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Abstract

This thesis is a detailed study on the geometry and the deformation of the shapes represented
by uniform piecewise Bézier surfaces and applications to the shape optimization arising in im-
age segmentation. Evolving deformable surfaces constructed by Bézier surfaces are moved from
initially defined surfaces to attracted features which define the boundaries between different re-
gions of a given three dimensional image. This evolution is characterized by local deformation.
The different regions of the image are then detected and represented.

This thesis also contributes to robotics, typically, robot path planning in three-dimensional,
shortly 3D, settings, where planning the movement of a mechanical arm avoiding obstacles is
mentioned as a preliminary step. We propose an approach based on 3D free form model and
deformation, called 3D Free Form method. In this method, we develop the geometric algorithms
in order to manipulate Bézier free form models. This Bézier local structures allows the algo-
rithms convergence with almost linear complexity and adapt to several complex boundaries of
free space regions. The first experiments of our method are done with 3D simplified toy images
with the objective of approximating the shapes of what could be considered free space regions.

Thematic: Rational surfaces, 3D images and active surfaces.

3



Table of Contents

Acknowledgments 2

Abstract 3

Table of Contents 5

1 Introduction 6

2 Geometry and Deformation of Uniform Piecewise Bézier Surfaces 9
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2.2 Uniform piecewise Bézier surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Sampling map and retraction to ΨMN . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Tangent space TBDMN and deformation of surfaces . . . . . . . . . . . . . 26
2.2.4 Matrix form and subdivision of uniform piecewise Bézier surfaces . . . . 28
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Chapter 1

Introduction

Since the early 1960s, the French engineer Pierre Bézier used Bézier surfaces to design automobile
bodies, [2]. Nowadays, Bézier surfaces are popularized in computer graphics, computer-aided
design and finite element modeling. The property to be polynomially parametrized allows us to
use Bézier surfaces to represent smooth surfaces. Moreover, this representation is geometrically
intuitive and leads to numerically robust algorithms. Thus, geometric shapes that represented by
uniform piecewise Bézier surfaces inherit meaningful properties. Significantly, Bézier modeling
also permits to represent evolving deformable surfaces. This contributes to solve the shape opti-
mization problem arising in image segmentation and leads to important applications to robotics.

In order to illustrate the potential applications in robotics, we describe an important problem
for which the present work is an interesting contribution. An autonomous robot must be able
to determine its free space, it is to say the region where it can freely move. For instance, in a
factory, if a robot needs to catch something with an arm, it needs to determine a possible move-
ment of the arm avoiding collision. This requires not only delicate techniques, simple algorithms
but also fast processes. Free space perception of an unknown environment is still a big issue
challenging mobile robotics. There are several significant efforts supporting to free space per-
ception. For instance, using telemetric sensors such as sonars or laser allows to detect the depth
of objects and to avoid accident while many approaches by vision permit to recover this depth
estimation. One of such impressing contributions is two-dimensional Free form method. This
method is introduced in [12]. One used the method in combination with processing 2D images of
monocular omnidirectional vision. This method typically based on active contours’ deformation
for image segmentation in two dimensions. Figure 1.1 gives an illustration for this method. By
using the topology change and the structural topology test, the 2D free form method is effective
to adapt to numerous complex boundaries of free space regions, furthermore, to detect obstacles,
see in Figure 1.2.

In three dimensions, the problem of free space approximations in unknown environments
is attracting not only on the expansion of number of dimensions but also on the difficulties of
topological structure of objects and regions in the space. We propose a 3D approach to this
problem, called 3D Free form method. This 3D version of free form method is also based on
free form models and deformation. The goal is to move an active surface from an initial center
to detect free regions in three-dimensional unknown space. The method needs significant sup-
ports from 3D image segmentation to generate a pressure force orienting the evolution of the
active surfaces. Deformation of free form active surfaces is typically characterized by their local
representation and it is forced to minimize a functional energy. There are many formulation of
energy functional, [4], [5], [1], but their common main desire is to ensure the convergence of the
active surfaces to complex boundaries of free regions.
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Figure 1.1: 2D Free Form method, [11]. The black curve defines the boundary of a free space
regions. The green circle is a initially defined curve. The red illustrates the deformed curve from
the green.

Figure 1.2: The 2D Free Form method adapts to a complex boundary region (the left, [11]) and
detects obstacles (the right, [12]).

In 3D free form method, our work is to define a free form model of active surfaces so that
deformation is smooth and the convergence adapt to many complex boundaries of the space
regions. The active surfaces are constructed by Bézier patches. The free form active surfaces
inherit from this local structures the parametric representation and the flexible and smooth
deformation. The algorithms of our method require linear computational cost. They are fast
processes. The contribution of this study particularly includes using the Free form based on
active surfaces for 3D free space segmentation. This is applied to 3D free space perception and
autonomous safe navigation of a robot.

This thesis contains six chapters. The first one is the introduction. Chapter 2 provides
the mathematical backgrounds of free forms and active surfaces. In this chapter, we recall the
basic definitions of Bézier curves and Bézier surfaces. After that, we study on the geometry
and the deformation of shapes represented by uniform piecewise Bézier surfaces. This leads
to introduce the approach of the 3D free form method. Its content is related to Bézier surface
evaluation, interpolation, sampling, deformation and subdivision. Chapter 3 is the application of
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the knowledge of Bézier surfaces in Chapter 2 for solving a class of geometric shape optimization
problems. Such geometric shape optimization problems arise in image segmentation. Chapter
4 introduces 3D Canny edge detector. This detector is then used to generate a gradient edge
map of a 3D image which is needed for 3D free form method. In Chapter 5, we will sketch
the formulation of the shape optimization problem coming from image segmentation and the
algorithm of 3D free form method. Manny results of experiments validating 3D free form method
are presented here. Finally, Chapter 6 is to conclude the study and draws future works.
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Chapter 2

Geometry and Deformation of
Uniform Piecewise Bézier Surfaces

This chapter provides material and basic tools for 3D free form modeling and deformation. It
contains evaluation, interpolation, sampling, subdivision and deformation of Bézier surfaces and
uniform piecewise Bézier surfaces. This is mentioned as the mathematical background in order
to formulate the 3D free form method. In this method, an active surface will be constructed
with many linked patches, each of them is described by a continuous Bézier surface of bi-degree
(D,D), called a 3D free form. Hence, the evolution of active surfaces will intrinsically inherit
geometric characteristics of Bézier surfaces.

