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Abstract. In this paper we introduce a new family of rank metric codes: the Low Rank Parity Check codes
for which we propose an e�cient probabilistic decoding algorithm. This family of codes can be seen as the
equivalent of classical LDPC codes for the rank metric. We then propose to use these codes for cryptography
in the McEliece encryption setting. At the di�erence of previous encryption algorithms based on rank metric
-especially based on Gabidulin codes -, the codes we use have a very poor structure. Our cryptosystem can be
seen as an equivalent to the NTRU cryptosystem [15] (and also to the more recent MDPC[22] cryptosystem) in
a rank metric context. Overall our system permits to achieve a very low public key of 1517 bits for a security of
280, moreover our system is very fast with a complexity of decryption of order 217 operations in the base �eld,
and with a decryption failure which can be made arbitrarily small.
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1 Introduction

The rank metric was introduced by Gabidulin in 1985 in [8], along with the Gabidulin codes which are an equivalent of
the Reed-Solomon codes for the rank metric. Since then, rank metric codes have been used in many applications: for
coding theory and space-time codes and also for cryptography. Until now the main tool for rank based cryptography
was based on masking the Gabidulin codes [10] in di�erent ways and using the McEliece (or Niederreiter) setting
with these codes. Meanwhile most of the systems were broken by using structural attacks which used the particular
structure of the Gabidulin codes ([26], [6], [2], [18],[9]). A similar situation exists in the Hamming case for which all
cryptosystems based on the Reed-Solomon have been broken for the same reason: the Reed-Solomon are so structured
that their structure is di�cult to mask and there is always structural information leaking.

Since the introduction of code-based cryptography by McEliece in 1978, the di�erent cryptosystems, proposed in the
Hamming distance setting, were based on masking a special family of decodable codes, like Goppa, Reed-Muller of
Reed-Solomon codes. The strong structure of these codes usually implies a large size of public key. Now in 1996 and
1997, two lattice-based cryptosystems were proposed independently: the NTRU [15] and the GGH [14] cryptosystems
which can be seen as a cryptosystems in a McEliece setting but for the Euclidean distance. Notice that lattice based
cryptography is no more than code-based cryptography with q-ary codes but with the Euclidean distance rather than
the Hamming distance. Both NTRU and GGH cryptosystems are based on the same idea: knowing a random basis of
small weight vectors permits to obtain an e�cient decoding algorithm suitable for cryptography. Moreover the NTRU
cryptosysem (which can be seen as an optimized case of the GGH cryptosystem [20]) introduced for the �rst time
the idea to use double-circulant matrices in order to decrease the size of the public key, this idea was made possible
because of the randomness of the small dual basis. At last we remark that for 15 years the NTRU cryptosystem has



not been really attacked on its double-circulant structure, indeed the best attacks still remain general LLL attacks
on lattice.

In a classical cryptographic Hamming context, the �rst author [11] introduced in 2005 the idea to use quasi-cyclic
codes to decrease the size of the public, meanwhile the idea to add a quasi-cyclic structure on an already structured
family of codes introduces too much structure and the system was broken [24]. This idea was then used with other
families of quasi-cyclic (or quasi-dyadic) structured codes like Goppa quasi-dyadic [21] or quasi-cyclic alternant codes
[1], these systems lead to much smaller keys, but eventually they were attacked in [5] and even though the idea
remains valid, the cryptanalysis of [5] showed that this the idea of quasi-cyclic or quasi-dyadic structured codes could
not lead to secure public key of a few thousand bits, but rather to secure keys of a few tenth thousand bits.

More recently new proposal were made in the spirit of the original NTRU schems with Hamming distance, �rst by
the the use of quasi-cyclic LDPC codes, then with MDPC codes in [22]. The last family of codes permits to obtain the
same type of feature than the NTRU cryptosystem: a very compact key (of 4800b) and a security based on decoding
by a random dual matrix with small weight.

Our contribution In this paper we built anew on the NTRU setting but in a rank metric context. We introduce
the Low Rank Parity Check codes (an equivalent of the LDPC codes for Hamming distance) for which we propose an
e�cient probabilistic decoding algorithm. We then use these codes in a quasi-cyclic form and obtain a cryptosystem
with public key three times smaller than the MDPC codes (1517 bits), moreover our system is more than 100 times
faster than [22] (in term of number of operations).

The paper is organized as follows: Section 2 gives background on rank metric codes and cryptography, Section 3
consider results on subspaces, Section 4 de�nes the LRPC codes, Section 5 gives a decoding algorithm and at last
Secction 6 and 7 consider the cryptographic application of these codes.

