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1 Entropy

Entropy is a measure of uncertainty of a random variable. The uncertainty or
the amount of information containing in a message (or in a particular realization
of a random variable) is defined as the inverse of the logarithm of its probabil-
ity: log(1/PX(x)). So, less likely outcome carries more information. Let X
be a discrete random variable with alphabet X and probability mass function
PX(x) = Pr{X = x}, x ∈ X . For convenience PX(x) will be denoted by p(x).
The entropy of X is defined as follows:

Definition 1. The entropy H(X) of a discrete random variable is defined by

H(X) = E log
1

p(x)

=
∑
x∈X

p(x) log
1

p(x)
(1)

Entropy indicates the average information contained in X. When the base
of the logarithm function is 2, the entropy is measured in bits. For example the
entropy of a fair coin toss is 1 bit.
Note: The entropy is a function of the distribution of X. It does not depend on
the actual values taken by the random variable, but only on the probabilities.
note: H(X) ≥ 0.

Example 1. : Let

X =
{

1 with probability p
0 with probability 1− p (2)

Show that the entropy of X is

H(X) = −p log p− (1− p) log(1− p) (3)

Some times this entropy is denoted by H(p, 1 − p). Note that the entropy is
maximized for p = 0.5 and it is zero for p = 1 or p = 0. This makes sense because
when p = 0 or p = 1 there is no uncertainty over the random variable X and
hence no information in revealing its outcome. The maximum uncertainty is
when the two events are equi-probable.

Example 2. : Suppose X can take on K values. Show that that the entropy
is maximized when X is uniformly distributed on these K Values and in this
case, H(X) = logK.

Solution: Calculating H(X) results in:

H(X) =
K∑
x=1

p(x) log
1

p(x)
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Figure 1: H(p) versus p

Since log(x) is a concave function, using Jenson inequality for concave function
f(x) stated below: ∑

λif(xi) ≤ f
(∑

λixi

)
it is clear that

H(X) =
∑
x

p(x) log
1

p(x)
≤ log

(∑
x

p(x)
1

p(x)

)

So H(x) ≤ logK. It means that the maximum value for H(x) can be logK.
Choosing p(X = i) = 1/K, we can obtain H(X) = log 1/K. So uniformly
distributed X maximize the entropy and this entropy is logK.

There is another way to solve this problem using Lagrange multipliers. We
are going to maximize

H(X) = −
K∑
k=1

P (X = k) logP (X = k)

The constraint of this maximization is

g(p1 + p2 + ...+ pK) =
K∑
k=1

pk = 1
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So by changing pi we try to find the maximum point of H. For all k from 1 to
K we should maximize

H + λ(g − 1)

Hence we require:
∂

∂pk
(H + λ(g − 1)) = 0

It means that:

∂

∂pk

(
−

K∑
k=1

p(k) log p(k) + λ(
K∑
k=1

pk − 1)

)
= 0

After calculating the differentiation we obtain a set of K independent equa-
tions as:

−
(

1
ln 2

+ log2 pk

)
+ λ = 0

Solving this equation, we remark that all the pk have the same value. So the

pk =
1
K

As a conclusion, the uniform distribution yields the greatest entropy.

2 Joint and conditional entropy

We saw the entropy of a single random variable (RV) and we now extend it to
a pair of RV.

Definition 2. The joint entropy H(X,Y ) of a pair of discrete random variables
(X,Y ) with a joint distribution p(x, y) is defined as:

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (4)

which can also be expressed as

H(X,Y ) = −E log p(X,Y ) (5)

The conditional entropy is defined at the same way. It is the expectation of
the entropies of the conditional distributions:
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Definition 3. If (X,Y ) ∼ p(x, y), then the conditional entropy H(Y |X) is
defined as:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) (6)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (7)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (8)

= Ep(x,y) log p(Y |X) (9)

Theorem 1. (chain rule)

H(X,Y ) = H(X) +H(Y |X) (10)

The proof comes from the fact that

log p(X,Y ) = log p(X) + log p(Y |X)

and then take the expectation.