In this chapter, we work on three-dimensional real space. We denote that E = R3.

2.1 Bézier surfaces

In this section, we will present the definition and interesting geometric properties of Bézier
surfaces. Typically, every polynomially parametrized surface can be represented by a Bézier
surface. The recursive equations of Bézier surfaces generate a robust way to evaluation them
by using the De Casteljau algorithm. Furthermore, Bézier interpolation allows to recover the
Bézier surface passing through given points.

Bézier surface is a generalized concept of Bézier curve. It is necessary to recall some basic
related definitions of Bézier curves. This will make the approach on three dimension become
easier. A Bézier curve is determined by its order, D, and a set of (D + 1) control points,
P0, P1, ..., PD ∈ R2, which is called the control polygon of the curve. The definition of Bézier
curves bases on the following recursive equations, for t ∈ [0, 1],{

B(P0; t) = P0,

B(P0, P1, ..., PD; t) = (1− t)B(P0, P1, ..., PD−1; t) + tB(P1, P2, ..., PD; t).
(2.1)

More clearly that a Bézier curve is a set of points which is defined by {B(P0, P1, ..., PD; t)|t ∈
[0, 1]}. We remark that coordinates of B(P0, P1, ..., PD; t) are polynomials of degree at most D.
So by this way, every set of points in the plane R2 will generate a polynomially parametrized curve
whose degree is bounded, [11]. Trivially, for all point P0 ∈ R2, the polynomially parametrized
curve B(P0; t) = P0 is a Bézier curve of degree 0. For another example, we consider given points
in R2,

P0 =

[
0
1

]
, P1 =

[
1
1

]
, P2 =

[
1
0

]
, P3 =

[
−1
−1

]
.
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By using Equations (2.1), we obtain

B(P0, P1, P2, P3; t) =(1− t)B(P0, P1, P2; t) + tB(P1, P2, P3; t)

=(1− t)[(1− t)B(P0, P1; t) + tB(P1, P2)]

+ t[(1− t)B(P1, P2; t) + tB(P2, P3)].

=(1− t)2[(1− t)B(P0; t) + tB(P1; t)]

+ (1− t)t[(1− t)B(P1; t) + tB(P2; t)]

+ t(1− t)[(1− t)B(P1; t) + tB(P2; t)]

+ t2[(1− t)B(P2; t) + tB(P3; t)]

=(1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3.

It shows thatB(P0, P1, P2, P3; t) defines a parametrized curve, whose coordinates are polynomials
of degree 3,

B(P0, P1, P2, P3; t) =

[
3(1− t)2t+ 3(1− t)t2 − t3
(1− t)3 + 3(1− t)2t− t3

]
.

This curve is a Bézier curve of degree 3. We call such a curve a cubic Bézier curve. Figure 2.1
gives us an geometric illustration of this cubic curve.
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Figure 2.1: A Bézier curve. Pi are the control points. The red is the control polygon. The blue
are the points on the curve.

As we have seen in the figure, the first and last control points are always the end points of
the curve. However, the intermediate control points (if any) generally do not lie on the curve.
Beside that, it is also notable that the curve points lie inside the convex hull of the control points.

Equations (2.1) means that a Bézier curve of degree D is a linear interpolation between two
Bézier curves of degree (D−1). This recursive definition leads to a way to evaluate Bézier curves
by using the De Casteljau algorithm, [12]. It is a robust and numerically stable algorithm. This
algorithm is shown in Algorithm 1.
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Similarly, a Bézier surface is defined by a set of control points in R3,

P00 P01 P02 ... P0n

P10 P11 P12 ... P1n

P20 P21 P22 ... P2n
...

...
...

. . .
...

Pm0 Pm1 Pm2 ... Pmn.

These points form a so-called control polytope. The Bézier surface is described by Equations
(2.2). This is a polynomial parametrization in two variables (s, t) ∈ [0, 1]× [0, 1],

B2(P00; s, t) = P00,

B2(P00, ..., Pmn; s, t) = (1− s)B(B(P00, ..., P0n; t), ..., B(Pm−1,0, ..., Pm−1,n; t); s)

+sB(B(P10, ..., P1n; t), ..., B(Pm0, ..., Pmn; t); s),

(2.2)

where B(.; .) is given by Equations (2.1).

Recursive equations (2.2) allow us to evaluate a Bézier surface by using the De Casteljau
algorithm. This is done by Algorithm 2.

The Bézier surface generated by (m + 1)(n + 1) control points by using Equations (2.2) is
a surface which is parametrized with polynomials in s and t of degree (m+ n). Bézier surfaces
can be of any degree, but in our approach to the geometry and the deformation of shapes, we
will focus on Bézier surfaces of multi-degree (D,D).

Algorithm 1 De Casteljau algorithm for Bézier curves: Eval(P ; t), [12].

Input: [P0, ..., Pn] the list of the points of control polygon of the Bézier curve B([P0, ..., Pn], t)
and t ∈ [0, 1].

Output: Coordinates of a curve point in R2

if n = 0 then
return P0

else
return (1− t) ∗ Eval([P0, ..., Pn−1], t) + t ∗ Eval([P1, ..., Pn], t)

end if

Algorithm 2 De Casteljau algorithm for Bézier surfaces: Eval2(P ; s, t).

Input:

 P00 ... P0n
...

. . .
...