2 Background on rank metric codes and cryptography

2.1 De�nitions and notation

Notation :
Let q be a power of a prime p, m an integer and let Vn be a n dimensional vector space over the �nite �eld
GF(qm) = Fqm . Let β = (β1, . . . , βm) be a basis of Fqm over Fq.
Let Fi be the map from Fqm to Fq where Fi(x) is the i-th coordinate of x in the basis β.
To any v = (v1, . . . , vn) in Vn we associate the matrix v ∈Mm,n(Fq) in which vi,j = Fi(vj).
The rank weight of a vector v can be de�ned as the rank of the associated matrix v. If we name this value rank(v)
we can have a distance between two vectors x, y using the formula rd(x, y) = rank(x− y). We refer to [19] for more
details on codes for the rank distance.

A rank code C of length n and dimension k over Fqm is a subspace of dimension k of Fqm embedded with its rank
metric. The minimum rank distance of the code C is the minimum rank of non-zero vectors of the code.

De�nition 1. Let x = (x1, x2, · · · , xn) ∈ Fnqm be a vector of rank r. We denote E the Fq-sub vector space of Fqm

generated by x1, x2, · · · , xn. The vector space E is called the support of x.

Remark 1. The notion of support of a code word for Hamming distance and the one introduced in de�nition 1 are
di�erent even if they share a common principle. Indeed, in both case, giving a low weight syndrome associated to x,
once the support is known one only have to solve a linear system in both case.

Remark 2. For any code, the action of the general linear group does not change the weight of the words. In the case
a rank metric code, this action does not change the supports of the word also. Also an interesting remark is that in



the case of Hamming distance over Fq increasing the value of q permits to increase the minimum distance of a code
but does not change the type of support (it is always a binomial coe�cient with the same length) when for rank
metric increasing the base �eld Fq increases in a strong the size of the support (ie: the number of bases which can
be found by the Gaussian binomial).

Notation 1 In the text below, C is a rank metric code of length n and dimension k over Fqm . The matrix G denotes
a k × n generator matrix of C and H one of its parity check matrix.

2.2 Cryptography and rank codes

The main problem used for rank codes in the cryptographic context is the generalization of the classical syndrome
decoding problem with Hamming distance in the case of rank metric:

Syndrome decoding problem for the rank distance(RSD) Let H be a ((n − k) × n) matrix over Fqm with
k ≤ n, i ∈ F kqm and r an integer. The problem is to �nd s such that rank(s) = r and Hst = i.

In that case it is not proven that the problem is NP-hard, but this problem is very close to the syndrome decoding
problem which is NP-hard, moreover the problem can be seen as a structured version of the MinRank problem which
is also NP-hard (the RSD problem can be attacked as a MinRank problem but in practice the attack do not work
since there are too many unknowns [4]). Moreover the problem has been studied for more than 20 years and the best
attacks are exponential, so that the problem is generally believed to be hard.

The �rst non-trivial attack on the problem was proposed by Chabaud and Stern [3] in 1996, then in 2002 Ourivski
and Johannson [25] improved the previous attack and proposed a new attack, meanwhile these two attacks did not
take account of the value of m in the exponent. Very recently the two previous attacks were generalized in [13] (and
used to break some reparations of the GPT cryposystems) moreover an algebraic new setting was also proposed.

The new complexity for the best known attacks are now in our context: (n− k)3m3q(r−1)b
(k+1)m

n c)) for the general-

ization of previous attacks including m in the exponential factor and qrd
r(k+1)−(n+1)

r e) a lower bound for the hybrid
attack using Groebner basis of [13]. Notice that there are other possible attacks with Groebner basis (Kipnis-Shamir
or attacks by minors) but they are not relevant in our context (see [13] for more details), except the attacks of [17]
which can be more e�cient than [13] in the case where q is high.

3 Some results on the product of two subspaces

Before introducing the LRPC codes we need to introduce some results on the product of two subspaces, we only cite
the main result here, all the proofs are presented in the appendix:

De�nition 2. Let A and B be two Fq-subspaces of Fqm of dimensions α and β, generated respectively by {A1, · · · , Aα}
and {B1, · · · , Bβ} all Ai and Bj in Fqm , we denote by 〈A.B〉 the product space generated by the set {a.b, a ∈ A, b ∈ B}.

The product space 〈A.B〉 is obviously generated by the set {A1.B1, · · · , A1.Bβ , · · · , Aα.B1, · · · , Aα.Bβ} and its
dimension is bounded above by αβ.

A question of interest in our case is the probability that the dimension is not maximal when α and β are relatively
small. We suppose αβ < m and we investigate the typical dimension of the product subspace 〈AB〉.

Let A and B be random Fq-subspaces of Fmq of dimensions α and β respectively. We suppose αβ < m and we
investigate the typical dimension of the subspace 〈AB〉.

We rely on the following observation:



Lemma 1. Let A′ and B be two subspaces of Fmq of dimensions α′ and β such that dim〈A′B〉 = α′β. Let A = A′+〈a〉
where a is a uniformly chosen random element of Fmq . Then

P (dim〈AB〉 < α′β + β) ≤ qα
′β+β

qm
.

Proposition 1. Let B be a �xed subspace and suppose we construct a random subspace A by choosing α independent
(in the sense of probability) random vectors of Fmq and letting A be the subspace generated by these α random vectors.

We have that dim〈AB〉 = αβ with probability at least 1− α q
αβ

qm .

Let B be a �xed subspace of Fmq containing 1 and let 〈B2〉 be the subspace generated by all products of elements
of B. Let β2 = dim〈B2〉. Let A be a random subspace of Fmq of dimension α. By the Proposition we have that

dim〈AB2〉 = αβ2 with probability at least 1− α q
αβ2

qm . Remark: we have β2 ≤ β(β + 1)/2.

Lemma 2. Suppose dim〈AB2〉 = αβ2. Let e ∈ 〈AB〉 with e 6∈ A. Suppose eB ⊂ 〈AB〉. Then there exists x ∈ B,
x 6∈ Fq, such that xB ⊂ B.

Proposition 2. Suppose m is prime. Let A and B be random subspaces of dimensions α and β respectively. Let (bi)

be a basis of B and let S = 〈AB〉. Then with probability at least 1− α q
αβ(β+1)/2

qm we have that
⋂
i b
−1
i S = A.

Proposition 3. Let B be a subspace of dimension β containing 1 such that dimB + Bb−1 = 2β − 1 for some

b ∈ B. Let A be a randomly chosen subspace of dimension α. With probability at least 1 − α q
α(2β−1)

qm we have that

〈AB〉 ∩ 〈AB〉b−1 = A

Remark 3. It is interesting to remark that in practice the probability for which an upper bound is given in Proposition
2 and 3, decreases much more faster to 0. Indeed when the degree of the extension m increases by one (for m greater
than rd), the probability that

⋂
i b
−1
i S 6= A is divided by a factor at least qr−1. This means that in practice the

previous upper bound is rather bad, and that one can consider that as soon as m is greater than rd by 8 or more
(and increasing) the probability is far below 2−30. It will be the case when one will choose parmaters in the last
section.

4 Low Rank Parity Check Codes

The idea of these codes is to generalize the classical LDPC codes approach for Hamming distance to the rank metric.
There is a natural analogy between low density matrices and matrices with low rank.

De�nition 3. A Low Rank Parity Check (LRPC) code of rank d, length n and dimension k over Fqm is a code such
that the code has a parity check (n− k)× n matrix such that the sub-vector space of Fqm generated by its coe�cients
hij is at dimension at most d. We call this dimension the weight of H. Denoting F the sub-vector space of Fqm

generated by the coe�cients hij of H, we denote F1, F2, · · · , Fd one of its basis.

In practice it means that for any 1 ≤ i ≤ k, 1 ≤ j ≤ n, there exist hijk ∈ Fq such that hij =
∑d
k=1 hijkFk. One can

also de�ne a special sub-class of LRPC codes:

De�nition 4. A Quasi-Cyclic Low Rank Parity Check (QC-LRPC) code of rank d, is a quasi-cyclic code such that
the code has a parity check quasi-cyclic H of low weight d.



Remark: Of particular interest is the case of double circulant LRPC codes (DC-LRPC) of rank d, which are codes
with parity check matrix H, a double-circulant matrix (concatenation of two cyclic matrices) of weight d.

In the following we will also be interested by a special matrix ArH which permits to decode the LRPC codes in a very
e�cient way.

