On Taylor polynomials of rational functions

SIAG 2023, Eindhoven, July 2023

Simone Naldi
XLIM - Université de Limoges
(joint with A. Conca, G. Ottaviani and B. Sturmfels)

$$
\frac{1+x+x^{2}}{1-x-x^{2}}=1+2 x+4 x^{2}+6 x^{3}+10 x^{4}+16 x^{5}+O\left(x^{6}\right)
$$

Indeed:

$$
\begin{gathered}
\left(1-x-x^{2}\right)\left(1+2 x+4 x^{2}+6 x^{3}+10 x^{4}+16 x^{5}\right)= \\
=1+x+x^{2}-26 x^{6}-16 x^{7} .
\end{gathered}
$$

$$
\frac{1+p_{1} x+p_{2} x^{2}}{1+q_{1} x+q_{2} x^{2}}=1+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+O\left(x^{6}\right)
$$

where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are (polynomial) functions of $p_{1}, p_{2}, q_{1}, q_{2}$.
4 parameters, 5 target coefficients $\Rightarrow 1$ relation ?

Introduction

From the equality modulo x^{6} one gets

$$
\begin{aligned}
& c_{1}=p_{1}-q_{1} \\
& c_{2}=p_{1} q_{1}-q_{1}^{2}-p_{2}+q_{2} \\
& c_{3}=p_{1} q_{1}^{2}-q_{1}^{3}-p_{1} q_{2}-p_{2} q_{1}+2 q_{1} q_{2} \\
& c_{4}=p_{1} q_{1}^{3}-q_{1}^{4}-2 p_{1} q_{1} q_{2}-p_{2} q_{1}^{2}+3 q_{1}^{2} q_{2}+p_{2} q_{2}-q_{2}^{2} \\
& c_{5}=p_{1} q_{1}^{4}-q_{1}^{5}-3 p_{1} q_{1}^{2} q_{2}-p_{2} q_{1}^{3}+4 q_{1}^{3} q_{2}+p_{1} q_{2}^{2}+2 p_{2} q_{1} q_{2}-3 q_{1} q_{2}^{2}
\end{aligned}
$$

eliminating the parameters, one gets the cubic equation:

$$
\begin{array}{r}
c_{1} c_{3} c_{5}-c_{1} c_{4}^{2}-c_{2}^{2} c_{5}+2 c_{2} c_{3} c_{4}-c_{3}^{3}=0 \\
\operatorname{det}\left[\begin{array}{lll}
c_{5} & c_{4} & c_{3} \\
c_{4} & c_{3} & c_{2} \\
c_{3} & c_{2} & c_{1}
\end{array}\right]=c_{1} c_{3} c_{5}-c_{1} c_{4}^{2}-c_{2}^{2} c_{5}+2 c_{2} c_{3} c_{4}-c_{3}^{3}=0
\end{array}
$$

Taylor varieties

Université

Fix n variables $x=\left(x_{1}, \ldots, x_{n}\right)$, and degrees (d, e) and m :

$$
\mathbb{C}(x) \ni \frac{P(x)}{Q(x)}=\sum_{|\gamma| \leq m} c_{\gamma} x^{\gamma}+\left\langle x_{1}, \ldots, x_{n}\right\rangle^{m+1}
$$

with $Q(0, \ldots, 0)=1$.

The (Zariski) closure in $\mathbb{P}\left(\begin{array}{c}\binom{n+m}{m}-1\end{array}\right.$ of the set of all Taylor polynomials of degree $\leq m$ of rational functions of degree $\leq(d, e)$ in n variables is called the Taylor variety and denoted $\mathcal{T}_{d, e, m}^{n}$.

Main questions: dimension, defining equations, hypersurfaces...

Central question of Approximation Theory and Computer Algebra.
Given a function f, known through its Taylor approximation up to some order m, find two polynomials p, q of degree d, e, such that

$$
\frac{p}{q}=f \quad \bmod x^{m+1}
$$

More generally given f_{1}, \ldots, f_{s}, find $\left(p_{1}, \ldots, p_{s}\right)$ such that

$$
p_{1} f_{1}+\cdots+p_{s} f_{s}=0 \quad \bmod I
$$

\rightsquigarrow syzygy modules

The geometry of Taylor varieties is related to

- existence of solutions: is there such a rational function approximation?
- uniqueness/identifiability: how many rational function approximations?