Pm0 ... Pmn

 the matrix of the points of control polytope of the Bézier surface

B([P00, ..., Pmn]; s, t) and (s, t) ∈ [0, 1]× [0, 1];
Output: Coordinates of a surface point in R3

if m = 0 then
return Eval([P00, ..., P0n], t)

else
return

(1−s)∗Eval2


 P00 ... P0n

...
. . .

...
Pm−1,0 ... Pm−1,n

 ; s, t

+s∗Eval2


 P10 ... P1n

...
. . .

...
Pm0 ... Pmn

 ; s, t


end if
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2.1.1 Bézier surfaces of bi-degree (D,D)

A (D,D) Bézier surface is defined by a set of (D+ 1)(D+ 1) control points. It can be seen as a
mapping which maps the unit square [0, 1] × [0, 1] into a smooth-continuous surface embedded
within the space E.

Definition 1. Given a (D + 1)× (D + 1) matrix of points in E,

P00 P01 P02 ... P0D

P10 P11 P12 ... P1D

P20 P21 P22 ... P2D
...

...
...

. . .
...

PD0 PD1 PD2 ... PDD,

(2.3)

the set {B2(P00, ..., PDD; s, t)|(s, t) ∈ [0, 1]× [0, 1]} is called a Bézier surface of bi-degree (D,D),
where B2(.; s, t) is defined by Equations (2.2). The list of points [P00, ..., PDD] forms the control
polytope of the Bézier surface and the points P00, ..., PDD are control points.

It is remarkable that each set of (D + 1)× (D + 1) points generates a parametrized surface.
Especially, this surface is a polynomially parametrized surface with bounded degree.

Proposition 1. Let P00, ..., PDD ∈ E, then B2(P00, ..., PDD; s, t) is a polynomial parametriza-
tion. Moreover, its coordinates have degree at most 2D and of degree D with respect to both s
and t.

Proof. It is a fact that B(P0, ..., Pd; .) is a polynomial parametrization of degree at most d.
Hence, by definition,

B2(P00, ..., PDD; s, t) =(1− s)B(B(P00, ..., P0D; t), ..., B(PD−1,0, ..., PD−1,D; t); s)

+ sB(B(P10, ..., P1D; t), ..., B(PD0, ..., PDD; t); s),

B2(P00, ..., PDD; s, t) is a polynomial parametrization in s, t, of degree at most 2D. �

For example, consider the Bézier surface generated by a given set of control points in E as
following,

P00 =

 −1
0
1

 P01 =

 0
1
1

 P02 =

 0
1
0


P10 =

 0
0
1

 P11 =

 1
1
1

 P12 =

 1
1
0


P20 =

 −1
−1
1

 P21 =

 1
0
1

 P22 =

 1
0
0



By definition, we use Equations (2.2) to obtain

B2(P00, ..., P22; s, t) =(1− s)B(B(P00, P01, P02; t), B(P10, P11, P12; t); s)

+ sB(B(P10, P11, P12; t), B(P20, P21, P22; t); s).
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Then, we have

B2(P00, ..., P22; s, t) =(1− s)2B(P00, P01, P02; t) + (1− s)sB(P10, P11, P12; t)

+ s(1− s)B(P10, P11, P12; t) + s2B(P20, P21, P22; t)

=(1− s)2[(1− t)B(P00, P01; t) + tB(P01, P02; t)]

+ 2(1− s)s[(1− t)B(P10, P11; t) + tB(P11, P12; t)]

+ s2[(1− t)B(P20, P21; t) + tB(P21, P22; t)]

=(1− s)2[(1− t)2P00 + 2(1− t)tP01 + t2P02]

+ 2(1− s)s[(1− t)2P10 + 2(1− t)tP11 + t2P12]

+ s2[(1− t)2P20 + 2(1− t)tP21 + t2P22].

Then, the surface is parametrized by polynomials in s and t, of degree 4, i.e, of bi-degree (2, 2),

B2(P00, ..., P22; s, t) = −(1− s)2(1− t)2 + 2(1− s)s[2(1− t)t+ t2] + s2[−(1− t)2 + 2(1− t)t+ t2]
(1− s)2[2(1− t)t+ t2] + 2(1− s)s[2(1− t)t+ t2]− s2(1− t)2

(1− s)2[(1− t)2 + 2(1− t)t] + 2(1− s)s[(1− t)2 + 2(1− t)t] + s2[(1− t)2 + 2(1− t)t]

 .
We call such a Bézier surface a biquadratic Bézier surface. In practice, bicubic Bézier surfaces are
used more popularly. These surfaces is generated by 4× 4 control points. Figure 2.2 illustrates
a Bézier surface of this type.
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10

20
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40

50

Figure 2.2: A bicubic Bézier surface. The circles are the control points. The red is the control
polytope. The blue are the points on the surface.

2.1.2 Bernstein’s polynomials

In this section, we will show how a (D,D) Bézier surface is expressed in terms of Bernstein’s
polynomials. These polynomials are advantageous not only to algebraically represent Bézier
surfaces but also to evaluate them.
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Definition 2. Let D be an nonnegative integer and i ∈ {0, ..., D}, the polynomial

biD(s) :=
(

i
D

)
(1− s)D−isi

is called Bernstein polynomial.

We denote R[s]D the set of polynomials of degree less or equal to D. This is a real vector space
of dimension (D + 1) and its natural basis is {1, s, s2, ..., sD}. As we have known that the set
of Bernstein polynomials {biD(s)|i ∈ {0, ..., D}} is linearly independent, thus, they also form a
basis of R[s]D, [11].

Lemma 1. {biD(s)|i ∈ {0, ..., D}} form a basis of R[s]D.

Notation 1. We denote R[s, t](D,D) the R-vector space generated by the linearly independent
set {sitj |i, j ∈ {0, ..., D}}.

The vector space R[s, t](D,D) has dimension (D + 1)2. We will show that the polynomials
biD(s)bjD(t)’s form a basis of the space R[s, t](D,D).