De�nition 5. Let H := (hij) be a parity check matrix (n− k)×n of low weight d over Fqm , such that all hij belong

to F = {F1, . . . , Fd}, then for all 1 ≤ i ≤ n− k, 1 ≤ j ≤ n, hij =
∑d
k=1 hijkFk, for hijk ∈ Fq. Assume that we have

an error of low rank, say r, such that there is a basis E1, .., Er of the sub-vector space of Fqm where the coe�cients
of the error lie. We will construct a matrix ArH depending on F and r but not directly of a special basis of the error
space. In fact, the following construction can be viewed as unfolding over Fq the matrix H on a "symbolic" basis of
the product of the space F and the space E of the coe�cient of the error . The considered matrix is a nr× (n− k)rd
matrix ArH = (aij) by setting all aij = 0 and then write:

awr+v+1+urd,j+vn = hljw,

for 0 ≤ u ≤ n− k − 1, 0 ≤ v ≤ r − 1, 1 ≤ j ≤ n and 0 ≤ w ≤ d− 1.

The matrix ArH corresponds to a formal rewriting of the system H.et = s, where e = (e1, . . . , en) with ei ∈ E =<
E1, . . . , Er > and ei =

∑n
i=1 eijEj . Notice that the matrix ArH does not depend on the subspace F since all is written

symbolically.

All si can be written in the formal basis {F1E1, F1E2, ..., F1Er, F2E1, ..., FdEr} over Fq. Then the matrix ArH is such
that:

ArH .(e11, e21, ..., en1, e12, e22, ..., en2, ..., er1, ..., ern)
t = (s1, ..., sn−k)

t

where each si is written in the formal product basis {F1E1, F1E2, ..., F1Er, F2E1, ..., FdEr} with the same order of
coordinates (and therefore (s1, ..., sn−k) is considered as a vector in Fq of length (n− k).rd.

For instance, the �rst row of ArH consists on the impact of the error vector e on the �rst row of H(h11, . . . , h1n) on
the symbolic basis element F1E1. Since the eij are ordered in the previous given order, the �rst row of ArH only deals
with the projection of h1j on the basis element F1, therefore the h1j1(∈ Fq). Now since one considers for the �rst
row of ArH the impact on F1E1, the �rst n coordinates a1j of the �rst row of ArH are a1j = h1j1 for 1 ≤ j ≤ n and
the remaining coordinates are a1j = 0 for n+ 1 ≤ j ≤ nr, since they involve E2, E3, . . ..

Now if one takes random values of coordinates for low rank H, it is easy to �nd matrices ArH of maximal rank nr.

De�nition 6. In the following we denote by AH a nr×nr invertible submatrix of ArH , and we denote by DH = A−1H
a decoding matrix of H.

Remark The matrix DH permits to recover directly the nr values eij from nr positions of the si written in product
basis by a simple multiplication.

5 Decoding algorithm for LRPC codes

5.1 General idea

The general idea of the algorithm is to use the fact that the weight of the parity check matrix is small, the idea is
that the space generated by the coordinates of syndrome < s1, . . . , snk > permits to recover the whole product space
P =< E.F > of the support of the error and of the known small basis of H. Knowing the whole space P and the
space F permits to recover E. Then , knowing the support E of the error e, it is easy to recover the exact value of
each coordinate by solving a linear system. This approach is very similar to the classical decoding procedure of BCH
codes for instance, where one recovers the error-locator polynomial, which gives the support of the error , and then
the value of the error coordinates.



5.2 A general decoding algorithm

Consider a [n, k] LRPC code C of low weight d over Fqm , with generator matrix G and dual (n− k)× n matrix H,
such that all the coordinates hij of H belong to a space F of rank d with basis {F1, · · · , Fd} and suppose that as in
the previous section H is chosen such that there exists an invertible associated decoding matrix DH .

Suppose the received word to be y = xG + e for x and e in (Fqm)
n, and where e(e1, · · · , en) is the error vector of

rank r, which means that for any 1 ≤ i ≤ n, ei ∈ E, a vector space of dimension r with basis (say) {E1, . . . , Er}.

We have the following general decoding algorithm, this algorithm has a probability of failure that we will consider
in the next subsection, we give general parameters at the end of the section for which the algorithm works.

1. Syndrome space computation

Compute the syndrome vector H.yt = s(s1, · · · , sn−k) and the syndrome space
S =< s1, · · · , sn−k >.

2. Recovering the support E of the error

De�ne Si = F−1
i S, the subspace where all generators of S are multiplied by

F−1
i . Compute the support of the error E = S1 ∩ S2 ∩ · · · ∩ Sd, and compute a

basis {E1, E2, · · · , Er} of E.

3. Recovering the error vector e
Write ei(1 ≤ i ≤ n) in the error support as ei =

∑n
i=1 eijEj , solve the

system H.et = s, where the equations H.et and the syndrome coordinates
si are written as elements of the product space P =< E.F > in the basis
{F1E1, · · · , F1Er, · · · , FdE1, · · · , FdEr}. The system has nr unknowns (the eij)
in Fq and (n− k).rd equations from the syndrome.

4. Recovering the message x
Recover x from the system xG = y − e.

Fig. 1. Algorithm 1:a general decoding algorithm for LRPC codes

5.3 Correctness of the algorithm

We prove the correctness of the algorithm in the ideal case when dimension(< E.F >) = rd, dimension(S) = rd and
dimension (S1 ∩ S2 ∩ · · · ∩ Sd) = r, we will see in the next subsection that this is the general case.

step 1:The �rst step of the algorithm is obvious.

step 2:now we want to prove that E ⊂ S1 ∩ S2 ∩ · · · ∩ Sd. We de�ned Si = F−1i S = {F−1i x, x ∈ S}, now
since by hypothesis S is exactly the product space E.F = {a.b|a ∈ E, b ∈ F}, we have Fi.Ej ∈ S,∀1 ≤ j ≤
r, hence Ej ∈ Si, and therefore E ⊂ Si, and hence E is contained in S1 ∩ S2 ∩ · · · ∩ Sd, now by hypothesis
dimension(S1 ∩ S2 ∩ · · · ∩ Sd)=dimension(E) and hence E = S1 ∩ S2 ∩ · · · ∩ Sd.

step 3: once the support E of the error of x is known, one can write x =
∑

1≤i≤n,1≤j≤r eijEj , for eij ∈ Fq and

solve the linear system H.xt = s in the nr unknown eij . The system has nr unknown in Fq and (n− k).m equations

in Fq coming from the n − k syndrome equations in Fqm . The parameter r is chosen such that r ≥ (n−k)m
n . Notice

moreover that one can consider the product space < E.F > for a formal F so that in that case the system equations
are uniquely related to the matrix H. Hence H can be chosen such that a decoding matrix DH exists and permits
to solve the system by a simple multiplication by DH of the set of si written in the product space basis.



5.4 Probability of failure

We now consider the di�erent possibility of failure, there three cases to consider. The case dimension(< E.F >) = rd
corresponds to Prop. 1 of Section 3, the case E = S1 ∩ S2 ∩ · · · ∩ Sd corresponds to Prop. 2 of the same section. In
both cases the probability can be made exponentially small depending on parameters, especially when in practice
the upper bound given are really large compared to experimental results.

The last case is the case dimension(S) = rd. We have the following easy proposition:

Proposition 4. The probability that the n− k syndromes does not generate the product space P =< E.F > is less
than q1+(n−k)−rd.

Proof. By construction all si belong to the product space P and since the error is taken randomly the si can be
seen as random elements of P , now if one considers a set of (n− k) random elements of space of dimension rd (with
n− k ≥ rd) the probability that this set does not generate the whole space is roughly given by q−(1+(n−k)−rd) - the
probability that a random [rd, n− k] = [rd, rd+ (n− k)− rd] matrix over Fq not be invertible.

Therefore the previous discussion shows that depending on the parameters the probability of failure of the previous
algorithm can be made arbitrarily small and that the main probability we have to consider in fact is the probability
given by Proposition 4, which is not an upper bound but what happens in practice.

5.5 Complexity of decoding

The most costly step of the algorithm are step 2) et step 3). The cost of step 2) is the cost of the intersection of vector
spaces which has cost 4r2d2m operations in the base �eld (this operation can also be done in a very elegant way with
q-polynomials [23]). Now the cost of step 3) is the cost of solving the system H.et = s when the support E of the
error is known, if one proceeds naively there are nr unknowns (the eij) and the cost of matrix inversion in n3r3, now
one can use the formal decoding matrix DH of the previous section and simply recover the (eij) by multiplying by
DH the nr positions (written in the product basis of 〈E.F 〉) of s1, .., sn−k associated to the matrix DH of de�nition
6. Therefore the cost of the inversion becomes only the cost of a matrix multiplication: n2r2. Remark that the matrix
DH can be precomputed and stocked or even reconstructed column by column from random hash values - in that
case one �xes DH and one derives H.

5.6 A general theorem

If we sum up the results of the di�erent subsection one obtains the following general theorem:

Theorem 1. Let H be a (n− k)× n dual matrix of a LRPC codes with low rank d ≥ 2 over Fqm , then algorithm 1
decodes a random error e of low rank r such that rd ≤ n − k, with failure probability q−(n−k+1−rd) and complexity
r2(4d2m+ n2).