The Taylor variety $\mathcal{T}_{d, e, m}^{n} \subset \mathbb{P}^{\binom{n+m}{m}-1}$ is irreducible, as (closure of the) image of the following morphism:

$$
\begin{aligned}
\psi: \mathbb{C}^{\binom{n+d}{d}} \times \mathbb{C}^{\binom{n+e}{e}} & \rightarrow \mathbb{C}^{\binom{n+m}{m}} \\
(P, Q) & \mapsto T:=\sum_{|\gamma| \leq m} c_{\gamma} x^{\gamma}
\end{aligned}
$$

Its dimension is bounded by the expected dimension:
$\operatorname{dim}\left(\mathcal{T}_{d, e, m}^{n}\right) \leq \exp \operatorname{dim}\left(\mathcal{T}_{d, e, m}^{n}\right):=\min \{\underbrace{\binom{n+m}{m}-1}_{\text {ambient dimension }}, \underbrace{\binom{n+d}{d}+\binom{n+e}{e}-2}_{\text {number of parameters }}\}$
this inequality can be strict when $n \geq 2$.

Univariate case ($n=1$)

Fix $d, e \in \mathbb{N}$, and let $T=1+c_{1} x+c_{2} x^{2}+\cdots+c_{m} x^{m} \in \mathbb{C}[x]$.
We define the $(m-d) \times(e+1)$ (univariate) Padé Matrix:

$$
M_{T}=\left[\begin{array}{cccc}
c_{m} & c_{m-1} & \cdots & c_{m-e} \\
c_{m-1} & c_{m-2} & \cdots & c_{m-e-1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{d+2} & c_{d+1} & \cdots & c_{d-e+2} \\
c_{d+1} & c_{d} & \cdots & c_{d-e+1}
\end{array}\right]
$$

- The Taylor variety $\mathcal{T}_{d, e, m}^{1} \subset \mathbb{P}^{m}$ has the expected dimension $\min \{d+e, m\}$
- If $d+e \geq m$, then $\mathcal{T}_{d, e, m}^{1}=\mathbb{P}^{m}$ (in words, every degree- m polynomial is a Taylor polynomial of a rational function of degree $\leq(d, e)$)
- If $d+e<m$, its defining ideal is the (prime) ideal of $e+1$ minors of M_{T}, and it equals some secant variety of the rational normal (moment) curve of degree m

Multivariate Padé Matrix

Define $M_{d+1, m}:=$ monomials ${ }^{1}$ in x of degree between $d+1$ and m.
The Padé Matrix M_{T} constructed before is the matrix of the linear map

$$
\begin{array}{rlcll}
\mathbb{C}[x]_{\leq e} & \rightarrow \mathbb{C}[x]_{\leq e+m} & \rightarrow \mathbb{C}\left\{M_{d+1, m}\right\} \\
Q & \mapsto & Q T & \mapsto Q T \text { restricted to } M_{d+1, m} .
\end{array}
$$

For instance for $(n, d, e, m)=(2,1,1,3)$ the linear map is
${ }^{1}$ These coefficients of $Q T$ must vanish if T is the Taylor polynomial of some P / Q.

The variety $\mathcal{T}_{1,1,3}^{2} \subset \mathbb{P}^{9}$ contains ternary cubics that are (order 3) Taylor polynomials of rational functions of degree $(1,1)$:

$$
\frac{1+p_{10} x+p_{01} y}{1+q_{10} x+q_{01} y}=1+c_{10} x+c_{01} y+\cdots+c_{12} x y^{2}+c_{03} y^{3}+\langle x, y\rangle^{4}
$$

The ideal $I_{3}\left(M_{T}\right)$ of maximal minors of M_{T} has the expected codimension 5 , but it is not prime: it has two components, one of which is the (prime) ideal of $\mathcal{T}_{1,1,3}^{2}$.

