curves obtained during the electrical programing. b) The SERS spectra 

measured on different substrates. The concentration of R6G is 10-4 M. c) The calculated 

enhancement factor of the substrate with 10-7, 10-3 and 10-3 A leakage current. d) The detection 

limited of the substrate with 10-3 A leakage current. 
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Figure 5. a) The optical images of the SERS substrates before and after electrical programming. b) 

The SEM surface image of the SERS substrate after electrical programming. c) The simulated 

surface electromagnetic field of the SERS substrate before electrical programming. d) The simulated 

surface electromagnetic field of the SERS substrate after electrical programming.  
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An electrically programmable SERS substrate prepared by depositing the hydrothermal synthesized 

MoOx/Ag hybrids is presented. By using the rhodamine 6G as the Raman reporter,  tunable SERS 

performance with the Raman enhancement factor of 1.13×105, 4.75×105 and 1.04×106 can be 

obtained by programing the leakage current level to 10-7, 10-5 and 10-3 A, respectively.  

 
Keywords: surface enhanced Raman scattering; electrical programing; molybdenum oxide/Ag NP 

hybrids; electromagnetic enhancement 
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