Proof. This theorem is a direct result from previous subsection.

Remark 4. In term of pure decoding capacity the LRPC codes are less intersting than Gabidulin codes, since they
hardly decode up to (n− k)/2 and moreover the algorithm is probabilistic, but they are perfectlu �tted for cryptog-
raphy.

6 Application to cryptography: the LRPC cryptosystem

In the following we propose a new cryptosystem in the spirit of NTRU and the more recent MDPC system.



6.1 The LRPC cryptosystem

For our new cryptosystem we use the McEliece cryptographic setting, the Niederreiter setting could also be used but
less semantic security is known for this setting.

Let us consider C a LRPC code with a (n − k) × n parity check matrix H. We consider H to be either a LRPC
codes or double circulant LRPC codes (DC-LRPC) n

2 × n of rank d, such that the code corrects error of rank r. We
hide the matrix H with a random invertible matrix R, in the case of double circulant codes the matrix S is random
circulant n

2 ×
n
2 . Figure 2 presents the LRPC cryptosytem.

1. Key creation Choose a random LRPC code over Fqm of low rank d with
support F and parity check (n − k) × n matrix H, generator matrix G and
decoding matrix DH which correct errors of rank r (as in previous section).
And a random invertible (n− k)× (n− k) matrix R
• Secret key: the low rank matrix H, the masking matrix R
• Public key: the matrix G′ = RG

2. Encryption
Translate the information vector M into a word x, choose a random error e of
rank r on Fqm . The encryption of M is c = xG′ + e.

3. Decryption
Compute syndrome s = H.ct and recover the error vector e then xR and x.

Fig. 2. The LRPC cryptosystem

Remark 5. The cryptosystem can be adpated in the case of DC-LRPC codes, in that case the matrix G′ can be
written G′ = (A−1Bt|I) were A and B are two circulant matrices of low rank d for the same space F .

• General parameters of the LRPC cryptosystem:

1. Size of public key (bits): LRPC: (n− k)(n− k)mLog(q) / DC-LRPC: nm2 Log(q)

2. Size of secret key (bits): a random vector can used to recover the di�erent parameters

3. Size of message: LRPC: (n− k)mLog(q) / DC-LRPC: nm2 Log(q)

4. Encryption rate: LRPC: r(m+n)
(n−k)m / DC-LRPC: 2r(m+n)

nm

5. Complexity of encryption: LRPC:(n-k)(n-k)mr op. in Fq / DC-LRPC:n
2mr
4 op. in Fq

6. Complexity of decryption: r2(n2 + 4d2m) op. in Fq

7. Complexity of the best usual attack: Support attack: O((n−k)3m3q(r−1)b
(k+1)m

n c)) / algebraic attacks (Grobner

basis) - lower bound: qrd
r(k+1)−(n+1)

r e) and heuristic results of [17]

Remark 6. in the case of DC-LRPC , since the matrix is double-circulant the complexity of encryption can be
optimized.

Remark 7. We choose to present a McEliece setting, in that case the size of the message is greater than for the
Niederreiter setting but more can be proven for semantic security.

We made a non-optimized implementation in Magma which con�rmed our results.



7 Security of the LRPC cryptosystem

7.1 Semantic security

The problem on which relies the security of our system is the following:

The LRPC problem: Given a public matrix G′ it is di�cult to recover low weight vector of rank weight d in the
dual code.

Discussion on the problem The problem considered here is the adaptation of the NTRU problem and the MDPC
problem but in rank metric. Notice that clearly the matrix used are not random, meanwhile this special structure
could not be used for attacks for NTRU over 15 years. Also for MDPC the same situation arises.

Now in term of semantic security the approach developed for the MDPC cryptosystem in [22] on the indistingability
to random codes can be adapted in a context of rank metric, moreover particular the CCA-2 conversion of K. Kobara
and H. Imai [16]. can also be adapted to rank metric but this discussion goes well beyond this extended abstract.

Also concerning decryption failure it is possible to use the approach of E. Fujisaki and T. Okamoto [7] which permits
that no information is given in case of decryption failure (the same approach was proposed for NTRU and MDPC).

7.2 Practical security

We review the di�erent attacks:

• Message attack:in that case the attacker tries to recover directly the message M by trying to recover e of rank r
with classical attacks on a random code.

• Attack on the secret key: the attacker tries to recover a codeword of rank d in H. Notice that classical attacks �rst
recover the support of a small weight word, in that case all the rows of H have the same support and the fact that
there are n/2 cyclic vector does not seem to be helpful.