Proposition 2. The set {biD(s)bjD(t)}i,j∈{0,...D} is a basis of R[s, t](D,D).

Proof. It is the fact that R[s] ⊗ R[t] ∼= R[s, t]. This isomorphism is given by p(s) ⊗ q(t) 7−→
p(s)q(t). Since biD(s)’s is a basis of R[s]D and bjD(t)’s is a basis of R[t]D, the set {biD(s)⊗bjD(t)}
forms a basis of R[s]D ⊗ R[t]D. Then through the isomorphism, {biD(s)bjD(t)} is a basis of
R[s, t](D,D). �

The Bernstein polynomials form a basis of the vector space R[s, t](D,D). And the recursive
definition given by Equations (2.2) can be expressed in terms of Bernstein polynomials, as in
Proposition 3. Till now, these are to say that every polynomially parametrized surface can be
represented as a Bézier surface, said in Corollary 1.

Proposition 3. Let P00, ..., PDD ∈ E, then

B2(P00, ..., PDD; s, t) =

D∑
i=0

 D∑
j=0

PijbjD(t)

 biD(s) (2.4)

for all (s, t) ∈ [0, 1]× [0, 1].

Proof. By definition in Equations (2.2),

B2(P00, ..., PDD; s, t) =(1− s)B(B(P00, ..., P0D; t), ..., B(PD−1,0, ..., PD−1,D; t); s)

+ sB(B(P10, ..., P1D; t), ..., B(PD0, ..., PDD; t); s)

=(1− s)
D−1∑
i=0

B(Pi0, ..., PiD; t)bi,D−1(s)

+ s
D∑
i=1

B(Pi0, ..., PiD; t)bi−1,D−1(s)

=(1− s)DB(P00, ..., P0D; t) + sDB(PD0, ..., PDD; t)

+

D−1∑
i=1

B(Pi0, ..., PiD; t) [(1− s)bi,D−1(s) + sbi−1,D−1(s)] .

14



Since (1− s)bi,D−1(s) + sbi−1,D−1(s) = biD(s), we obtain that

B2(P00, ..., PDD; s, t) =

D∑
i=0

B(Pi0, ..., PiD; t)biD(s)

=

D∑
i=0

 D∑
j=0

PijbjD(t)

 biD(s).

�

Corollary 1. Every polynomially parametrized surface can be represented as a Bézier surface.

The equation (2.4) can be rewritten as below,

B2(P00, ..., PDD; s, t) =
∑
ij

biD(s)bjD(t)Pij .

This means that each point of Bézier surface, B2(P00, ..., PDD; s, t), is a weighted average of the
control points, Pij . Hence, a Bézier surface will lie completely within the convex hull of its control
points. Note that the corner points of the surface are the four corner ones of the control polytope.
And generally, the surface does not pass through other control points. Moreover, the equation
(2.4) also says that the curves B2(P00, ..., PDD; s0, t) and B2(P00, ..., PDD; s, t0) lying on the sur-
face are Bézier curves. Typically, the Bézier curves B2(P00, ..., PDD; 0, t), B2(P00, ..., PDD; 1, t),
B2(P00, ..., PDD; s, 0) and B2(P00, ..., PDD; s, 1) are the boundary of the surface. We will call
them boundary curves.

2.1.3 Interpolation

We have already known that we can take sampled points of a Bézier surface using the De
Casteljau algorithm. Conversely, a question is proposed that with some given points, whether
there exists a Bézier surface passing through them. Since a Bézier surface of bi-degree (D,D)
is defined by (D + 1)2 control points, we can hope to recover (D + 1)2 control points of a
surface with a given sampling of (D + 1)2 points on the surface. This section will show that it
is possible, said in Proposition 4. In fact, there are numerous satisfied Bézier surfaces. Each
of them corresponds to a specific subdivision of the unit square [0, 1] × [0, 1], as mentioned in
Lemma 2. This will be displayed by Figure 2.3.

Proposition 4. LetM00,M01, ...,MDD ∈ E, then there exists Bézier surface of bi-degree (D,D)
passing through these points.

Lemma 2. Let 0 = s0 < s1 < ... < sD = 1 and 0 = t0 < t1 < ... < tD = 1, then
there exists one and only one Bézier surface B2(P00, ..., PDD; s, t) of bi-degree (D,D) such that
B2(P00, ..., PDD; si, tj) = Mij for all i, j ∈ {0, ..., D}.

Proof. We denote by M the (D + 1)× (D + 1) matrix of points Mij ,

M =


M00 M01 M02 ... M0D

M10 M11 M12 ... M1D

M20 M21 M22 ... M2D
...

...
...

. . .
...

MD0 MD1 MD2 ... MDD

 ,
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and by P the (D + 1)× (D + 1) matrix of points Pij ,

P =


P00 P01 P02 ... P0D

P10 P11 P12 ... P1D

P20 P21 P22 ... P2D
...

...
...

. . .
...

PD0 PD1 PD2 ... PDD

 . (2.5)

Now, we consider the following matrices associated with s = (s0, ..., sD) and t = (t0, ..., tD),

BsD =


b0D(0) b1D(0) b2D(0) ... bDD(0)
b0D(s1) b1D(s1) b2D(s1) ... bDD(s1)
b0D(s2) b1D(s2) b2D(s2) ... bDD(s2)

...
...

...
. . .

...
b0D(1) b1D(1) b2D(1) ... bDD(1)

 , (2.6)

BtD =


b0D(0) b1D(0) b2D(0) ... bDD(0)
b0D(t1) b1D(t1) b2D(t1) ... bDD(t1)
b0D(t2) b1D(t2) b2D(t2) ... bDD(t2)

...
...

...
. . .

