
Update on F-FCSR Stream Cipher

F. Arnault∗, T.P. Berger∗ and C. Lauradoux†

Abstract

The F-FCSR family of algorithms have been presented about one year ago with [2] and [1].
While some flaws where found in the initial propositions (on the IV-setup procedure, and a
TMD tradeoff attack), there are yet no known weaknesses of the core of these algorithms.

We sum up here some of the properties of the automaton that are better understood now,
and that have been presented in [2], [3], [4], and [6] and we propose two revised algorithms
correcting all known weaknesses.

1 Recalls on F-FCSR

1.1 FCSR automaton

Detailed descriptions can be found in [3, 1, 2].
A Feedback with Carry Shift Register (FCSR) is an automaton which computes the binary

expansion of a 2-adic number p/q, where p and q are some integers, with q is odd. We will
assume that q < 0 < p < |q|. The size n of the FCSR is such that n + 1 is the bitlength of |q|.

In our applications, p depends on the secret key (and the IV), and q is a public parameter.
The choice of q induces many properties of the keystream. The most important one is that it
completely determines the length of the period of the keystream. The conditions for an optimal
choice are:

Conditions 1

• q is a (negative) prime of bitsize n + 1.

• The order of 2 modulo q is |q|− 1.

• T = (|q|− 1)/2 is also prime.

• Set d = (1 + |q|)/2. The Hamming weight W (d) of the binary expansion of d is not too
small. Typically, W (d) > n/2.

1.1.1 Software description of the transition function

The FCSR automaton contains two registers (sets of cells): the main register M and the carries
register C.

The main register M contains n cells. We denote mi (0 ≤ i ≤ n − 1) the binary digits
contained in these cells and we call the integer m =

∑n−1
i=0 mi2i the content (or state) of M .

∗XLIM, Université de Limoges, 123 avenue A. Thomas, 87060 Limoges CEDEX, France
Email : arnault@unilim.fr thierry.berger@unilim.fr

†INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
Email : cedric.lauradoux@inria.fr

Let d be the positive integer d = (1 − q)/2 and d =
∑n−1

i=0 di2i its binary expansion. The
carries register contains ! cells where ! + 1 is the number of nonzero di digits. More precisely,
the carries register contains one cell for each nonzero di with 0 ≤ i ≤ n − 2. We denote ci the
binary digit contained in this cell. We also put ci = 0 when di = 0 or when i = n − 1. We
call the integer c =

∑n−2
i=0 ci2i the content (or state) of C. The Hamming weight of the binary

expansion of c is at most !.
The transition function can be described by

m(t + 1) := (m(t) ÷ 2)⊕ c(t)⊕m0(t)d

c(t + 1) := (m(t) ÷ 2)⊗ c(t)⊕ c(t)⊗m0(t)d⊕m0(t)d⊗ (m(t) ÷ 2)

where ⊕ denotes bitwise XOR, ⊗ denotes bitwise AND, and ÷2 is a just a shift to the right.
Note that m0(t) is the least significant bit of m(t). The integers m(t), c(t) and d are integers

of bitsize n (or less).

1.1.2 Hardware description of the transition function

With the same notations, the hardware description of the FCSR generator is

pn−1 ! pn−2 ! p1 ! p0 !!

"
!"

"
!""

"
!""

"
!""!dn−1 !dn−2 !d1 !d0

where the symbol ! denotes the addition with carry, i.e., it corresponds to the following scheme:

##

$$
!a
!b
!ci−1

! s=a⊕b⊕ci−1

ci=ab⊕aci−1⊕bci−1

%

As an example, if q = −347, so d = 174 = 0xAE, n = 8 and ! = 4, we obtain the following
diagram:

m(t) m7 m6 m5 m4 m3 m2 m1 m0! ! ! ! ! ! ! !!
" " " "

c(t) 0 0 c5 0 c3 c2 c1 0

& & & &
" " " "

d 1 0 1 0 1 1 1 0

1.2 Filtering

We extract each pseudorandom bit from the state of the main register of the FCSR automaton
using a filter. This filter describes which cells are selected to produce the pseudorandom bit.
In order to obtain a multi-bit output, eight or sixteen one bit subfilters are used to extract an
output 8 or 16 bits word after each transition of the automaton.