3 Mutual information

The mutual information is a measure of the amount of information that one
random variable contains about another random variable. It is the reduction of
uncertainty of one random variable due to the knowledge of the other. It is:

I(X;Y ) = H(X)−H(X|Y ) (11)

= Ep(x,y) log
p(X,Y )
p(X)p(Y )

(12)

= H(Y )−H(Y |X) (13)
= I(Y ;X) (14)

The diagram of figure 2 represents the relation between the conditional entropies
and mutual information.

The chain rule can be stated here for the mutual information. First we define
the conditional mutual information as:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) (15)

Using this definition the chain rule can be written.

I(X1, X2;Y ) = H(X1, X2)−H(X1, X2|Y ) (16)
= H(X1) +H(X2|X1)−H(X1|Y )−H(X2|X1, Y ) (17)
= I(X1;Y ) + I(X2;Y |X1) (18)
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Figure 2: Relation between entropy and mutual information

Some properties

•
I(X;Y ) ≥ 0

•
I(X;Y |Z) ≥ 0

• H(X) ≤ log |X | where |X | denotes the number of elements in the range of
X, with the equality if and only if X has a uniform distribution over X .

• Condition reduces entropy:

H(X|Y ) ≤ H(X)

with equality if and only if X and Y are independent.

• H(X1, X2, . . . , Xn) ≤
∑n
i=1H(Xi) with equality if and only if the Xi are

independent.

• Let (X,Y ) ∼ p(x, y) = p(x)p(y|x). The mutual information I(X;Y ) is a
concave function of p(x) for fixed p(y|x) and a convex function of p(y|x)
for fixed p(x).

4 Data Compression or Source Coding

Two classes of coding are used: lossless source coding and lossy source coding.
In this section, only lossless coding will be considered. The data compression
can be achieved by assigning short descriptions to the most frequent outcomes
of data source and then longer to the less probable. For example in Morse code,
the letter ”e” is coded by just a point.

In this chapter some principles of compression will be given.

Definition 4. A source code C for a random variable X is a mapping from X ,
the range of X, to D, the set of finite length strings of symbols from a D-ary
alphabet. Let C(x) denote the codeword corresponding to x and let l(x) denote
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the length of C(x).

Example 3. : If you toss a coin, X = {tail, head}, C(head) = 0, C(tail) =
11, l(head) = 1, l(tail) = 2.

Definition 5. The expected length of a code C(x) for a random variable X
with probability mass function p(x) is given by

L(C) =
∑
x∈X

p(x)l(x) (19)

For example for the above example the expected length of the code is

L(C) =
1
2
∗ 2 +

1
2
∗ 1 = 1.5

Definition 6. The code is singular if C(x1) = C(x2) and x1 6= x2.

Non singular codes are uniquely decodable.

Definition 7. The extension of a code C is a code obtained as:

C(x1x2 . . . xn) = C(x1)C(x2) . . . C(xn) (20)

It means that a long message can be coded by concatenating the shorter mes-
sage code words. For example if C(x1) = 11 and C(x2) = 00, then C(x1x2) =
1100.

Definition 8. A code is uniquely decodable if its extension is non-singular.

In other words, any encoded string has only one possible source string and
there is no ambiguity.

Definition 9. A code is called a prefix code or an instantaneous code if no code
word is a prefix of any other codeword.

Example 4. The following code is a prefix code: C(x1) = 1, C(x2) = 01, C(x3) =
001, C(X4) = 000. Any encoded sequence is uniquely decodable and its corre-
sponding source word can be obtained as soon as the code word is received.
In other word, an instantaneous code can be decoded without reference to the
future codewords since the end of a codeword is immediately recognizable. For
example the sequence 001100000001 is decoded as x3x1x4x4x2.

Example 5. The following code is not instantaneous code but uniquely de-
codable: C(x1) = 1, C(x2) = 10, C(x3) = 100, C(X4) = 000. Why? Here you
should wait to receive a 1 to be able to decode.
Note that if we look at the encoded sequence from right to left, it becomes
instantaneous.