...
b0D(1) b1D(1) b2D(1) ... bDD(1)

 . (2.7)

As the matrices BsD, BtD are Vandermonde matrices expressed in the Bernstein basis, they are
invertible, [11]. Hence, if P is such that BsDPB

T
tD = M , then B2(P00, ..., PDD; s, t) gives the

wanted surface. �

Figure 2.3: Two distinct bicubic Bézier surfaces pass through 4× 4 points. The red squares are
given points. The blue surface corresponds to the regular subdivision of the unit square, that
s = [0, 1

3 ,
2
3 , 1] and t = [0, 1

3 ,
2
3 , 1]. The green is given by s = [0, 4

8 ,
7
8 , 1] and t = [0, 1

5 ,
3
5 , 1]

Remark that the pair of matrices B−1
sD and B−TtD defines a linear map associating to (D+ 1)2

distinct points a Bézier surface of bi-degree (D,D) going through those points.
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Notation 2. We denote θst the linear operator on E(D+1)2 defined by

θst : E(D+1)2 −→ E(D+1)2

P 7−→ BsDPB
T
tD.

From now, we will represent each element of the space E(D+1)2 by matrix form shown in Equation
(2.8).

Proposition 5. θst is an linear isomorphism.

Proof. θst is linear because of the fact that,

BsD(P +Q)BT
tD = BsDPB

T
tD +BsDQB

T
tD,∀P,Q ∈ E(D+1)2 .

Moreover, since the matrices BsD and BtD are invertible, the inverse of θst is given by E(D+1)2 3
M 7−→ B−1

sDMB−TtD . �

The map θ−1
st gives the interpolation formula for Bézier points. It is used in Algorithm 3.

Note that in implementation, if the quantities s and t are known and fixed, the matrices B−1
sD and

B−TtD will be evaluated only once in the initialization and used for all. There are several choices
of the quantities s and t, but here we focus on the regular subdivision of the unit square, i.e,
si = i

D , tj = j
D . When the quantities s and t are fixed in the initialization, the computational

cost of the interpolation at bi-degree (D,D) is given by the following lemma.

Lemma 3. Let s = [s0, s1, ..., sD] and t = [t0, t1, ..., tD] are fixed subdivisions of the interval
[0, 1], the cost of interpolation by a Bézier surface of bi-degree (D,D), named I(D), is the cost
of multiplications of three (D+ 1)× (D+ 1) matrices in three times. This cost is in O(D3) and
is constant for a fixed D.

Algorithm 3 Interpolation of (D,D) Bézier surfaces.

Input:  M00 ... M0D
...

. . .
...

MD0 ... MDD

 the matrix of given points;

Subdivisions of the interval [0, 1] : s = [0, s1, ..., sD] and t = [0, t1, ..., tD];
Output: The Bézier surface passing through these points;

return

B−1
sD

 M00 ... M0D
...

. . .
...

MD0 ... MDD

B−TtD ;

2.2 Uniform piecewise Bézier surfaces

In this section, we will describe uniform piecewise Bézier surfaces and study on their geomet-
ric properties including sampling, interpolation, subdivision and deformation. Thank to Bézier
parametrization, the set of all piecewise Bézier surfaces is a good approximating for the space of
continuous functions C0([0, 1]2, E). Moreover, this set is a manifold, indeed a finite dimensional
space. In addition, the geometric properties of uniform piecewise Bézier surfaces are naturally
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induced by the ones of local Bézier structures. 3D free form method then benefit these ideal
characteristics to become an efficient method.

An active surface will be described as a uniform piecewise Bézier surface. It is a set of
(M + 1)(N + 1) linked Bézier surfaces of the same bi-degree (D,D) such that they form a
regular surface. The regularity here means that if any two patches of a uniform piecewise Bézier
surface have intersection, then the common one is either the end point or the entire boundary
curve of theirs. Figures 2.5 shows a regular surface and Figure 2.6 gives an example of nonregular
one. From now, we only focus on regular uniform piecewise Bézier surfaces. The regularity is
strictly required for all presentation and deformation of uniform piecewise Bézier surfaces.

−2

0

2

4

−2

0

2

4
−100

−50

0

50

100

Figure 2.4: A uniform piecewise bicubic Bézier surface with 4 patches. Each color is a path of
the uniform piecewise Bézier surface. The circles are the control points. The red is the control
polytope.

2.2.1 Definitions

We now construct a uniform piecewise Bézier surface by gluing Bézier surfaces together such
that the regularity is satisfied.

Given a matrix of points in E,

P =



P 00
00 ... P 00

0D P 01
00 ... P 01

0D ... ... ... P 0N
00 ... P 0N

0D
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
P 00
D0 ... P 00

DD P 01
D0 ... P 01

DD ... ... ... P 0N
D0 ... P 0N

DD

P 10
00 ... P 10

0D P 11
00 ... P 11

0D ... ... ... P 1N
00 ... P 1N

0D
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
P 10
D0 ... P 10

DD P 11
D0 ... P 11

DD ... ... ... P 1N
D0 ... P 1N

DD

... ... ... ... ... ... ... ... ... ... ... ...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
... ... ... ... ... ... ... ... ... ... ... ...
PM0

00 ... PM0
0D PM1

00 ... PM1
0D ... ... ... PMN

00 ... PMN
0D

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

PM0
D0 ... PM0

DD PM1
D0 ... PM1

DD ... ... ... PMN
D0 ... PMN

DD



(2.8)
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Figure 2.5: A regular uniform piecewise Bézier surface with 9 patches. Each path of the uniform
piecewise Bézier surface is described by color. The red is the control polytope.

such that {
P i+1,j

0k = P ijDk, ∀i ∈ {0, ...,M − 1}, k ∈ {0, ..., D},
P i,j+1
l0 = P ijlD, ∀j ∈ {0, ..., N − 1}, l ∈ {0, ..., D}.

(2.9)

We denote that, for all i ∈ {0, ...,M} and j ∈ {0, ..., N},

P ij =

 P ij00 ... P ij0D
...

...

P ijD0 ... P ijDD

 .
Each block P ij of P will describe a Bézier surface. The condition (2.9) is to keep the regularity
of the uniform piecewise Bézier surface defined by P .