1.2.1 Principle of one bit filtering

The filter F is a bitstring (f0, . . . , fn−1) of length n (or equivalently the integer
∑n−1

i=0 fi2i). The
output bit is obtained by computing the weight parity of the bitwise AND of the state M of the
main register and of the filter F :

Output bit :=
n−1⊕

i=0

fimi.

Or, equivalently: S = M ⊗ F Output bit := parity(S)

1.2.2 Word filtering

In a similar way, we propose a method to extract an s bits word from the state of the FCSR.
The value of s will be 8 for F-FCSR-H, and 16 for F-FCSR-16.

The filter F is also a bitstring (f0, . . . , fn−1) of length n (which is a multiple of s). It splits
into s subfilters F0, . . . , Fs−1 each defined by

Fj =
n/s−1∑

i=0

fsi+j2i.

Each subfilter Fj selects some cells mi in the main register among the ones satisfying i ≡ j
modulo s. The parity of the binary word obtained gives one pseudorandom bit :

bit j of output word :=
n/s−1⊕

i=0

fsi+jmsi+j .

As there are s subfilters, we get s bits at each transition of the automaton.
This procedure can be described equivalently as follows. The filter F and the state of M are

combined with the AND function. The result is split into n/s words. The pseudorandom word
is obtained by XORing these n/s words:

S := M ⊗ F
Define Si by S =

∑n/s−1
i=0 Si · 2si, with 0 ≤ Si ≤ 2s − 1

Output word :=
⊕n/s−1

i=0 Si.

Note that it is faster to extract a whole word than a single bit.

2 Known issues on F-FCSR

2.1 Structure of the cycles of an FCSR automaton

Consider the transition function of an FCSR automaton. It is easy to see that it has two fixed
points, namely the state with all cells containing a 0 bit, and the state with all cells containing

a 1 bit. The values of (m, c) for these states are (0, 0) and (2n − 1, d − 2n) respectively, and
they correspond to the developpement of the 2-adic fractions 0/q = 0 and |q|/q = −1. All other
states are noninvariant by the transition function.

Since we assume that the order of 2 modulo q is |q|− 1, we can prove that the graph of the
transition function consists of exactly three connected components: the two single point compo-
nents corresponding to the two fixed points and another component containing all the 2n+l − 2
remaining points. Moreover, this component consists in a cycle of size |q| − 1 and pathes con-
verging to it. More details on the transition function of FCSR automatons can be found in [3].

Definition 1 Two states (m1, c1) and (m2, c2) are said equivalent if they satisfy m1 + 2c1 =
m2 + 2c2.

The following fundamental property can be shown:

Proposition 1 Two noninvariant states are equivalent if and only if they eventually converge
to the same state of the main cycle in the same number of steps.

As |q|− 1 & 2n, the expected number of states which eventually converge to a given state of
the cycle is approximatively 2l.

It can be shown also that the relative number of leaves for the transition function is 1−(3/4)l,
which (for l ≥ 2) is much larger than for a random function, where it is e−1.

From the existence of a large cycle and of a large number of leaves, we can expect that the
length of the pathes converging to the cycle are very short. Experimentally, this is indeed the
case. Convergence occurs generally in less than (n+ l)/2 iterations, while this should be 2(n+l)/2

if the transition function was a random one.
The following figure shows the main composant of the graph associated to q = −13. The

couples of numbers correspond to a state (m, c) and the single numbers to the value p = m+2c.

• (1,0) 1 •

• • • • •! ! ! !
(7,0) (4,3) (1,2) (5,2) (7,2)

7 10 5 9 11
(6,3)12

• • • • •% % % %
(0,1) (2,1) (6,1) (3,0) (0,3)

2 4 8 3 6

•
(5,1)

$$$$$'

•
(3,2)(

(
(

(()

•
(1,3)*

*
*

*
*

*
*+

•
(6,2)(

(
(

(()

•
(5,0)(

(
(

(()

•
(3,1)*

*
*

*
*

*
*+

•
(3,3)

$$$$$'

•
(7,1)(

(
(

(()•
(5,3)

•
(6,0)
$$$$$,

•
(2,2)
(

(
(

((-

•
(4,1)
*

*
*

*
*

*
*.

•
(1,1)
(

(
(

((-

•
(2,3)
(

(
(

((-

•
(4,2)
*

*
*

*
*

*
*.

•
(0,2)
$$$$$,

•
(4,0)
(

(
(

((-
•

(2,0)

2.2 Consequences for Time/Memory/Data tradeoff attacks

First, the states that are not on the main cycle have only a very small impact on the cost of a
Time/Memory/Data tradeoff attacks. So the number of states that should be considered when
evaluating security of FCSRs with static filter should be |q|− 1 instead of 2n+l.

Hence, in the first version of F-FCSR-8 submitted to Ecrypt, the size k = 128 of the key
was equal to the length of the main register. But we also used a dynamic filter to increase the
number of total states of our automaton.

However, using the fact that we used 8 subfilters of length 16 to output 8 bits at each
transition, and using the fact that the number of possible such subfilters was too small, E.
Jaulmes and F. Muller showed in [5] that the presence of a dynamic filter does not provide
enough security. Their attack has a time cost in 280 and uses data of size about 267.

The solution to prevent TMD-attacks is to increase the size of the prime q up to n = 2×128 =
256. Note that in this case, it is possible to output two bytes instead of a single one at each
iteration. Hence the number of operations per output byte is not increased and in fact the speed
of the generator will be slightly better. Moreover, dynamic filter is no longer needed, and this
greatly simplifies hardware and also software implementations.

There exist recent developpements on TMDtreadoffs cryptanalysis of stream cipher genera-
tors [8]. We want to notice that it possible to increase the size of IV of F-FCSR stream cipher
until the size k of the key without any information. Moreover, in the procedure of change of IV,
the key is concatened to the IV, which ensure a total entropy of our system equals to the size
of the key plus the size of the IV.

2.3 Algebraic cryptanalysis

For the F-FCSR generator, the transition function of the automaton Tq is quadratic, and the
filter Fl is linear.

We denote by x the initial state of the generator: it is a binary vector of size equal to the
number of the unknown values of the registers. The algebraic attack consists in the determination
of x from the equations F (T i(x)) = si, where the si are the successive observed bits output by
the generator.

This leads to a system of equations Fl(T i
q(x)) = si. The degree of the i-th equation is the

degree of T i
q . The first equation is linear, the second quadratic. An increase of the degree is

expected at each iteration. However this increase depends on many factors as the choice of the
filter or the values of Id. It seems not possible to find a formula available in the general case.

However, In [4], M. Minier and T. Berger studied these equations in more details and designed
an attack on an earlier version of F-FCSR proposed at FSE 05 [2]. In that situation, there was
only 6 iterations after each change of IV.

The main result is the fact that, even if the degree of equations increases at each iteration,
the number of monomials remains smaller than expected as long as the number of iterations is
less than the size n of the register. The following Proposition describes this property:

Proposition 2 The value of the content of the i-th register at the t-iteration mi(t) depends
only on the initial values (m0(0), · · · ,mt−1(0), c0(0), · · · , ct−2(0) et (mi+1(0), · · · ,mi+t(0),ci(0)
,· · · , ci+t−1(0)).

mi x · · · · · ·
ci · · · · · ·

0123456.i.i+6.

An example for t = 6

In the attack described in [4], the IV values are known, that is the initial values ci(0) are
given. The following table gives the number of distinct monomials obtained in the algebraic
equations for a register of size 128.

nb of iterations 0 1 2 3 4 5 6
nb of monomials 128 129 256 758 2490 8830 32836
Algebraic degree 1 1 2 3 4 6 8
Binomial bound 129 129 8257 349633 11017633 ≈ 232 ≈ 240

There are some remarks about these results:

• From Proposition 2, the number of monomials is linear in the length n of the generator.

• From a computationnal point of view, the first difficult problem is not to solve the equa-
tions, but to compute them: we were not able to compute the equations corresponding to
the 8-th iteration on a register of size 128. At the present moment, it seems not compu-
tationnaly feasible to complete the 12-th iteration.

