Stability Issues in Non-regular Electrical Circuits

Samir ADLY
University of Limoges, France
A joint work with R. Cibulka

Constructive Nonsmooth Analysis and Related Topics CNSA 2012
Saint Petersburg, June 18-22, 2012
Given matrices $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times n}$, and mappings $f : \mathbb{R}^n \to \mathbb{R}^n$, $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^m$ with $m \leq n$, consider the problem of finding for a vector $p \in \mathbb{R}^n$ the solution $z \in \mathbb{R}^n$ to the inclusion

$$p \in f(z) + BF(Cz).$$

Standing assumptions:

(A1) B is injective;

(A2) f is continuously differentiable on \mathbb{R}^n;

(A3) F has closed graph; and

(A4) C is surjective;
Let \((\bar{z}, \bar{p}) \in \text{gph } \Phi\). The solution mapping \(\Psi := \Phi^{-1}\) has

- **calmness property** at \((\bar{p}, \bar{z})\) if there is a constant \(\kappa \geq 0\) along with neighborhoods \(U\) of \(\bar{p}\) and \(V\) of \(\bar{z}\) such that

\[
\Psi(p) \cap V \subset \Psi(\bar{p}) + \kappa \|p - \bar{p}\|B \text{ whenever } p \in U,
\]

Calmness modulus: \(\text{clm}(\Psi; (\bar{p}, \bar{z})) := \inf \kappa\).

- **isolated calmness property** at \((\bar{p}, \bar{z})\) provided that it has calmness property and \(\bar{z}\) is an isolated point of \(\Psi(\bar{p})\), i.e.
\(\Psi(\bar{p}) \cap B(\bar{z}, r) = \{\bar{z}\}\) for some \(r > 0\). This amounts to the existence of a constant \(\kappa \geq 0\) along with neighborhoods \(U\) of \(\bar{p}\) and \(V\) of \(\bar{z}\) such that

\[
\Psi(p) \cap V \subset \bar{z} + \kappa \|p - \bar{p}\|B \text{ for each } p \in U.
\]
Theorem
Suppose that the assumptions (A1) – (A4) hold true. Put
\(\bar{v} := (B^T B)^{-1} B^T (\bar{p} - f(\bar{z})) \). Then \(\Psi \) has the isolated calmness property at \((\bar{p}, \bar{z}) \) if and only if

\[
\begin{align*}
(Cb, -(B^T B)^{-1} B^T \nabla f(\bar{z})b) &\in T((C\bar{z}, \bar{v}); \text{gph } F) \\
\nabla f(\bar{z})b &\in \text{rge } B
\end{align*}
\] \implies b = 0.

\(T(\bar{x}; \Omega) \) is a \textit{Bouligand-Severi tangent cone} to a non-empty subset \(\Omega \) of \(\mathbb{R}^d \) at \(\bar{x} \in \Omega \) which contains those \(v \in \mathbb{R}^d \) for which there are sequences \((t^k)_{k \in \mathbb{N}} \) in \((0, \infty) \) and \((v^k)_{k \in \mathbb{N}} \) in \(\mathbb{R}^d \) converging to 0 and \(v \), respectively, such that \(\bar{x} + t^k v^k \in \Omega \) whenever \(k \in \mathbb{N} \).
Theorem
Suppose that the assumptions \((A1) \rightarrow (A4)\) hold true. Put
\[
\bar{v} := (B^T B)^{-1} B^T (\bar{p} - f(\bar{z})).
\]
Then \(\Psi\) has the isolated calmness property at \((\bar{p}, \bar{z})\) if and only if
\[
\left\{ \begin{array}{l}
(Cb, -(B^T B)^{-1} B^T \nabla f(\bar{z}) b) \in T((C\bar{z}, \bar{v}); \text{gph } F) \\
\nabla f(\bar{z}) b \in \text{rge } B
\end{array} \right\} \implies b = 0.
\]

Moreover, the calmness modulus is given by
\[
\text{clm} (\Psi; (\bar{p}, \bar{z})) = \sup \{ \|b\| : (\nabla f(\bar{z}) b + BDF(C\bar{z}, \bar{v})(Cb)) \cap \mathbb{B} \neq \emptyset \}.
\]

\(DH(\bar{x}, \bar{y})\) denotes the contingent (graphical) derivative of a mapping \(H : \mathbb{R}^d \rightrightarrows \mathbb{R}^l\) at \((\bar{x}, \bar{y}) \in \text{gph } H\) defined by
\[
DH(\bar{x}, \bar{y})(u) = \{ v \in \mathbb{R}^l : (u, v) \in T((\bar{x}, \bar{y}); \text{gph } H) \}, \quad u \in \mathbb{R}^d.
\]
Ingredients of the proof:

- Calculus rules to compute the graphical derivative of Φ at the reference point (injectivity of B seems to be essential);
- Apply the criterion by T. Rockafellar.

An analogues condition ensuring Aubin continuity of Ψ at the reference point exits (using the coderivative criterion by B. Mordukhovich and the limiting normal cone);

The isolated calmness and the Aubin property are stable with respect to a small perturbation of the function f as well as the reference point. This is not the case of the calmness property!
Example ($m = n = 1, B = C = 1$):

\[V_{\text{ref}} + i(t) + u(t) = E - V_D - V_R \]

Kirchhoff’s laws reveal that

\[u - E \in R_i + F_1(i), \]

where F_1 is the subdifferential mapping (in the sense of Clarke) of a locally Lipschitz-continuous function $j_1 : \mathbb{R} \to \mathbb{R}$ which is called Moreau-Panagiotopoulos super-potential.
Assume that $R = 1$ and $F_1 : \mathbb{R} \rightarrow \mathbb{R}$ is such that

- $F_1(0) = [-1, 1]$;
- it is single-valued and continuously differentiable on $\mathbb{R} \setminus \{0\}$;
- its graph is symmetric with respect to the origin;
- $F_1(0-) = -1$ and $F_1'(0-) = -a$ for some $a > 0$.
One gets an equivalent circuit

\[V_{\text{ref}} + u(t) \]

\[V_D \]

to which corresponds an equivalent generalized equation (with \(z := i \) and \(p := u - E \))

\[p \in f(z) + F(z), \]

where \(F := \partial | \cdot | \) and \(f : \mathbb{R} \to \mathbb{R} \) is a continuously differentiable odd function with \(f'(0) = 1 - a \).
Let \((\bar{z}, \bar{p}) = (0, -1)\), thus \(\bar{v} = (B^T B)^{-1} B^T (\bar{p} - f(\bar{z}))\).

\(\Psi\) has the isolated calmness property at \((-1, 0)\) if and only if

\[
(b, -(1 - a)b) \in T((0, -1); \text{gph } F) \implies b = 0,
\]

where

\[
T((0, -1); \text{gph } F) = \mathbb{R}_+ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cup \mathbb{R}_+ \begin{pmatrix} -1 \\ 0 \end{pmatrix}.
\]
Let \((\bar{z}, \bar{p}) = (0, -1)\), thus \(\bar{v} = -1\).

\(\Psi\) has the isolated calmness property at \((-1, 0)\) if and only if

\[
(b, -(1 - a)b) \in T((0, -1); \text{gph } F) \quad \implies \quad b = 0,
\]

where

\[
T((0, -1); \text{gph } F) = \mathbb{R}^+ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cup \mathbb{R}^+ \begin{pmatrix} -1 \\ 0 \end{pmatrix}.
\]
Let \((\bar{z}, \bar{p}) = (0, -1)\), thus \(\bar{v} = -1\).

\(\Psi\) has the isolated calmness property at \((-1, 0)\) if and only if

\[
\left(Cb, -\left(B^T B\right)^{-1}B^T \nabla f(\bar{z})b \right) \in T((C\bar{z}, \bar{v}); \text{gph } F) \nabla f(\bar{z})b \in \text{rge } B \implies b = 0.
\]

where

\[
T((0, -1); \text{gph } F) = \mathbb{R}_+ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cup \mathbb{R}_+ \begin{pmatrix} -1 \\ 0 \end{pmatrix}.
\]
Let \((\bar{z}, \bar{p}) = (0, -1)\), thus \(\bar{\nu} = -1\).

\(\Psi\) has the isolated calmness property at \((-1, 0)\) if and only if

\[
(b, -(1 - a)b) \in T((0, -1); \text{gph } F) \implies b = 0,
\]

where

\[
T((0, -1); \text{gph } F) = \mathbb{R}_+ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cup \mathbb{R}_+ \begin{pmatrix} -1 \\ 0 \end{pmatrix}.
\]
Let $(\bar{z}, \bar{p}) = (0, -1)$, thus $\bar{v} = -1$.

Ψ has the isolated calmness property at $(-1, 0)$ if and only if

$$(b, -(1 - a)b) \in T((0, -1); \text{gph } F) \implies b = 0,$$

where

$$T((0, -1); \text{gph } F) = \mathbb{R}_+ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cup \mathbb{R}_+ \begin{pmatrix} -1 \\ 0 \end{pmatrix}.$$

So, Ψ has the isolated calmness property at $(-1, 0)$ if and only if $a \neq 1$.
clm (Ψ; (¯p, ¯z)) = sup \{∥b∥ : (\nabla f(¯z)b + BDF(C¯z, ¯v)(Cb)) \cap \mathbb{B} \neq \emptyset\}.

One has to find a maximum of |x| subject to

\[-1 \leq (1 - a)x + y \leq 1 \quad \text{with} \quad (x, y) \in T((0, -1); \text{gph} F)\].

\[
\clm (\psi; (\bar{p}, \bar{z})) = \begin{cases}
\frac{1}{|a-1|} & \text{if} \quad a \neq 1; \\
\infty & \text{otherwise}.
\end{cases}
\]
\text{clm}(\Psi; (-1, 0)) = \sup \{|x| : ((1 - a)x + DF(0, -1)(x)) \cap [-1, 1] \neq \emptyset \}.

One has to find a maximum of $|x|$ subject to

$$-1 \leq (1 - a)x + y \leq 1 \quad \text{with} \quad (x, y) \in T((0, -1); \text{gph } F).$$

\text{clm}(\Psi; (\vec{p}, \vec{z})) = \begin{cases} \frac{1}{|a-1|} & \text{if } a \neq 1; \\ \infty & \text{otherwise.} \end{cases}
\[
\text{clm} (\Psi; (-1, 0)) = \sup \{|x| : ((1 - a)x + DF(0, -1)(x)) \cap [-1, 1] \neq \emptyset\}.
\]

One has to find a maximum of $|x|$ subject to

\[-1 \leq (1 - a)x + y \leq 1 \quad \text{with} \quad (x, y) \in T((0, -1); \text{gph } F).
\]
clm(\(\Psi; (-1, 0)\)) = \sup \{|x| : ((1 - a)x + DF(0, -1)(x)) \cap [-1, 1] \neq \emptyset\}.

One has to find a maximum of \(|x|\) subject to

\[-1 \leq (1 - a)x + y \leq 1 \quad \text{with} \quad (x, y) \in T((0, -1); \text{gph} F).\]

\[
\begin{align*}
\text{clm} (\Psi; (\bar{p}, \bar{z})) &= \begin{cases}
\frac{1}{|a-1|} & \text{if } a \neq 1; \\
\infty & \text{otherwise}.
\end{cases}
\end{align*}
\]
Given a lower semi-continuous function $g : \mathbb{R}^d \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ and a point $x \in \mathbb{R}^d$ with $g(x) \in \mathbb{R}$, the

- **Fréchet subdifferential** of g at x is the set

$$\partial_F g(x) := \left\{ \xi \in \mathbb{R}^d : \liminf_{0 \neq h \to 0} \frac{g(x + h) - g(x) - \langle \xi, h \rangle}{\|h\|} \geq 0 \right\};$$

- **outer subdifferential** of g at x is the set $\partial > g(x)$ which contains those $\xi \in \mathbb{R}^d$ for which there are sequences $(x^k)_{k \in \mathbb{N}}$ and $(\xi^k)_{k \in \mathbb{N}}$ converging to x and ξ, respectively, with

$$g(x^k) \downarrow g(x) \quad \text{as} \quad k \to \infty \quad \text{and} \quad \xi^k \in \partial_F g(x^k) \quad \text{for each} \quad k \in \mathbb{N}.$$
Given a lower semi-continuous function $g : \mathbb{R}^d \rightarrow \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ and a point $x \in \mathbb{R}^d$ with $g(x) \in \mathbb{R}$, the

- **Fréchet subdifferential** of g at x is the set

 $$\partial_F g(x) := \left\{ \xi \in \mathbb{R}^d : \liminf_{0 \neq h \to 0} \frac{g(x + h) - g(x) - \langle \xi, h \rangle}{\|h\|} \geq 0 \right\} ;$$

- **outer subdifferential** of g at x is the set $\partial^>_g(x)$ which contains those $\xi \in \mathbb{R}^d$ for which there are sequences $(x^k)_{k \in \mathbb{N}}$ and $(\xi^k)_{k \in \mathbb{N}}$ converging to x and ξ, respectively, with

 $$g(x^k) \downarrow g(x) \quad \text{as} \quad k \to \infty \quad \text{and} \quad \xi^k \in \partial_F g(x^k) \quad \text{for each} \quad k \in \mathbb{N}.$$
Given a lower semi-continuous function $g : \mathbb{R}^d \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ and a point $x \in \mathbb{R}^d$ with $g(x) \in \mathbb{R}$, the

Fréchet subdifferential of g at x is the set

$$\partial_F g(x) := \left\{ \xi \in \mathbb{R}^d : \liminf_{0 \neq h \to 0} \frac{g(x + h) - g(x) - \langle \xi, h \rangle}{\|h\|} \geq 0 \right\};$$

outer subdifferential of g at x is the set $\partial > g(x)$ which contains those $\xi \in \mathbb{R}^d$ for which there are sequences $(x^k)_{k \in \mathbb{N}}$ and $(\xi^k)_{k \in \mathbb{N}}$ converging to x and ξ, respectively, with

$$g(x^k) \downarrow g(x) \quad \text{as} \quad k \to \infty \quad \text{and} \quad \xi^k \in \partial_F g(x^k) \quad \text{for each} \quad k \in \mathbb{N}.$$

Replacing $g(x^k) \downarrow g(x)$ by $g(x^k) \to g(x)$ one gets the *limiting (Mordukhovich) subdifferential* $\partial g(x)$ of g at x.

Given a lower semi-continuous function \(g : \mathbb{R}^d \to \overline{\mathbb{R}} := \mathbb{R} \cup \{ \pm \infty \} \) and a point \(x \in \mathbb{R}^d \) with \(g(x) \in \mathbb{R} \), the

► **Fréchet subdifferential** of \(g \) at \(x \) is the set

\[
\partial_F g(x) := \left\{ \xi \in \mathbb{R}^d : \liminf_{0 \neq h \to 0} \frac{g(x + h) - g(x) - \langle \xi, h \rangle}{\| h \|} \geq 0 \right\};
\]

► **outer subdifferential** of \(g \) at \(x \) is the set \(\partial > g(x) \) which contains those \(\xi \in \mathbb{R}^d \) for which there are sequences \((x^k)_{k \in \mathbb{N}} \) and \((\xi^k)_{k \in \mathbb{N}} \) converging to \(x \) and \(\xi \), respectively, with

\[
g(x^k) \downarrow g(x) \quad \text{as} \quad k \to \infty \quad \text{and} \quad \xi^k \in \partial_F g(x^k) \quad \text{for each} \quad k \in \mathbb{N}.
\]

Replacing \(g(x^k) \downarrow g(x) \) by \(g(x^k) \to g(x) \) one gets the **limiting (Mordukhovich) subdifferential** \(\partial g(x) \) of \(g \) at \(x \).

If \(g(x) \) is infinite then the above subdifferentials of \(g \) at \(x \) are defined to be empty set.
Theorem

Suppose that the assumptions (A1) – (A3) are satisfied. Put $\Lambda = \text{gph} F \times \text{rge} B$ and define the functions $g : \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^n$ and $h : \mathbb{R}^n \to \mathbb{R}_+$ for each $z \in \mathbb{R}^n$ by $g(z) = (Cz, (B^T B)^{-1} B^T (\bar{p} - f(z)), \bar{p} - f(z))$ and $h(z) = d(g(z), \Lambda)$. Then Ψ has the calmness property at (\bar{p}, \bar{z}) provided that

$$0 \notin \partial h(\bar{z}).$$
Theorem

Suppose that the assumptions (A1) – (A3) are satisfied. Put \(\Lambda = \text{gph } F \times \text{rge } B \) and define the functions \(g : \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^n \) and \(h : \mathbb{R}^n \to \mathbb{R}_+ \) for each \(z \in \mathbb{R}^n \) by
\[
g(z) = (Cz, (B^T B)^{-1} B^T (\bar{p} - f(z)), \bar{p} - f(z))
\]
and
\[
h(z) = d(g(z), \Lambda).
\]
Then \(\Psi \) has the calmness property at \((\bar{p}, \bar{z})\) provided that
\[
0 \notin \partial> h(\bar{z}).
\]

If there is \(\gamma > 0 \) such that \(\|\xi\| \geq \gamma \) for each \(\xi \in \partial> h(\bar{z}) \) then
\[
\text{clm} (\Psi; (\bar{p}, \bar{z})) \leq 1/\gamma.
\]
Example \((n = 2, \ m = 1)\):

\[
\begin{align*}
\left(\frac{dz_1}{dt} \right) &= \left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{LC} & -\frac{R}{L}
\end{array} \right) \left(\begin{array}{c}
z_1 \\
z_2
\end{array} \right) - \left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{L}
\end{array} \right) y_L + \left(\begin{array}{c}
0 \\
\frac{1}{L}
\end{array} \right) u, \\
y &= \left(\begin{array}{c}
0 \\
-1
\end{array} \right) \left(\begin{array}{c}
z_1 \\
z_2
\end{array} \right)
\end{align*}
\]

and

\[y_L \in F(y).\]
Assume that $R = L = C = 1$. Steady states of the previous dynamic system correspond to the following generalized equation

$$p \in Az + BF(Cz), \quad z = (z_1, z_2)^T \in \mathbb{R}^2,$$

with

$$A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = (0 \quad -1),$$

and

$$F(x) := \begin{cases} -100 & x < 0, \\ [-100, 1], & x = 0, \\ 1, & x > 0. \end{cases}$$
Let $\bar{z} = (0, 0)^T$ and $\bar{p} = (0, 0)^T$.

As $B^T B = 1$, one has $\bar{v} = (B^T B)^{-1} B^T (\bar{p} - f(\bar{z}))$.

Ψ has the isolated calmness property at (\bar{p}, \bar{z}) if and only if

$$
\begin{cases}
(-b_2, b_1 + b_2) \in T((0, 0); gph F) \\
(b_2, -b_1 - b_2) \in \{0\} \times \mathbb{R}
\end{cases} \implies b_1 = 0 \text{ and } b_2 = 0.
$$

where

$$
T((0, 0); gph F) = \mathbb{R} \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

Thus Ψ does not have the isolated calmness property at (\bar{p}, \bar{z}).
Let $\bar{z} = (0, 0)^T$ and $\bar{p} = (0, 0)^T$.

As $B^T B = 1$, one has $\bar{v} = 0$.

Ψ has the isolated calmness property at (\bar{p}, \bar{z}) if and only if

$\begin{align*}
(-b_2, b_1 + b_2) \in T((0, 0); \text{gph } F) \\
(b_2, -b_1 - b_2) \in \{0\} \times \mathbb{R}
\end{align*}$

$\implies b_1 = 0$ and $b_2 = 0$.

where

$T((0, 0); \text{gph } F) = \mathbb{R} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Thus Ψ does not have the isolated calmness property at (\bar{p}, \bar{z}).
Let $\bar{z} = (0, 0)^T$ and $\bar{p} = (0, 0)^T$.

As $B^T B = 1$, one has $\bar{v} = 0$.

Ψ has the isolated calmness property at (\bar{p}, \bar{z}) if and only if

$$\left(Cb, -\left(B^T B \right)^{-1} B^T \nabla f(\bar{z}) b \right) \in T\left((C\bar{z}, \bar{v}); \text{gph } F \right)$$

$$\nabla f(\bar{z}) b \in \text{rge } B$$

$$\implies b = 0.$$

where

$$T\left((0, 0); \text{gph } F \right) = \mathbb{R} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Thus Ψ does not have the isolated calmness property at (\bar{p}, \bar{z}).
Let $\bar{z} = (0, 0)^T$ and $\bar{p} = (0, 0)^T$.

As $B^T B = 1$, one has $\bar{v} = 0$.

Ψ has the isolated calmness property at (\bar{p}, \bar{z}) if and only if

$$
(-b_2, b_1 + b_2) \in T((0, 0); \text{gph } F) \quad \text{and} \quad (b_2, -b_1 - b_2) \in \{0\} \times \mathbb{R}
$$

$$
\implies b_1 = 0 \quad \text{and} \quad b_2 = 0.
$$

where

$$
T((0, 0); \text{gph } F) = \mathbb{R} \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

Thus Ψ does not have the isolated calmness property at (\bar{p}, \bar{z}).
Let $\bar{z} = (0, 0)^T$ and $\bar{p} = (0, 0)^T$.

As $B^T B = 1$, one has $\bar{v} = 0$.

Ψ has the isolated calmness property at (\bar{p}, \bar{z}) if and only if

$$\begin{align*}
(-b_2, b_1 + b_2) &\in T((0, 0); \text{gph } F) \\
(b_2, -b_1 - b_2) &\in \{0\} \times \mathbb{R}
\end{align*}$$

$\implies b_1 = 0$ and $b_2 = 0$.

Thus Ψ does not have the isolated calmness property at (\bar{p}, \bar{z}).

where

$$T((0, 0); \text{gph } F) = \mathbb{R} \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$
Let $\bar{z} = (0, 0)^T$ and $\bar{p} = (0, 0)^T$.

As $B^T B = 1$, one has $\bar{v} = 0$.

Ψ has the isolated calmness property at (\bar{p}, \bar{z}) if and only if
\[
(-b_2, b_1 + b_2) \in T((0, 0); \text{gph } F) \\
(b_2, -b_1 - b_2) \in \{0\} \times \mathbb{R}
\]
\[
\implies b_1 = 0 \text{ and } b_2 = 0.
\]

where
\[
T((0, 0); \text{gph } F) = \mathbb{R} \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

Thus Ψ does not have the isolated calmness property at (\bar{p}, \bar{z}).

Let $\bar{z} = (0, 0)^T$ and $\bar{p} = (0, 0)^T$.

As $B^T B = 1$, one has $\bar{v} = 0$.

Ψ has the isolated calmness property at (\bar{p}, \bar{z}) if and only if

\[
\begin{cases}
(-b_2, b_1 + b_2) \in T\left((0, 0); \text{gph} \ F\right) \\
(b_2, -b_1 - b_2) \in \{0\} \times \mathbb{R}
\end{cases}
\implies b_1 = 0 \text{ and } b_2 = 0.
\]

where

\[
T\left((0, 0); \text{gph} \ F\right) = \mathbb{R}\begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

Thus Ψ does not have the isolated calmness property at (\bar{p}, \bar{z}).
For each \(z = (z_1, z_2)^T \in \mathbb{R}^2 \), one has

\[
g(z) = (Cz, (B^T B)^{-1}B^T(\bar{p} - f(z)), \bar{p} - f(z))
\]

and

\[
h(z) = d(g(z), \Lambda).
\]

Then, choosing a suitable equivalent norm on \(\mathbb{R}^2 \times \mathbb{R}^2 \), one gets

\[
h(z) = d((-z_2, z_1 + z_2), \text{gph } F) + d((-z_2, z_1 + z_2), \{0\} \times \mathbb{R})
\]

\[
= d((-z_2, z_1 + z_2), \text{gph } F) + |z_2| = d(-Az, \text{gph } F) + |z_2|.
\]

Hence

\[
\partial h(z) \subset \partial d(-A(\cdot), \text{gph } F)(z) + \{0\} \times \partial |(z_2)
\]

\[
= -A^T \partial d(\cdot, \text{gph } F)(-z_2, z_1 + z_2) + \{0\} \times \partial |(z_2).
\]

Find \(r \in (0, 1) \) such that \(\partial d(\cdot, \text{gph } F)(u) = \left\{ \left(\frac{x}{|x|}, 0 \right)^T \right\} \) whenever

\[
u = (x, y)^T \in rB_2.
\]
For each $z = (z_1, z_2)^T \in \mathbb{R}^2$, one has
\[g(z) = (-z_2, z_1 + z_2, -z_2, z_1 + z_2) \]
and
\[h(z) = d(g(z), \Lambda). \]

Then, choosing a suitable equivalent norm on $\mathbb{R}^2 \times \mathbb{R}^2$, one gets
\[
\begin{align*}
h(z) &= d((-z_2, z_1 + z_2), \text{gph } F) + d((-z_2, z_1 + z_2), \{0\} \times \mathbb{R}) \\
&= d((-z_2, z_1 + z_2), \text{gph } F) + |z_2| = d(-Az, \text{gph } F) + |z_2|.
\end{align*}
\]

Hence
\[
\begin{align*}
\partial h(z) &\subset \partial d(-A(\cdot), \text{gph } F)(z) + \{0\} \times \partial |\cdot|(z_2) \\
&= -A^T \partial d(\cdot, \text{gph } F)(-z_2, z_1 + z_2) + \{0\} \times \partial |\cdot|(z_2).
\end{align*}
\]

Find $r \in (0, 1)$ such that $\partial d(\cdot, \text{gph } F)(u) = \left\{ \left(\frac{x}{|x|}, 0 \right)^T \right\}$ whenever
$u = (x, y)^T \in r \mathbb{B}_2$.
For each \(z = (z_1, z_2)^T \in \mathbb{R}^2 \), one has

\[
g(z) = (-z_2, z_1 + z_2, -z_2, z_1 + z_2)
\]

and

\[
h(z) = d(g(z), \Lambda).
\]

Then, choosing a suitable equivalent norm on \(\mathbb{R}^2 \times \mathbb{R}^2 \), one gets

\[
h(z) = d((-z_2, z_1 + z_2), \text{gph} \ F) + d((-z_2, z_1 + z_2), \{0\} \times \mathbb{R})
\]

\[
= d((-z_2, z_1 + z_2), \text{gph} \ F) + |z_2| = d(-Az, \text{gph} \ F) + |z_2|.
\]

Hence

\[
\partial h(z) \subset \partial d(-A(\cdot), \text{gph} \ F)(z) + \{0\} \times \partial |\cdot|(z_2)
\]

\[
= -A^T \partial d(\cdot, \text{gph} \ F)(-z_2, z_1 + z_2) + \{0\} \times \partial |\cdot|(z_2).
\]

Find \(r \in (0, 1) \) such that \(\partial d(\cdot, \text{gph} \ F)(u) = \left\{ \left(\frac{x}{|x|}, 0 \right)^T \right\} \) whenever

\[
u = (x, y)^T \in rB_2.
\]
For each $z = (z_1, z_2)^T \in \mathbb{R}^2$, one has
\[g(z) = (-z_2, z_1 + z_2, -z_2, z_1 + z_2) \]
and
\[h(z) = d((-z_2, z_1 + z_2, -z_2, z_1 + z_2), \text{gph } F \times \{0\} \times \mathbb{R}). \]
Then, choosing a suitable equivalent norm on $\mathbb{R}^2 \times \mathbb{R}^2$, one gets
\[
\begin{align*}
h(z) &= d((-z_2, z_1 + z_2), \text{gph } F) + d((-z_2, z_1 + z_2), \{0\} \times \mathbb{R}) \\
&= d((-z_2, z_1 + z_2), \text{gph } F) + |z_2| = d(-Az, \text{gph } F) + |z_2|.
\end{align*}
\]
Hence
\[
\partial h(z) \subset \partial d(-A(\cdot), \text{gph } F)(z) + \{0\} \times \partial |(z_2)|
\]
\[
= -A^T \partial d(\cdot, \text{gph } F)(-z_2, z_1 + z_2) + \{0\} \times \partial |(z_2)|.
\]
Find $r \in (0, 1)$ such that $\partial d(\cdot, \text{gph } F)(u) = \left\{ \left(\frac{x}{|x|}, 0 \right)^T \right\}$ whenever $u = (x, y)^T \in r \mathbb{B}_2$.
Fix any \(z = (z_1, z_2)^T \in \mathbb{R}^2 \) with \(h(z) > 0 \) and \(-Az \in rB_2 \).

Then \(z_2 \neq 0 \). If not, as \(h(z) = d((−z_2, z_1 + z_2), \text{gph } F) + |z_2| > 0, \ z_1 \notin F(0) \), so either \(z_1 > 1 \) or \(z_1 < −100 \). Both the cases are impossible because \(|z_1| \leq r < 1 \).

As \(∂h(z) \subset −A^T \left(\frac{-z_2}{|z_2|}, 0 \right)^T + \{0\} \times ∂|⋅|(z_2) \), one has either

\[
∂h(z) \subset \left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array} \right) \left(\begin{array}{c} -1 \\ 0 \end{array} \right) + \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 2 \end{array} \right) \quad \text{when } z_2 > 0,
\]

or

\[
∂h(z) \subset \left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + \left(\begin{array}{c} 0 \\ -1 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \end{array} \right) \quad \text{when } z_2 < 0.
\]

In any case, \(∥η∥ \geq 2 \) for each \(η \in ∂h(z) \).

Hence \(∥ξ∥ \geq 2 \) whenever \(ξ \in ∂h(\bar{z}) \). Thus \(Ψ \) is calm at \((\bar{p}, \bar{z})\) with the calmness modulus not exceeding \(1/2 \).
Similar computation yields that
Do all the electrical devices on board have the Aubin or calmness properties?
Do all the electrical devices on board have the Aubin or calmness properties?

I don't know but they fly!