Figure 3 illustrates the different nesting of codes.
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Figure 3: Classes of codes

5 Channel capacity

Assume that we have a channel whose input is the random variable X with input
alphabet {0, 1, 2, 3} and output alphabet {A,B,C,D}, as presented in Figure
4. The goal is to send the information without error. If we send 2 bits per input
symbol, there is no way to determine precisely which symbol was sent. However,
if we use less rate, for example just one bit per channel use it is possible to send
information without error. In this case we use only the symbols 0 and 2 (or 1
and 3) and at the channel output we can precisely determine the symbol sent.
It means by reducing the rate, reliable transmission is possible. What we did
is to modify the PX(x) to maximize the rate and at the same time to obtain
a reliable communication. In this example P (X = 0) = P (X = 2) = 0.5 and
P (X = 1) = P (X = 3) = 0.
In this way we proposed a scheme that achieves 1 bit per channel use. Is it the
maximum that we can obtain? The answer is yes because H(Y ) is the entropy
of Y which is at most equal to 2 (there are 4 possibilities), so H(Y ) ≤ 2. The
conditional entropy H(Y |X) explains the uncertainty over Y given X. But if
X is known, there is two equi-probable possibilities for Y giving this entropy
equals to 1. So

[H(Y )−H(Y |X)] ≤ 2− 1 = 1

Therefor the information rate cannot be greater than 1, so the scheme proposed
is optimal.
Note: If we reduce the rate below a certain number, reliable communication
can be obtained.

Definition 10. The channel capacity of a discrete memoryless channel is de-
fined as:

C = max
p(x)

I(X;Y )

= max
p(x)

[H(Y )−H(Y |X)] (21)
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Figure 4: Noisy channel

5.1 examples

5.1.1 Noiseless binary channel

Consider the channel presented in Figure 5. Show that the capacity is 1 bit per
symbol (or per channel use).

Figure 5: Ideal channel

5.1.2 Binary symmetric channel

For the binary symmetric channel (BSC) of Figure 6 show that the capacity is

CBSC = 1−H(p, 1− p) (22)

This channel is equivalent to a channel with Y = X ⊕ Z where

Z =
{

1 prob p
0 prob 1− p

Figure 6: BSC channel
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and X and Z are independent. We can say that H(Y |X) = H(Z) because when
X is given, knowing Y is the same as knowing Z. At the output, Y has only
two possibilities, so we can say H(Y ) ≤ 1. Maximum is achievable by choosing
PX(0) = PX(1) = 1/2. So I(X;Y ) ≤ 1 − H(Z). The capacity should be:
CBSC = 1−H(p, 1− p).

Exercise

We are using a continuous AWGN channel where the input is a random variable
X ∈ {3,−3} and the noise is Gaussian with N ∼ N (0, 1). The channel output
is: Y = X +N . We want to calculate the capacity.
Note: The capacity is not log(1 + SNR) because the distribution of X is not
optimized (the capacity maximizing distribution in this case is Gaussian while
here, X can only take two values).
Hint: Put a threshold at 0 and then calculate the probability of error. The
channel is now BSC and you can use the results given in this section. Note that
the capacity of this channel supposing that the noise variance goes to zero (high
SNR) cannot be greater than 1 bit per channel use.

5.1.3 Binary erasure channel

The binary erasure channel is when some bits are lost (rather than corrupted).
Here the receiver knows which bit has been erased. Figure 7 shows this channel.
We are to calculate the capacity of binary erasure channel.

C = max
p(x)

I(X;Y )

= max
p(x)

[H(Y )−H(Y |X)]

= max
p(x)

[H(Y )−H(a, 1− a)] (23)

Because of the symmetry we assume that P (X = 0) = P (X = 1) = 1/2. So Y
have three possibilities with probabilities P (Y = 0) = P (Y = 1) = (1 − a)/2
and P (Y = e) = a. So we can write:

C = H

(
1− a

2
,

1− a
2

, a

)
−H(a, 1− a)

= 1− a bit per channel use (24)

How to attain this capacity? If there is a feedback from the receiver, each
time an erasure is detected, the receiver asks the transmitter to resend the erased
bit. Because of the erasure probability of a, it happens to repeat a symbol once
every 1/a symbols. This means that for a large sequence of N symbols sent (or
N channel use) only N − aN information bits are passed to the receiver. So
with this structure the rate 1− a bit per channel use is achieved.
However, it can be proved that this rate is the maximal rate even if there is no
feedback. In fact, feedback does not increase the capacity of discrete memoryless
channels.
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Figure 7: Erasure channel

5.1.4 Two fold channel

Suppose we have two independent memoryless channels drawn in Figure 8. Sup-
pose also that the receiver knows which of the channels is used. The transmitter
uses the channel following the symbol to be transmitted. In other word, two
different alphabets are used for channels 1 and 2. We are to calculate the ca-
pacity of the channel: max I(X;Y ).
Let’s define a new variable S as:

Figure 8: Two channel configuration

S =
{

1 if channel 1 is used with prob a
2 if channel 2 is used with prob 1− a

We have I(X;Y ) = I(X;Y, S). This is because the received alphabet are dis-
tinct so knowing Y implies that we know S. However to prove this, using chain
rule we can write: I(X;Y, S) = I(X;Y ) + I(X;S|Y ). The second term is
H(S|Y )−H(S|Y,X) which is equal to zero because if we know Y we know S.
So the above equation is proved.
Developing the above relation we have:

I(X;Y ) = I(X;Y, S)
= I(X;S) + I(X;Y |S)
= H(S)−H(S|X) + I(X;Y |S = 1)P (S = 1) + I(X;Y |S = 2)P (S = 2)
= H(a, 1− a) + 0 + I(X;Y1)a+ I(X;Y2)(1− a)

11



To maximize the mutual information with respect to a, PX1 , PX2 , we calculate
the derivative equals to zero with respect to a, which gives:

a =
2C1

2C1 + 2C2

Replacing this value in I we obtain:

C = log2(2C1 + 2C2) (25)

6 Differential entropy

In this section we consider continuous random variables rather than discrete ran-
dom variables. The entropy as defined before uses the probability mass function
and does not work here. Instead, we use the probability density function (PDF)
to define the entropy of X.

Definition 11. The random variable X is said to be continuous if its cumulative
distribution function F (x) = Pr(X ≤ x) is continuous.

Definition 12. The differential entropy h(X) of a continuous random variable
X with a PDF PX(x) is defined as

h(X) =
∫
S

PX(x) log
1

PX(x)
dx

= E
[
log

1
PX(x)

]
(26)

where S is the support set of the random variable.

Uniform distribution

Show that for X ∼ U(0, a) the differential entropy is log a. Note that unlike
discrete entropy, the differential entropy can be negative. However, 2h(X) =
2log a = a is the volume of the support set, which is always non-negative, as
expected.

Normal distribution

Show that for X ∼ N (0, σ2) the differential entropy is

h(x) =
1
2

log(2πeσ2) bits (27)

Exponential distribution

Show that for PX(x) = λe−λx for X ≥ 0 the differential entropy is

h(x) = log
e

λ
bits (28)

What is the entropy if PX(x) = λ
2 e
−λ|x|?
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6.1 Relation between differential and discrete entropy

Referring to the Figure 9, the continuous random variable X is quantized to
generate a discrete random variable denoted by X∆. This random variable
takes the value xi if i∆ ≤ X ≤ (i+ 1)∆. Then the probability that X∆ = xi is

pi =
∫ (i+1)∆

i∆

PX(x)dx (29)

Figure 9: Quantization of a continuous random variable

Now, because X∆ is a discrete random variable,m we can write the discrete
entropy as:

H(X∆) = −
∞∑
−∞

pi log pi

= −
∞∑
−∞

PX(xi)∆ log(PX(xi)∆)

= −
∑

∆PX(xi) logPX(xi)− log ∆ (30)

and as ∆→ 0 we can write:

H(X∆) + log ∆→ h(X) (31)

The important result is the entropy of an n-bit quantization of a continuous
random variable X is approximately h(X) + n.

6.2 joint and conditional entropy

The differential entropy can be extended to several random variables. so:

h(X1, X2, ..., Xn) = −
∫
p(x1, x2, ..., xn) log p(x1, x2, ..., xn)dx1dx2...dxn (32)
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h(X|Y ) = −
∫
p(x, y) log p(x|y)dxdy (33)

= h(X,Y )− h(Y ) (34)

Theorem 2. (Entropy of multivariate normal distribution): Let X be a random
normal vector with mean vector µ and covariance matrix K. Then

h(X1, X2, ..., Xn) =
1
2

log ((2πe)n|K|) bits (35)

Note that the mean of the distribution has no effect on entropy. In general:

h(Y ) = h(Y + cte)

6.3 Some properties

• Chain rule h(X,Y ) = h(X) + h(Y |X)

• Uncorrelated Gaussian random vectorX = [X1X2...Xn]T withX1, X2, ..., Xn

i.i.d. ∼ N (0, 1)

h(X) =
1
2

log(2πe)n

• Given a random vector X with h(X), the differential entropy of the random
vector Y = AX will be

h(Y) = h(X) + log |A|

• The same case but for scalar random variable. If Y = cX, we have h(Y ) =
h(X)+log |c|. Note: For discrete random variables if Y = cX, the entropy
of X and Y are the same: H(X) = H(Y ).

Theorem 3. Suppose X is a random vector with E(X) = 0 and E(XXT ) = K,
then h(X) ≤ 1

2 log(2πe)n|K|. The equality is achieved only if X is Gaussian
∼ N (0,K)

Application (Hadamard’s inequality)

Let X ∼ N (0,K) be a multi-variant normal random variable, then the Hadamard
inequality states that:

|K| =
n∏
i=1

Kii
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Proof. Using chain rule, we can write:

h(X) = h(X1) + h(X2|X1) + h(X3|X1, X2) + · · ·+ h(Xn|X1, · · · , Xn)
1
2

log(2πe)n|K| ≤ h(X1) + h(X2) + · · ·+ h(Xn)

=
1
2

log(2πe)K11 +
1
2

log(2πe)K22 + · · ·+ 1
2

log(2πe)Knn

=
1
2

log(2πe)nK11K22 · · ·Knn

7 The Gaussian channel

A Gaussian channel is a time discrete channel presented on Figure 10. The
input output relationship at instant i is: Yi = Xi +Zi. Zi is an i.i.d. zero mean
Gaussian process with power PN = σ2.

Figure 10: The Gaussian channel

7.1 Capacity of Gaussian channel

The capacity of the channel is defined as the maximum of the mutual information
between input and output over all distribution on the input that satisfy the
power constraint:

C = max
p(x):EX2≤P

I(X;Y ) (36)

In order to calculate this for a Gaussian channel, we expand I(X;Y ):

I(X;Y ) = h(Y )− h(Y |X)
= h(Y )− h(X + Z|X)
= h(Y )− h(Z|X)
= h(Y )− h(Z) (37)

For the Gaussian process Z the entropy is h(Z) = 1
2 log 2πeN where N is the

noise variance (or power). Since X and Z are independent, EY 2 = P+N where
P is the power of X. To maximize the mutual information, one should maximize

15



h(Y ) with the power constraint of PY = P + N . We saw that the distribution
maximizing the entropy for a continuous random variable is Gaussian. This can
be obtain if X is Gaussian. Applying this to the mutual information formula
(37), we obtain

I(X;Y ) = h(Y )− h(Z)

≤ 1
2

log 2πe(P +N)− 1
2

log 2πeN

=
1
2

log
(

1 +
P

N

)
(38)

Hence the information capacity of a Gaussian channel is

C = max
p(x):EX2≤P

I(X;Y ) =
1
2

log
(

1 +
P

N

)
(39)

and this maximum is attained when X ∼ N (0, P ).

Example 6. What is the capacity of the following transmission system:

Y = 3X + N

where E X2 ≤ Px and N ∼ N (0, PN ).
Let X′ = 3X so PX′ ≤ 9Px and the capacity of this channel will be:

C =
1
2

log(1 +
9Px
PN

)

Therefore the capacity is increased. Here the channel gain is a deterministic
value and the channel is flat.

7.2 Band limited channel

Suppose we have a continuous channel with bandwidth B and the power spectral
density of noise is N0/2. So the analog noise power is N0B. On the other hand,
supposing that the channel is used over the time interval [0, T ]. So the power of
analog signal times T gives the total energy of the signal in this period. Using
Shannon sampling theorem, there are 2B samples per second. So the power of
discrete signal per sample will be PT/2BT = P/2B. The same argument can
be used for the noise, so the power of samples of noise is N0

2 2B T
2BT = N0/2. So

the capacity of the Gaussian channel per sample is:

C =
1
2

log
(

1 +
P

N0B

)
bits per sample (40)

Since there are maximum 2B independent samples per second the capacity
can be written as:

C = B log
(

1 +
P

N0B

)
bits per second (41)
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Example 7. For the channel presented in the figure 11 , what is the capacity?
We can imagine that there are two parallel independent channels as presented in
figure 12 with just one power constraint. Let P1 and P2 be the power transmitted
through the first and the second channel, respectively. In this case the channel
capacity can be written as:

Figure 11: Channel used in the example

Figure 12: Channel model of figure 11

C = max
P1+P2≤Px

[
B1 log(1 +

P1h
2
1

N0B1
) +B2 log(1 +

P2h
2
2

N0B2
)
]

(42)

So we should maximize C subjected to P1 + P2 ≤ Px. Using Lagrangian, one
can define:

L(P1, P2, λ) = B1 log(1 +
P1h

2
1

N0B1
) +B2 log(1 +

P2h
2
2

N0B2
)− λ(P1 + P2 − Px)

Let d(.)/dp1 = 0 and d(.)/dp2 = 0 and using ln instead of log2:

B1

1 + P1h2
1

N0B1

h2
1

N0B1
= λ

17



P1

B1N0
=

1
λN0

− 1
h2

1

With the same operations we obtain:

P1

B1N0
= Cst− 1

h2
1

(43)

P2

B2N0
= Cst− 1

h2
2

(44)

Where the Cte can be found by setting P1 + P2 = Px. Since the two powers
are found, the capacity of the channel is calculated using equation 42. The only
constraint that to be considered is that P1 and P2 cannot be negative. If one of
these is negative, the corresponding power is zero and all the power are assigned
to the other one. This principle is called water filling.

Exercise 1. Use the same principle (water filling) and give the power allocation
for a channel with three frequency bands defined as follows: h1 = 1/2, h2 = 1/3
and h3 = 1; B1 = B, B2 = 2B and B3 = B; Px = P1 + P2 + P3 = 10.
solution: P1 = 3.5, P2 = 0 and P3 = 6.5.

7.3 Parallel Gaussian channel

Here we consider k independent Gaussian channels in parallel with a common
power constraint as depicted in Figure 13. The objective is to maximize the
capacity by optimal distribution of the power among the channels:

C = max
pX1,...,Xk

(x1,...,xk):
∑
EX2

i≤P
I(X1, ..., Xk;Y1, ..., Yk) (45)

Figure 13: Parallel Gaussian channels
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Using the independence of Z1, ..., Zk:

C = I(X1, ..., Xk;Y1, ..., Yk)
= h(Y1, ..., Yk)− h(Y1, ..., Yk|X1, ..., Xk)
= h(Y1, ..., Yk)− h(Z1, ..., Zk)

≤
∑
i

h(Yi)− h(Zi)

≤
∑
i

1
2

log
(

1 +
Pi
Ni

)

8 Capacity of SIMO channel

Consider the channel presented in figure 14. X is a binary random variable
with Px(1) = Px(0) = 1/2. Z1 and Z2 are two binary random variables (i.i.d)
representing the effect of channel noise with P (Z1 = 1) = P (Z2 = 1) = p. The
capacity of the channel is C1 = I(X; (Y1, Y2)). We can add a data processing
unit at the output as presented in figure 15. Now the whole channel is called
C2. We can write for Z the following equation.

Figure 14: SIMO channel

Figure 15: SIMO channel with data processing
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Z =


1 if Y1 = Y2 = 1
0 if Y1 = Y2 = 0
ε1 if Y1 = 1, Y2 = 0
ε2 if Y1 = 0, Y2 = 1

The capacity of C2 can be calculated using the probabilities P (Z|X). Also
with the same principle the capacity of C1 can be calculated. But which one is
greater C1 or C2?
First C2 cannot be greater than C1, it means that C1 ≥ C2; that is because
signal processing cannot increase the capacity. Second, here, there is no loss
of information because of signal processing. It means that the processing is
completely invertible: (Y1, Y2)⇔ Z. So C1 = C2.
But if we had as data processing the following relation:

Z =

 1 if Y1 = Y2 = 1
0 if Y1 = Y2 = 0
ε if Y1 6= Y2

Here there is some information loss, what we can say in this case? First as
before C1 ≥ C2. Here we are not interested in Y but in X. So the two channels
are equivalent. This can be shown mathematically.

I(X;Y1, Y2, Z) = I(X;Y1, Y2) + I(X;Z|Y1, Y2)

This is because I(A;B,C) = I(A;B) + I(A;C|B). The first term in the above
equation is the capacity of the first channel and the second term is equal to zero
because if you know Y 1 and Y2 you know perfectly Z. We can also write:

I(X;Y1, Y2, Z) = I(X;Z) + I(X;Y1, Y2|Z)

The first term is the capacity of the second channel. If we show that the second
term is zero, we have shown that C1 = C2. We can say:

I(X;Y1, Y2|Z) = P (Z = 0)I(X;Y1, Y2|Z = 0)
+ P (Z = 1)I(X;Y1, Y2|Z = 1)
+ P (Z = ε)I(X;Y1, Y2|Z = ε)

Since there is no information on Y1 and Y2 when Z = 0 or Z = 2, we can write:

I(X;Y1, Y2|Z) = P (Z = ε)I(X;Y1, Y2|Z = ε)
= P (Z = ε)[H(Y1, Y2|Z = ε)−H(Y1, Y2|Z = ε,X)]

It can be shown that the two terms are equal to one which gives zero as the
result. It means that we have shown C1 = C2. So Z has all information of X;
it is a sufficient statistics for X.
We are now interested in Gaussian variables resulting from Gaussian channels.
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Suppose X ∼ N (0, P ), N1 ∼ N (0, 1) and N2 ∼ N (0, 1). N1 and N2 are jointly
i.i.d Gaussian random variable.

Y1 = X + Z1

Y2 = X + Z2

Y =
[
Y1

Y2

]
=
[
X + Z1

X + Z2

]
= X + Z

The random variable Z is defined as Z = Y1 +Y2. It means that the signal pro-
cessing unit is an addition block (here it is called maximum ration combiner).
Is there any loss of information here?
To prove this, we construct the variable Ỹ from the following invertible trans-
formation.

Ỹ =
[

1 1
−1 1

] [
Y1

Y2

]
=
[
Ỹ1

Ỹ2

]
The question is that with this process is the capacity will be the same? First of
all the processing cannot increase the capacity. Since the process is invertible
there is no information loss. It means that I(X; Y) = I(X; Ỹ).

Ỹ =
[

Y1 + Y2

−Y1 + Y2

]
=
[

Z
−Z1 + Z2

]
=
[

2X + Z1 + Z2

−Z1 + Z2

]
We can show that Z1 +Z2 is independent of −Z1 +Z2. That is because the two
are Gaussian and uncorrelated:

E((Z2 + Z1)(Z2 − Z1)) = 0

So we can write:

I(X; Y) = I(X; Ỹ) = I(X; Ỹ1, Ỹ2) = I(X; Ỹ1) + I(X; Ỹ2|Ỹ1)

and

I(X; Ỹ2|Ỹ1) = I(X;−Z1 + Z2|2X + Z1 + Z2)
= H(−Z1 + Z2|2X + Z1 + Z2)−H(−Z1 + Z2|2X + Z1 + Z2, X)
= 0

This is true because on independence of Z1 + Z2 and Z2 − Z1. Therefore;

I(X; Y) = I(X;Z)

So Z is sufficient statistic for X.
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9 Exercise (to be completed)

1. Let

X =


a with probability 1/2,
b with probability 1/4,
c with probability 1/8,
d with probability 1/8,

What is entropy of X ? (answer: 7/4 bits)
Suppose we wish to determine the value of X with the minimum number of
binary question. What is an efficient questions ? What is the expectation
value of the number of questions ? (answer: 1.75)
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