• The F-FCSR-8 and F-FCSR-H stream ciphers proposed to Ecrypt are resistant to this
kind of attacks.

2.4 Diffusion of differences

Another possible weakness of the first designs of F-FCSR stream ciphers resides in the slowness
of diffusion of differences. A difference introduced in some cell of the FCSR automaton remains
localized when clocking the automaton, as long as this difference does not reach the feedback
end of the register. In fact, except when this end is reached, the difference only affects the next
right cell after one transition and, with probability 1/2 only, the corresponding carry cell is also
changed. This change in this carry cell, when it occurs, will cause subsequent differences at
subsequent transitions. However, this change in the carry cell has low probability (1/2n after n
transitions) not to disappear.

We illustrate this fact in the following example, where we choosed q = −347. The length n
of the main register is then 8. We have chosen randomly a value m1 for the main register m,
strictly less than 27. For the initial values m1 and m2 = m1 + 27, we computed the differences
obtained in the main register after i iterations of the transition function, for i = 0 up to 9. The
following table gives the typical results obtained this way, with two different values for m1.

Position of carries Position of carries
1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0
Diffusion of difference Diffusion of difference

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
1 0 1 0 1 0 1 1
1 1 1 1 1 0 0 1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1
1 0 1 0 1 1 1 0
0 1 0 1 0 1 0 1

This fact was noticed by E. Jaulmes and F. Muller (cf. [6, 5]) and used to design attacks
on the change of IV procedure. They obtained a key recovery attack on F-FCSR-8 and a
distinguishing attack on F-FCSR-H.

There are two independant ways in order to stop these attacks:

1. A better insertion of IV and key in the change of IV procedure. In our first version, we
used a simple concatenation of the values.

2. A larger number of iterations of the transition function before outputing data, greater
than the length n of the register, to ensure a full diffusion of the differences

As an example, in our first version of F-FCSR H , it is sufficient to increase the number of
iterations from 160 to 162 in order to stop the distinguishing attack.

2.5 Other attacks

At the present moment, we do not known any other attack against this design, in particular any
correlation attack.

3 New Design

3.1 F-FCSR-H: Profile 2, output 1 byte per round

This proposal uses keys of length 80 and IV of bitsize v with 32 ≤ v ≤ 80. An IV of value 0
can be used as a default if no value is provided. The core of this new version of the F-FCSR-H
algorithm is identical to the one proposed in [1]. Only the key+IV Setup procedure has been
updated in view of the attacks presented in [6].

The FCSR length (size of the main register) is n = 160. The carries register contains ! = 82
cells. The retroaction prime is

q = −1993524591318275015328041611344215036460140087963

so addition boxes and carries cells are present at the positions matching the ones (except of the
leading one) in the following 160 bits string (which has Hamming weight 83)

d = (1 + |q|)/2 = (AE985DFF 26619FC5 8623DC8A AF46D590 3DD4254E)16.

Filtering

To extract one pseudorandom byte, we use the static filter

F = d = (AE985DFF 26619FC5 8623DC8A AF46D590 3DD4254E)16

The filter F splits in 8 subfilters (subfilter j is obtained by selecting the bit j in each byte of F)

F0 = (0011 0111 0100 1010 1010)2, F4 = (0111 0010 0010 0011 1100)2,
F1 = (1001 1010 1101 1100 0001)2, F5 = (1001 1100 0100 1000 1010)2,
F2 = (1011 1011 1010 1110 1111)2, F6 = (0011 0101 0010 0110 0101)2,
F3 = (1111 0010 0011 1000 1001)2, F7 = (1101 0011 1011 1011 0100)2.

Recall that the bit bi (with 0 ≤ i ≤ 7) of each extracted byte is expressed by

bi =
19⊕

j=0

f (j)
i m8j+i where Fi =

∑19
j=0 f (j)

i 2j

and where the mk are the bits contained in the main register.

a+b. Key+IV setup (Inputs a key K of length k = 80 and an IV of length v ≤ 80)

1. The main register M is initialized with the key and the IV:

M := K + 280 · IV = (080−v‖IV‖K).

2. The carries register is initialized to 0 :

C := 0 = (082).

3. A loop is iterated 20 times. Each iteration of this loop consists in clocking the FCSR
and then extracting a pseudorandom byte Si (0 ≤ i ≤ 19) using the filter.

4. The main register M is reinitialized with these bytes:

M :=
19∑

i=0

Si = (S19‖ · · · ‖S1‖S0).

5. The FCSR is clocked 162 times (output is discarded in this step).

c. Extraction of pseudorandom data After setup phase, the pseudorandom stream is pro-
duced by repeating the following process as many times as needed

• Clock the FCSR
• Extract one pseudorandom byte using filter F as described above.

3.2 Upgrade from F-FCSR-8 to F-FCSR-16

In the F-FCSR-8 algorithm presented in [1], the pseudorandom stream was extracted using a
dynamic filter. The purpose of this filter was to enlarge the number of states of the FCSR-
automaton, in order to prevent Time-Memory-Data tradeoff attacks. However, the paper [6]
shows that such a dynamic filter does not provide the expected security. In the light of this
result, the new algorithm F-FCSR-16 uses a static filter and the required number of states of
the automation is obtained by enlarging the size of the registers. Note that the larger size of
the register allows to extract more pseudorandom bits at each transition of the automaton. So
the new algorithm is as fast as the previous one.

3.2.1 F-FCSR-16: Profile 1, output 2 bytes per round

This proposal uses keys of length k = 128 and an IV of length v = 128 or 64 (any length v ≤ 128
can be used). An IV of value 0 can be used as a default if no value is provided by the application.

According to Conditions 1 we choose for q the following number

−q = 183971440845619471129869161809344131658298317655923135753017128462155618715019

as the public parameter of the automaton. The corresponding bitstring d = (|q| + 1)/2 which
describes the positions of the carries cells is

d = (CB5E129F AD4F7E66 780CAA2E C8C9CEDB 2102F996 BAF08F39 EFB55A6E 390002C6)16.

Its Hamming weight is 131 and there are ! = 130 cells (the Hamming weight of d∗ = d − 2255)
in the carries register and n = 256 cells in the main register.

To extract two pseudorandom bytes, we use the static filter

F = d

The filter F splits in 16 subfilters (subfilter j is obtained by selecting the bit j in each 16-bit
word of F)

F0 = (0110 0011 0001 1000)2, F8 = (1010 0000 1101 1010)2,
F1 = (1111 0101 1100 0101)2, F9 = (1101 0101 0011 1101)2,
F2 = (1111 1100 0100 1101)2, F10 = (0011 0001 0001 1000)2,
F3 = (1110 1111 0001 0100)2, F11 = (1011 1111 0111 1110)2,
F4 = (1100 0001 0111 1000)2, F12 = (0101 1000 0110 0110)2,
F5 = (0001 0100 0011 1100)2, F13 = (0011 1100 1110 1010)2,
F6 = (1011 0011 0010 0101)2, F14 = (1001 1011 0100 1100)2,
F7 = (0100 0011 0110 1001)2. F15 = (1010 0111 0111 1000)2.

Recall that the bit bi (with 0 ≤ i ≤ 15) of each extracted word is expressed by

bi =
15⊕

j=0

f (j)
i m16j+i where Fi =

∑15
j=0 f (j)

i 2j

and where the mk are the bits contained in the main register.

a+b. Change of IV (Input: an IV of bitsize v ≤ 128)

M := K + 2128 · IV = (0128−v‖IV ‖K)
C := 0 = (0130) (Clear the carries)
For i from 0 to 15 Repeat

Clock the FCSR automaton
Extract a pseudorandom word Si using the filter F

End For
M :=

∑15
i=0 Si · 256i = (S15‖ · · · ‖S0)

C := 0 = (0130) (Clear the carries)
Clock the FCSR automaton 258 times (discard output in this step)

c. Extraction of the pseudorandom stream We use the word filtering method described
above, with s = 16, while pseudorandom data is needed. At each clock of the FCSR
automaton, the content of the main register M is ANDed with the filter F :
S = M ⊗ F
S is split in 16 words each of bitlength 16 S =

∑15
i=0 Si216i

The pseudorandom byte is the XOR of these bytes: Output word :=
⊕15

i=0 Si

3.2.2 F-FCSR-16, Profile 2

The F-FCSR-16 algorithm can also satisfy profile 2. As in this case the key-length is 80, the
first line of the Change of IV procedure now reads

M := K + 2128 · IV = (0128−v‖IV ‖048‖K)

Comparing to F-FCSR-H, the pseudorandom word extracted at each transition of the au-
tomaton is twice larger, while the size of the registers is only 8/5 larger. In applications with
profile 2 where extremely high speed of pseudorandom data generation is needed, the F-FCSR-16
algorithm should be also considered.

4 Performances

The software performance of F-FSCR-16 stream cipher depends on the processor register width.
For instance, we observe a speedup by four with 128-bits Altivec implementation over 32-bits
implementation. This observation was already performed in [9] with F-FCSR-8. The main
mechanisn of F-FCSR-H remains unchanged and results on its implementation can be found in
[9].

CISC target parameters performance
Frequency L2 Cache Size Speed Code Initialization

Pentium 3 800 Mhz 256KB 83 cycles/B 8 KB 39140 cycles/IV
Pentium 4 2.3 Ghz 512KB 85 cycles/B 8 KB 54491 cycles/IV
Pentium 4 2.6 Ghz 512KB 95 cycles/B 8 KB 38351 cycles/IV
Pentium 4 3.2 Ghz 1MB 82 cycles/B 6 KB 43354 cycles/IV

RISC target parameters performance
Frequency L2 Cache Size Speed Code Initialization

PPC 7457 1.2 Ghz 512 KB 90 cycles/B 18 KB 44860 cycles/IV
PPC 7457 (Altivec) 1.2 Ghz 512 KB 22 cycles/B 14 KB 11828 cycles/IV

Figure 1: F-FCSR-16 32-bit evaluation and Altivec implementation

References

[1] F. Arnault and T.P. Berger. Design of new pseudorandom generators based on a filtered
FCSR automaton. In SASC, State of the Art of Stream Ciphers Workshop, pages 109–120,
Bruges, Belgium, October 2004.

[2] F. Arnault and T.P. Berger. F-FCSR: design of a new class of stream ciphers. In H. Hand-
schuh H. Gilbert, editor, Fast Softward Encryption 2005, number 3557 in Lecture Notes in
Computer Science, pages 83–87. Springer, 2005.

[3] F. Arnault and T.P. Berger. Design and properties of a new pseudorandom generator based
on a filtered FCSR automaton. IEEE, Transactions on Computers. IEEE, Transactions on
Computers, 54(11):1374–1383, November 2005.

[4] T.P. Berger and M. Minier. Two algebraic attacks against the F-FCSRs using the IV
mode. in S. Maitra, C.E. Veni Madhavan, R. Venkatesan editors, Progress in Cryptology
- INDOCRYPT 2005 number 3797 in Lecture Notes in Computer Science, pages 143–154.
Springer, 2005.

[5] E. Jaulmes and F. Muller. Cryptanalysis of Ecrypt candidates F-FCSR-8 and F-FCSR-H.
ECRYPT Stream Cipher Project Report 2005/046, 2005. http://www.ecrypt.eu.org/
stream.

[6] E. Jaulmes and F. Muller. Cryptanalysis of the F-FSCR stream cipher family. In proceedings
of 12th annual workshop on Selected Areas in Cryptography, LNCS, Springer-Verlag, 2005.

[7] F. Arnault, T.P. Berger and C. Lauradoux. Preventing weaknesses on F-FCSR in IV mode
and tradeoff attack on F-FCSR-8. ECRYPT Stream Cipher Project Report 2005/075, 2005.
http://www.ecrypt.eu.org/stream.

[8] J. Hong and P. Sarkar. New Applications of Time Memory Data Tradeoffs. in B. Roy editor,
Advances in Cryptology - ASIACRYPT 2005 number 3788 in Lecture Notes in Computer
Science, pages 353–372. Springer, 2005.

[9] F. Arnault, T.P. Berger and C. Lauradoux. F-FCSR. ECRYPT Stream Cipher Project
Report 2005/008, 2005. http://www.ecrypt.eu.org/stream.