Let 0 = s00 < s0D = s10 < s1D = s20 < ... < sMD = 1 and 0 = t00 < t0D = t10 < t1D =
t20 < ... < tND = 1 be two subdivision of the interval [0, 1], and α be a transformation given by

α(s) = s−si0
siD−si0 , ∀s ∈ [si0, siD],

α(t) =
t−tj0
tjD−tj0 , ∀t ∈ [tj0, tjD],

(2.10)

we define

Γ(P 00, ..., PMN , s, t) = B2(P ij ;α(s), α(t)) (2.11)

where s ∈ [si0, siD] and t ∈ [tj0, tjD] for all i ∈ {0, ...,M}, j ∈ {0, ..., N}.
Γ(P, s, t) is a continuous parametrization. It is called a uniform piecewise Bézier surface. The
surfaces parametrized by B2(P ij ;α(s), α(t)) are called the patches of S = Γ(P, [0, 1], [0, 1]). For
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Figure 2.6: A non-regular uniform piecewise Bézier surface with 12 patches. Each path of the
uniform piecewise Bézier surface is described by color. The red is the control polytope.

example, Figure 2.4 illustrates a uniform piecewise Bézier surface with 4 patches. Moreover, if
it is satisfied that

P i0k0 = P iNkD, ∀i ∈ {0, ...,M}, k ∈ {0, ..., D}

P 0j
0l = PMj

Dl , ∀j ∈ {0, ..., N}, l ∈ {0, ..., D},

then S is a closed surface, i.e, on topology, S separates the space E into two domains, interior
and exterior. Figure 2.7 displays such a closed uniform piecewise Bézier surface.

Remark that there exist numerous choices of the subdivisions (s00, s0D = s10, s1D, ..., sMD)
and (t00, t0D = t10, t1D, ..., tND) of the interval [0, 1]. However, in practice, we use the subdivi-
sions (0, 1

M+1 ,
2

M+1 , ..., 1) and (0, 1
N+1 ,

2
N+1 , ..., 1). They are the so-called regular subdivisions

of [0,1]. Then, the transformation α becomes{
α(s) = (M + 1)s− i, ∀s ∈ [ i

M+1 ,
i+1
M+1 ]

α(t) = (N + 1)t− j, ∀t ∈ [ j
N+1 ,

j+1
N+1 ],

for all i ∈ {0, ...,M} and j ∈ {0, ..., N}. Using them makes the implementation simpler.

Notation 3. We denote BDMN the set of uniform piecewise Bézier surfaces built from (M +
1)(N + 1) patches of bi-degree (D,D).

This set, BDMN , is the image of the following map,

ΨMN :

{
(E(D+1)2)(M+1)(N+1) −→ C0([0, 1]× [0, 1], E)

P 7−→ Γ(P, s, t).
(2.12)

20



−50

0

50

−50

0

50
−50

0

50

Figure 2.7: A closed uniform piecewise Bézier surface. The red is the control polytope. The
blue are the points on the surface.

In particular, the set of all Bézier surfaces of bi-degree (D,D), BD00 is the image of the map
Ψ00 : E(D+1)2 → C0([0, 1]2, E).

Notably, the set of polynomials in two variables s and t on the unit square [0, 1] × [0, 1] is
dense in the space of continuous functions C0([0, 1] × [0, 1],R), see in [7]. This implies that for
each continuous function f : [0, 1] × [0, 1] → E, there exists a sequence {Γn(s, t)}n∈N such that
limn→∞ ||f −Γn||2 = 0. It is to say that piecewise Bézier surfaces are a good approximating set
for the space C0([0, 1]× [0, 1], E).

In order to do calculus on the set BDMN , as well as to deform the uniform piecewise Bézier
surfaces, BDMN need equipped a smooth manifold structure. In fact, BDMN is a finite dimensional
subspace of the normed linear space C0([0.1]2, E). This is the consequence of Proposition 9,
where sampling map and the map ΨMN play central roles.

2.2.2 Sampling map and retraction to ΨMN

Each sampling of a surface given by a function f ∈ C0([0, 1]× [0, 1], E) corresponds to particular
samples on the unit square.

Definition 3. Let 0 = s0 < s1 < ... < sD = 1 and 0 = t0 < t1 < ... < tD = 1, denote
s = (s0, ..., sD) and t = (t0, ..., tD) the associated subdivisions of [0, 1] × [0, 1], we define the
sampling map λst : C0([0, 1]2, E)→ E(D+1)2 by

f 7−→ λst(f) =

 f(s0, t0) ... f(s0, tD)
...

. . .
...

f(sD, t0) ... f(sD, tD)

 .
For each (s, t), the points λst(f) is called a (D + 1)× (D + 1) sampling of the surface f .

The sampling map λst is linear. Once the quantities s and t are known, the map will assign to
each surface (D + 1)2 sampled points.
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Proposition 6. The following diagram is commutative,

E(D+1)2 Ψ00- C0([0, 1]2, E)

E(D+1)2

λst

?

θ
st

-
(2.13)

Moreover, Ψ00 is an linear isomorphism between E(D+1)2 and BD00 = Im(Ψ00), and its inverse is
Ψ−1

00 = θ−1
st ◦ λst.

Proof. Passing the map Ψ00, each matrix P of points in E,

P =


P00 P01 P02 ... P0D

P10 P11 P12 ... P1D

P20 P21 P22 ... P2D
...

...
...

. . .
...

PD0 PD1 PD2 ... PDD

 ,

is assigned to a Bézier surface determined by Γ(s, t) = Ψ00(P )(s, t) = B2(P ; s, t). Since Γ is of

the form Γ(s, t) =
∑D

i=0

[∑D
j=0 PijbjD(t)

]
biD(s), the matrix form of the sampling map λst is

given by
λst(Γ) = BsDPB

T
tD = θst(P ).

This shows that λst ◦Ψ0D = θst.
Now, we consider the map Ψ0D : E(D+1)2 −→ BD00 = Im(Ψ00). Obviously, Ψ00 is a linear
monomorphism. Since the map θst is linearly isomorphic and its inverse defined by θ−1

st (P ) =
B−1
sDPB

−T
tD , the map θ−1

st ◦λst is the inverse of Ψ00. Hence, Ψ00 is an linear isomorphism between

E(D+1)2 and BD00. �

In fact, given a Bézier surface Γ(s, t) ∈ BD00, the map λst gives a sampling of Γ, that is
λst(Γ). By Lemma 2, there exists one and only one Bézier surface, whose control polytope is
θ−1
st (λst(Γ)), and whose sampled points are λst(Γ). The mentioned surface is indeed Γ(s, t).

The followings are to extend the sampling map λst to the case of uniform piecewise Bézier
surfaces. Indeed, this is application of λst to each of patches.

Definition 4. Let 0 = s00 < s01 < ... < s0D = s10 < s11 < ... < s1D = s20 < ... < sMD = 1 and
0 = t00 < t01 < ... < t0D = t10 < t11 < ... < t1D = t20 < ... < tND = 1. Then, we define the
sampling map

Λst : C0([0, 1]2, E) −→ (E(D+1)2)(M+1)(N+1)

by

Γ 7−→ Λst(Γ) =

 Γ(s00, t00) ... Γ(s00, tND)
...

. . .
...

Γ(sMD, t00) ... Γ(sMD, tND)

 .
Notation 4. Denote that s = (s0, ..., sM ) where si = (si0, ..., siD) and t = (t0, ..., tN ) where
ti = (ti0, ..., tiD).
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Many choices of s, t exist. In practice, we use ones that, for all j ∈ {0, ..., D},

si0 =
i

M + 1
, siD =

i+ 1

M + 1
, sij = ti0 +

j

D(M + 1)
, ∀i ∈ {0, ...,M},

tk0 =
k

N + 1
, tkD =

k + 1

N + 1
, tkj = tk0 +

j

D(N + 1)
, ∀k ∈ {0, .., N}.

This is the so-called regular subdivision.

It is significant to consider the transformation α given by Formula (2.10). Depending on s
and t, α transforms the activities done on Γ into ones done in each of its patches. This implies
that we can do directly what we want to do on the entire surafce Γ, on each of its patches.

Proposition 7. Let Γ be a uniform piecewise Bézier surface with the control polytope P , then
the sampling map Λst is determined by

Λst(Γ) = (Bα(s0)D ×Bα(s1)D × ...×Bα(sM )D)P (Bα(t0)D ×Bα(t1)D × ...×Bα(tN )D)T ,

where Bα(s0)D × Bα(s1)D × ... × Bα(sM )D = diag(Bα(s0)D, Bα(s1)D, ..., Bα(sM )D) and Bα(t0)D ×
Bα(t1)D × ...×Bα(tN )D = diag(Bα(t0)D, Bα(t1)D, ..., Bα(tN )D), as shown below,

Bα(s0)D ×Bα(s1)D × ...×Bα(sM )D =


Bα(s0)D 0

Bα(s1)D

. . .

0 Bα(sM )D

 .

Proof. Given a uniform piecewise Bézier surface Γ ∈ BDMN . Assume that the control polytope
P of the surface Γ is of the form shown in (2.8). It can be rewritten shortly, as below,

P =

 P 00 ... P 0N

...
. . .

...
PM0 ... PMN

 .
Then, the matrix form of the sampling map Λst is derived from the followings.

diag(Bα(s0)D, ..., Bα(sM )D)P diag(BT
α(t0)D, ..., B

T
α(tN )D)

=

 Bα(s0)D 0
. . .

0 Bα(sM )D


 P 00 ... P 0N

...
. . .

...
PM0 ... PMN


 BT

α(t0)D 0

. . .

0 BT
α(tN )D



=

 Bα(s0)DP
00BT

α(t0)D ... Bα(s0)DP
0NBT

α(tN )D
...

. . .
...

Bα(sM )DP
M0BT

α(t0)D ... Bα(sM )DP
MNBT

α(tN )D



=

 θα(s0)α(t0)(P
00) ... θα(s0)α(tN )(P

0N )
...

. . .
...

θα(sM )α(t0)(P
M0) ... θα(sM )α(tN )(P

MN )
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Note that θst(P
ij) = λst(Ψ00(P ij)).

We obtain

diag(Bα(s0)D,..., Bα(sM )D)P diag(BT
α(t0)D, ..., B

T
α(tN )D)

=

 λα(s0)α(t0)(Ψ00(P 00)) ... λα(s0)α(tN )(Ψ00(P 0N ))
...

. . .
...

λα(sM )α(t0)(Ψ00(PM0)) ... λα(sM )α(tN )(Ψ00(PMN ))


=

 Ψ00(P 00)(α(s0), α(t0)) ... Ψ00(P 0N )(α(s0), α(tN ))
...

. . .
...

Ψ00(PM0)(α(sM ), α(t0)) ... Ψ00(PMN )(α(sM ), α(tN ))


=

 Γ(s0, t0) ... Γ(s0, tN )
...

. . .
...

Γ(sM , t0) ... Γ(sM , tN )


= Λst(Γ).

This proof also shows that the sampling on the uniform piecewise Bézier surface reduced to
samplings on its Bézier patches. �

Notation 5. We denote the extension of θst the map Θst defined by

Θst(P ) = (Bα(s0)D ×Bα(s1)D × ...×Bα(sM )D)P (Bα(t0)D ×Bα(t1)D × ...×Bα(tN )D)T ,

where P ∈ (E(D+1)2)(M+1)(N+1).