Conclusion: For $n \geq 2$, taking maximal minors of the Padé Matrix is not sufficient to get the equations of $\mathcal{T}_{d, e, m}^{n}$.

Defective cases

The variety $\mathcal{T}_{2,2,3}^{3} \subset \mathbb{P}^{19}$ has codimension 2 (expected to be a hypersurface)

$$
\operatorname{det}\left[\begin{array}{cccccccccc}
c_{300} & 0 & 0 & c_{200} & 0 & 0 & 0 & 0 & 0 & c_{100} \\
c_{210} & 0 & c_{200} & c_{110} & 0 & 0 & 0 & 0 & c_{100} & c_{010} \\
c_{201} & c_{200} & 0 & c_{101} & 0 & 0 & 0 & c_{100} & 0 & c_{001} \\
c_{120} & 0 & c_{110} & c_{020} & 0 & 0 & c_{100} & 0 & c_{010} & 0 \\
c_{111} & c_{110} & c_{101} & c_{11} & 0 & c_{100} & 0 & c_{010} & c_{001} & 0 \\
c_{102} & c_{101} & 0 & c_{002} & c_{100} & 0 & 0 & c_{001} & 0 & 0 \\
c_{030} & 0 & c_{020} & 0 & 0 & 0 & c_{010} & 0 & 0 & 0 \\
c_{021} & c_{020} & c_{011} & 0 & 0 & c_{010} & c_{001} & 0 & 0 & 0 \\
c_{012} & 011 & c_{002} & 0 & c_{010} & c_{001} & 0 & 0 & 0 & 0 \\
c_{003} & c_{002} & 0 & 0 & c_{001} & 0 & 0 & 0 & 0 & 0
\end{array}\right] \equiv 0
$$

The variety $\mathcal{T}_{8,5,9}^{3} \subset \mathbb{P}^{219}$ is a hypersurface (expected to fill the whole \mathbb{P}^{219})
Indeed, the maximal minors of the Padé Matrix have one common factor.

Conjecture

- For $n=2$, all Taylor varieties $\mathcal{T}_{d, e, m}^{2}$ are non-defective.
- For $n \geq 3$ there are only finitely-many defective cases.

The variety $\mathcal{T}_{1,1,2}^{2}$ is known as the Perazzo ${ }^{2}$ cubic surface. It has vanishing Hessian: the determinant of Hessian matrix is identically zero.

$$
M_{T}=\left[\begin{array}{ccc}
c_{20} & c_{10} & 0 \\
c_{11} & c_{01} & c_{10} \\
c_{02} & 0 & c_{01}
\end{array}\right] \quad \text { and } \quad H=\left[\begin{array}{ccccc}
2 c_{20} & -c_{11} & 0 & -c_{10} & 2 c_{01} \\
-c_{11} & 2 c_{02} & 2 c_{10} & -c_{01} & 0 \\
0 & 2 c_{10} & 0 & 0 & 0 \\
-c_{10} & -c_{01} & 0 & 0 & 0 \\
2 c_{01} & 0 & 0 & 0 & 0
\end{array}\right]
$$

thus $\operatorname{det}(H) \equiv 0$.
Let $n \geq 2$. If $\mathcal{T}_{d, e, m}^{n}$ is a hypersurface, then it has vanishing Hessian.

Conjecture.

$\mathcal{T}_{d, e, d+e+1}^{1}$ has zero Gaussian curvature, for every $d \geq 1, e \geq 2$, that is, its Hessian determinant is a multiple of the defining polynomial of $\mathcal{T}_{d, e, d+e+1}^{1}$.

[^0]Taylor varieties are defined as set of Taylor polynomials of rational functions Classical well-known varieties for $n=1$ (secants to rational normal curve)

Interesting phenomena for $n \geq 2$: defectivity, vanishing Hessians...

Available on arXiv/2304.00712

[^0]: ${ }^{2}$ U. Perazzo, Sulle varietà cubiche la cui hessiana svanisce identicamente. G. Mat. Battaglini 38 (1900), 337-354