• Spurious key attack: as in the NTRU case (see [15]) this attack corresponds to �nding small word vectors in H with
rank slightly greater than d, and to use them for decoding. Although theoritically possible this attack is not doable
in practice since the fact that H contains small weight vectors implies indeed that many words of weight 2d exist.
We do not go into details in this extended but as for MDPC codes [22], when the weight increases the complexity of
the attacks grows faster than the number of small weight vectors, so that this attacks - as for NTRU and MDPC-
does not work in practice.

Overall no structural attacks seem to appear in that case. Notice that this system is the exact adaptation of the
NTRU and GGH frame in the case of rank distance. In particular, the double circulant case with A−1B) corresponds
to this case and no attack was found.

8 Examples of parameters and comparison to MDPC

8.1 Examples of parameters

We give three examples of parameters for the DC-LPRC case: an example with security 280 which optimizes the
size of the public key at 1500b with a decryption probability of 2−22, an example with security 2128, and at last
an example with decryption failure probability of 2−80. In the table 'failure' stands for 'decryption failure', 'decryp.
comp.' is the cost of the decryption in number of operations in Fq, the last two columns give the cost of the best
known attacks : support attack and algebraic attacks (see [13]). We give parameters for di�erent level of security, but
also for di�erent decryption failure, in particular it is possible to reach a 2−80 easily at the cost of doubling the size



of the key. Notice that the parameters are very versatile. Although no special attack is known for non prime number
we choose to consider prime numbers in general.

n k m q d r failure (Log2) public key(bits) decryp. comp. (Log2) Support Att. (Log2) Algeb. att.(Log2)
74 37 41 2 4 4 -22 1517 17 84 80
94 47 47 2 5 5 -23 2397 19 128 145
68 34 23 24 4 4 -80 3128 17 153 100

8.2 Comparison to MDPC

The system we propose compares well to the MDPC cryptosystem on three features: 1) the size of key can be three
times smaller, 2) the system is much faster (at least a speed up of 100) - the complexity of MDPC is in λw2r for w
close to 90 and r around 5000) and at last 3) it is easier to control the decryption probability failure and to decrease
it to 2−80 rather than 2−23 at a cost of simply doubling parameters.

9 Conclusion

In this paper, as the recent MDPC paper [22] we generalize the NTRU [15] approach in a coding context but with
the rank metric. To do so we introduced a new type of codes, the LRPC codes, for which we propose an e�cient
decoding algorithm. Overall as it is often the case for rank metric codes, the obtained results compare well to Hamming
distance cryptosystem since the known attacks increase in di�culty . Moreover when rank metric cryptosystem have
a strong history of broken system because of structural attacks based on recovering the Gabidulin code structure, the
cryptosystem we propose is the �rst rank-metric based cryptosystem with a poor random structure and which is not
based on Gabidulin codes. It is hence interesting to remark that this type of structure was never really attacked in
the case of lattices as it seems the case for the MDPC cryptosystem. Of course the cryptosystem needs more scrutiny
from the communauty but it seems like a very interesting system for the future.
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APPENDIX

In this appendix we give the proofs of the results of Section 3:

Let A and B be random Fq-subspaces of Fmq of dimensions α and β respectively. We suppose αβ < m and we
investigate the typical dimension of the subspace 〈AB〉.

We rely on the following observation:

Lemma 3. Let A′ and B be two subspaces of Fmq of dimensions α′ and β such that dim〈A′B〉 = α′β. Let A = A′+〈a〉
where a is a uniformly chosen random element of Fmq . Then

P (dim〈AB〉 < α′β + β) ≤ qα
′β+β

qm
.

Proof. We have dim〈AB〉 < α′β + β if and only if the subspace aB has a non-zero intersection with 〈A′B〉. Now,

P (dim〈A′B〉 ∩ aB 6= {0}) ≤
∑

b∈B,b6=0

P (ab ∈ 〈A′B〉) (1)

≤ (|B| − 1)
qα
′β

qm
(2)

since for any �xed a 6= 0, we have that ab is uniformly distributed in Fmq . Writing |B| − 1 ≤ |B| = qβ we have the
result.

Proposition 5. Let B be a �xed subspace and suppose we construct a random subspace A by choosing α independent
(in the sense of probability) random vectors of Fmq and letting A be the subspace generated by these α random vectors.
We have that

dim〈AB〉 = αβ

with probability at least

1− αq
αβ

qm
.

Proof. Apply the Lemma α times, starting with a random subspace A′ ⊂ A of dimension 1, and adding a new element
to A′ until we obtain A.