Then, Θst is an linear isomorphic operator on the space (E(D+1)2)(M+1)(N+1) with the inverse
given by

Θ−1
st (Q) = (B−1

α(s0)D ×B
−1
α(s1)D × ...×B

−1
α(sM )D)Q(B−Tα(t0)D ×B

−T
α(t1)D × ...×B

−T
α(tN )D),

where Q ∈ (E(D+1)2)(M+1)(N+1). Moreover, as assumption in Proposition 7, we obtain Λst(Γ) =
Θst(P ). This is to show that, once the quantities s and t are fixed, the associated sampling of
the surface Γ can be taken directly by using the map Θst.

Return to the problem as in the case of Bézier surfaces mentioned in the section 2.1.3, that
how to find a uniform piecewise Bézier surface passing through given points. This problem is
stated in Problem 1 and solved by Proposition 8.

Problem 1. Given a matrix of points Q = (Q00
00, ..., Q

MN
DD ) in E as shown in (2.14), find a

uniform piecewise Bézier surface Γ ∈ BDMN such that Λst(Γ) = Q, for some s, t as assumption in
Definition 4.

Let us represent the points Q00
00, ..., Q

MN
DD as a matrix of points, in blocks of points:

 Q00 ... Q0N

...
. . .

...
QM0 ... QMN
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and in full of points as below,

Q00
00 ... Q00

0D Q01
00 ... Q01

0D ... ... ... Q0N
00 ... Q0N

0D
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
Q00
D0 ... Q00

DD Q01
D0 ... Q01

DD ... ... ... Q0N
D0 ... Q0N

DD

Q10
00 ... Q10

0D Q11
00 ... Q11

0D ... ... ... Q1N
00 ... Q1N

0D
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
Q10
D0 ... Q10

DD Q11
D0 ... Q11

DD ... ... ... Q1N
D0 ... Q1N

DD

... ... ... ... ... ... ... ... ... ... ... ...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
... ... ... ... ... ... ... ... ... ... ... ...
QM0

00 ... QM0
0D QM1

00 ... QM1
0D ... ... ... QMN

00 ... QMN
0D

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

QM0
D0 ... QM0

DD QM1
D0 ... QM1

DD ... ... ... QMN
D0 ... QMN

DD



. (2.14)

Proposition 8. The solution of Problem 1 is given by the image by the map ΨMN of: B−1
α(s0)D 0

. . .

0 B−1
α(sM )D

Q
 B−1

α(t0)D 0

. . .

0 B−1
α(tN )D


T

. (2.15)

Proof. The Formula (2.15) can be rewritten as Θ−1
st (Q). As a consequence of the Proposition

7, Q is the sampling corresponding to the given s, t of the surface ΨMN (Θ−1
st (Q)). In fact,

since Θ−1
st (Q) is the control polytope of the surface ΨMN (Θ−1

st (Q)), the sampling is given by
Λst(ΨMN (Θ−1

st (Q))) = Θst(Θ
−1
st (Q)) = Q. �

Proposition 9. Λst and ΨMN define linear isomorphisms between BDMN and (E(D+1)2)(M+1)(N+1).

Proof. In this proof, we consider the restriction of Λst to BDMN and the retraction of ΨMN onto
BDMN .

It is clear that Λst is linear. And its inverse is ΨMN ◦ Θ−1
st . In fact, given a uniform

piecewise Bézier surface Γ ∈ BDMN with its control polytope P , we have ΨMN ◦Θ−1
st ◦ Λst(Γ) =

ΨMN ◦Θ−1
st (Θst(P )) = ΨMN (P ) = Γ, i.e,

ΨMN ◦Θ−1
st ◦ Λst = IdBDMN

. (2.16)

For some Q ∈ (E(D+1)2)(M+1)(N+1), the Proposition 8 says that the surface ΨMN (Θ−1
st (Q)) with

the control points Θ−1
st (Q) has the associated sampling which is Q, i.e, Λst(ΨMN (Θ−1

st (Q))) = Q.
This means that

Λst ◦ΨMN ◦Θ−1
st = Id

(E(D+1)2 )(M+1)(N+1) . (2.17)

So Λst is an isomorphism. From Equation (2.17), since Θst is a linear isomorphism,

Θ−1
st ◦ Λst ◦ΨMN = Id

(E(D+1)2 )(M+1)(N+1) . (2.18)

Notation 6. Denote that

χst = Θ−1
st ◦ Λst : C0([0, 1]2, E) −→ (E(D+1)2)(M+1)(N+1).
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By Equations (2.16), (2.18), we obtain ΨMN◦χst = IdBDMN
and χst◦ΨMN = Id

(E(D+1)2 )(M+1)(N+1) .

This shows that ΨMN is an isomorphism between BDMN and (E(D+1)2)(M+1)(N+1). �

Proposition 9 is important since it equips the set of uniform piecewise Bézier surfaces BDMN

with a smooth manifold structure. Precisely, BDMN is a finite dimensional space. Moreover,
together with Proposition 8, they allow to project any elements of C0([0, 1]2, E) on BDMN using
the sampling map Λst, by the map

Ψst ◦ χst : C0([0, 1]2, E) −→ BDMN .

Let ∆ ∈ C0([0.1]2, E), denote Q = Λst(∆) a sampling of ∆ for some s, t, then we have that
ΨMN ◦Θ−1

st (Q) ∈ BDMN is such that the surface ΨMN ◦ χst(∆) = ΨMN ◦Θ−1
st (Q) coincides with

∆([0, 1]) at least (D + 1)2(M + 1)(N + 1) points counted with multiplicities on each patch.

What we have done shows that, instead of working directly with BDMN it is convenient to

work on the ”set of control polytopes”, which is named (E(D+1)2)(M+1)(N+1), by using sampling,
Λst, and interpolation, Θst, that define linear isomorphism between control polytopes and the
set of sampling points on surfaces. And we will keep this point of view until the end.

2.2.3 Tangent space TBDMN and deformation of surfaces

As we have already known, the map ΨMN defines a linear isomorphism between the space of
control polytopes (E(D+1)2)(M+1)(N+1) and the space of uniform piecewise Bézier surfaces BDMN .

For any γ(s, t) ