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Abstract
By introducing the sub-wavelength grating (SWG) waveguide in the long-range surface phonon resonance (LRSPhR) device, 
a mid-infrared Fano resonance is formed due to the coupling between surface phonon polariton and Bloch mode. By taking 
advantage of strong light-matter interaction in the SWG, such Fano resonance is expected to offer improved sensing per-
formance. Based on the rigorous coupled-wave analysis (RCWA) method, the index sensitivity and figure of merit of such 
a sensor reach 7496 RIU−1 and 46,432, respectively, which is 6 times compared with the conventional waveguide-coupled 
LRSPhR. The proposed SWG-coupled Fano resonance can be a promising platform for mid-infrared biochemical sensing.
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Introduction

Surface plasmon resonance (SPR) is a guided mode propa-
gating along flat planar and sensitive to the changes in the 
environment. Under the phase-matching condition, the cou-
pling between the incident light with the surface-guided 
mode can be achieved through the attenuated total reflec-
tion (ATR) mechanism [1–3]. Surface plasmon resonance 
(SPR)-based sensors have gained wide interests in medi-
cine, environmental monitoring, and security [4, 5]. Over 
the past years, researches on SPR sensors based on noble 
metals such as Au and Ag have mainly limited in the visible 
and near-infrared (NIR) wavelength regime [6, 7]. In longer 
wavelength, e.g., mid-infrared (MIR), the conventional met-
als behave as perfect conductors with strong intrinsic loss, 
which limits the excitation of the SPR effect [8, 9]. To imple-
ment sensors in MIR, people have explored the use of polar 
dielectric materials, which supports the surface phonon 

polaritons (SPhPs). The lifetime of SPhP mode could be 
up to picosecond order, which is one to two orders longer 
than that of surface plasmon polariton (SPP) mode [10–12]. 
With the coupling between optical photons and SPhPs, sur-
face phonon resonance (SPhR) can be excited. Based on 
such characteristics, SPhR has been considered as a low loss 
alternative of SPR in MIR.

The SPhR effect offers a promising approach to imple-
ment the refractive index (RI) sensor in the MIR. From the 
viewpoint of precise sensing, the most important two param-
eters are the sensing accuracy and figure of merit (FOM). 
In order to increase the sensing accuracy, the resonance 
should be as narrow as possible to precisely estimate the 
resonance angle change. For this purpose, Fano resonance 
(FR) with asymmetric line shape is regarded as an effective 
method [13–18]. FR originates from the coupling between 
SPP/SPhP mode and waveguide photonic mode. In order 
to further enhance the sensing performance, it is desired 
to enlarge the contacting area between the waveguide sur-
face and sensing medium. Recently, sub-wavelength grating 
(SWG) whose period is much smaller than the operation 
wavelength has been widely investigated. This is because 
the SWG can support Bloch mode with tailorable dispersion 
properties and low loss [19–24]. From the viewpoint of sens-
ing, the smaller duty ratio compared with the conventional 
waveguide can further increase the light-matter interaction 
[25, 26]. It is expected that, by introducing SWG in the FR-
based index sensor, the performance can be enhanced.
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In this paper, a new SWG-coupled long-range surface 
phonon resonance (SWG-LRSPhR) sensor operating in the 
MIR wavelength region is proposed. The coupling between 
SPhP mode and SWG Bloch mode forms the FR line shape. 
The overlap between the electromagnetic field and the sens-
ing medium is enhanced due to the enlarged contacting sur-
face of the SWG waveguide. Furthermore, to better assess 
the sensing performance, both the sensitivity and FOM are 
investigated in detail. Such configuration can be used in vari-
ous bio- and chemical-sensing applications.

Materials and Methods

The structure for conventional stripe waveguide-coupled 
long-range surface phonon resonance (WG-LRSPhR) based 
on Kretschmann configuration is shown in Fig. 1a. With the 
homogeneous ZnSe layer replaced by the ZnSe grating, the 
SWG-LRSPhR sensor can be formed, as shown in Fig. 1b.

Both structures consist of a germanium (Ge) prism, bar-
ium fluoride (BaF2), silicon carbide (SiC), barium fluoride, 
zinc selenide (ZnSe), and the sensing medium layer. For the 
initial investigation, the following parameters are used: the 
thickness of BaF2 layer d1 = 4 μm, SiC layer t = 0.7 μm, 
BaF2 layer d2 = 8 μm, ZnSe layer hg = 2.8 μm, the grating 
period Λ = 0.5 μm, and the grating width wg = 0.25 μm. In 
the absence of free charge carriers, the frequency-depend-
ent complex dielectric permittivity of SiC can be given as 
[27–29]:

where the optical phonon frequency ωLO = 972 cm−1, 
the transverse optical phonon frequency ωTO = 796 cm−1, 
the damping rate γ = 3.75 cm−1, and the high-frequency 
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dielectric constant ε∞ = 6.5. With wavelength ranges from 
10 to 15 μm, the Reststrahlen band defined by ε′SiC < 0 cor-
responds to ωTO < ω < ωLO that is shown in Fig. 2. With 
the negative dielectric constant real part, SPhP modes can 
be supported. At λ = 10.8 μm, the period of ZnSe grating 
Λ = 0.5 μm, about one-twentieth of the wavelength, match-
ing the propagating light condition and SWG behaves as 
the homogeneous metamaterial [20, 23]. The corresponding 
refractive indexes used are np = 4.0037 for the Ge prism, 
nBaF2 = 1.3919 for BaF2, nZnSe = 2.3950 for ZnSe, and 
ns = 1.332 for the sensing medium [30].

With the structure parameters mentioned above, the ATR 
curve of TM-polarized light calculated by rigorous coupled-
wave analysis (RCWA) method [31–34] is shown in Fig. 3a. 
On the left side of LRSPhR, a sharp asymmetric FR arises. 
There are three dips with the incident angle ranging from 
20 to 25°, denoted as ‘A’, ‘B’, and ‘C’, respectively, where 

Fig. 1   a Structure of the WG-
LRSPhR sensor consisting of 
the Ge prism, BaF2, SiC, BaF2, 
ZnSe, and sensing medium. b 
Structure of the SWG sensor 
consisting of the Ge prism, 
BaF2, SiC, BaF2, ZnSe grating, 
and sensing medium

Fig. 2   The real part (red line) and imaginary part (blue line) of the 
permittivity of SiC, following the Drude-Lorentz model
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the value of Z-axis represents the distance from each layer 
to the prism surface. Fig. 3 b and c show the electric field 
distributions of the dip ‘A’, ‘B’ at 22.5944 and 22.6483°, 
respectively. It is revealed that large electric fields appear 
around ZnSe grating, caused by the coupling between 
Bloch mode and SPhP. Fig. 3 d corresponds to the dip ‘C’ at 
23.2190°. Strong symmetric electric fields generated at the 
BaF2-SiC-BaF2 interface and decay exponentially away from 
the interface, indicating the excitation of LRSPhP mode.

Fano resonance exhibits a sharp asymmetric profile due 
to the strongly trapped resonance, where the reflectance 
can drop sharply from the peak to the valley of the spectra. 
High sensitivity can be provided to the index variations of 
the nearby or surrounding medium because of such a small 
angle change. Fig. 4 a shows that with the parameters fixed 
and the RI of sensing medium ranging from 1.332 to 1.333, 
the FR shifts to a larger angle.

The detectable change of RI determines the quality of 
the sensor. For evaluating the performance of the sensor, 
sensitivity (S) and FOM are given as follows:

FOM = ΔR/(R*Δn)(3)
where ΔR is the change of reflectivity caused by the 

change of index Δn, R denotes the reflectance in the pro-
posed structure [30, 35]. With Δn = 10–3, Fig. 4b shows 
the sensitivity as a function of the incident angle. The 
peak of the curve in Fig. 4b is defined as Smax, which is 
employed to compare the sensitivities to different types 
of sensors.

(2)S(�) = lim
Δn→0

ΔR(�)

Δn
=
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Fig. 3   a ATR curve of the sub-
wavelength grating structure. 
b–d Electric field distributions 
at A, B, C in Fig. 3a with RI of 
sensing medium of 1.332

Fig. 4   a Variation in ATR curves with respect to the RI of sensing medium ranging from 1.332 to 1.333. b Sensitivity as a function of incident 
angle with Δn = 0.001
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Results and Discussions

For further optimization, we investigate the sensing per-
formance as function of period, duty ratio, height of grat-
ing layer, and thickness of BaF2, respectively. Fig.  5 a 
demonstrates the variation of ATR curves with the thick-
ness of the BaF2 layer varying from 8.0 to 12.0 μm. Appar-
ently, with a thicker BaF2 layer, the coupling between 
Bloch mode and SPhP is weaker, resulting in a narrower 
FR. Also, it is obvious that narrower resonance makes a 
sharper FR curve, leading to higher sensitivity and FOM. 
Variations of the sensitivity and FOM as functions of BaF2 
thickness are shown in Fig. 5 b and c, respectively. The 
sensitivity and FOM keep increasing with the increment 
of the thickness of BaF2. With d2 = 12.0 μm, they are 
5675 RIU−1 and 70,586, respectively.

ATR curves under different grating height are calcu-
lated and plotted in Fig. 5d, with d2 fixed at 12 μm. It is 
clearly shown that with the increment of grating height, 
the resonant angle of FR keeps increasing, but the res-
onant shape remains almost unchanged. Fig.  5 e and f 
show the variations of sensitivity and FOM with ZnSe 
grating height ranging from 2.55 to 3.5 μm. Both sensi-
tivity and FOM experience sharp fall before maximizing 
at d3 = 3.4 μm and 3.25 μm, respectively. This can be 
attributed that when the resonant peaks of Bloch mode 
and SPhP get too close, the two modes interact with each 

other drastically. The FR becomes more like symmetric 
electromagnetic induced transparency (EIT) shape with a 
broader resonant angle.

Fig.  6 a shows the variation of ATR curves with various 
periods of ZnSe grating. When the period is in the range 
from 0.5 to 2.5 μm, the LRSPhR angle remains almost 
unchanged. However, according to Fig. 6 b and c, with the 
increment of the period, both sensitivity and FOM increase 
exponentially. This is because a larger period offers a larger 
contacting area for the sensing medium.

Fig.  6 d shows the variation of ATR curves with duty 
ratio ranging from 40 to 60%. The resonant angles of FR 
keep increasing from the left side to the right side of SPhR. 
Fig.  6 f illustrates the FOM of the proposed SWG sensor 
maximized with a duty ratio of 57.5%.

Moreover, in order to compare the performances between 
the SWG-LRSPhR sensor and conventional WG-LRSPhR 
sensor, sensitivity and FOM have been calculated with 
BaF2 thickness ranging from 8.0 to 12.0 µm, as shown in 
Fig. 7a–d. Noted that with the height of the ZnSe layer 
of WG-LRSPhR sensor fixed at 1.7 µm, 1.8 µm, 1.9 µm, 
and 2.0 µm, we adjust the grating height of SWG-LRSPhR 
sensor to ensure the same resonant angle for comparison. 
Also, in order to track the sharp slope within the dynamic 
regime, the change of RI Δn and angle resolution Δθ have 
been resized. As shown in Fig. 7a–d, the SWG-LRSPhR 
sensor has good monotonicity and better performance than 

Fig. 5   Angle-resolved density plots of the reflectance with various a BaF2 thickness and d height of ZnSe grating. b, e Sensitivity and c, f FOM 
as functions of BaF2 thickness and height of ZnSe grating, respectively
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its counterpart. With thicker BaF2, the advantages of SWG-
LRSPhR are more pronounced.

Discussion and Conclusion

Over the past years, researchers have made great efforts to 
develop the SPR-based sensors’ unique advantages such as 
high sensitivity and miniaturization [36–41]. The devices 
reported in the above-mentioned references are mainly work-
ing in the visible or near-infrared (NIR) wavelength regime. 
Thus, the footprints are much smaller than the one in our 
manuscript, which operates in the mid-infrared (MIR) wave-
length regime. To further reduce the size, materials sup-
porting surface wave in the MIR, e.g., graphene and tran-
sition-metal dichalcogenide (TMDC), can be employed. In 
the future, optimizing the structure to produce more Fano 
resonances in single device [42] and introducing two-dimen-
sional materials for enhancing the light-matter interaction 
are considered to improve the sensor performance [43].

In conclusion, a SWG-LRSPhR-coupled FR sensor has 
been proposed in MIR. RCWA method has been employed 
to optimize the structure parameters. Sensitivity and FOM 
have been employed to assess the sensing performance of RI. 
Numerical results have demonstrated clearly that the sensi-
tivity and FOM of such a structure can reach 7496 RIU−1 

and 46,432, respectively, which shows 6 times enhancement 
compared with the conventional WG-LRSPhR sensor. With 
such an excellent performance, the configuration can be a 
promising platform for biochemical sensing in the MIR.
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