Let B be a �xed subspace of Fmq containing 1 and let 〈B2〉 be the subspace generated by all products of elements of
B. Let β2 = dim〈B2〉. Let A be a random subspace of Fmq of dimension α. By the Proposition we have that

dim〈AB2〉 = αβ2

with probability at least

1− αq
αβ2

qm
.

Remark: we have β2 ≤ β(β + 1)/2.

Lemma 4. Suppose dim〈AB2〉 = αβ2. Let e ∈ 〈AB〉 with e 6∈ A. Suppose eB ⊂ 〈AB〉. Then there exists x ∈ B,
x 6∈ Fq, such that xB ⊂ B.



Proof. Let (ai) be a basis of A. We have

e =
∑
i

λiaibi

with λi ∈ Fq for all i and bj 6∈ Fq and λj 6= 0 for some j, otherwise e ∈ A contrary to our assumption. Let b be any
element of B. By our hypothesis we have eb ∈ 〈AB〉, meaning∑

i

λiaibib =
∑
i

µiaib
′
i

with b′i ∈ B. Now the maximality of the dimension of 〈AB2〉 implies that

λjajbjb = µjajb
′
j

from which we deduce bjb ∈ B. Since this holds for arbitrary b ∈ B, we have bjB ⊂ B.

Proposition 6. Suppose m is prime. Let A and B be random subspaces of dimensions α and β respectively. Let (bi)
be a basis of B and let S = 〈AB〉. Then with probability at least

1− αq
αβ(β+1)/2

qm

we have that ⋂
i

b−1i S = A.

Proof. If not, there exists a subspace E ) A, such that 〈EB〉 = 〈AB〉. By the remark before Lemma 4 we have that
with probability at least

1− αq
αβ(β+1)/2

qm

the conditions of Lemma 4 hold. But then there is x 6∈ Fq such that xB ⊂ B. But this implies that Fq(x)B ⊂ B.
But m prime implies that there is no intermediate �eld between Fq and Fqm , hence Fqm ⊂ B, a contradiction.

A better bound Our goal is to show that with a large probability, when A and B are randomly chosen with su�ciently
small dimension, then with probability close to 1 we have that:⋂

b∈B

〈AB〉b−1 = A.

Without loss of generality we can suppose that 1 ∈ B. We shall show that for a random b ∈ B, we have

〈AB〉 ∩ 〈AB〉b−1 = A

with probability close to 1.

Lemma 5. Let B1 be a subspace of dimension β1. Let b be a uniformly distributed random element of Fmq . Then the
probability that b ∈ B1 +B1b

−1 is at most:
2q2β1

qm
.

Proof. This event can only happen if b is a root of an equation of the form

x2 − b1x− b′1 = 0.

There are at most |B1|2 = q2β1 such equations, and each one of the has at most two roots.



Let B1 be any vector space containing 1 and of dimension β1. Let b be a random element uniformly distributed in
Fmq and set B = B1 + 〈b〉. Denote β = dimB = β1 + 1 (with probability 1 − qβ1/qm). Since b−1 is also uniformly
distributed, we have that B1 ∩B1b

−1 6= {0} with probability at most

(|B1| − 1)
|B1|
qm
≤ q2β1

qm
.

Therefore with probability at least

1− q2β1

qm

we have that
dim(B1 +B1b

−1) = 2β1.

Now applying Lemma 5 we obtain:

Lemma 6. With probability at least

1− 3q2β1

qm

we have that
dim(B +Bb−1) = 2β − 1.

Proposition 7. Let B be a subspace of dimension β containing 1 such that dimB+Bb−1 = 2β− 1 for some b ∈ B.
Let A be a randomly chosen subspace of dimension α. With probability at least

1− αq
α(2β−1)

qm

we have that
〈AB〉 ∩ 〈AB〉b−1 = A

Proof. By Proposition 5 we have that with probability at least

1− αq
α(2β−1)

qm

dim〈A(B +Bb−1)〉 = α(2β − 1) = 2αβ − α.

On the other hand, we have that

dim〈A(B +Bb−1)〉 = dim〈AB〉+ dim〈ABb−1〉 − dim(〈AB〉 ∩ 〈ABb−1〉) (3)

= 2αβ − dim(〈AB〉 ∩ 〈ABb−1〉) (4)

hence
dim(〈AB〉 ∩ 〈ABb−1〉) = α.

But this proves the result since A ⊂ 〈AB〉 ∩ 〈ABb−1〉 and dimA = α.


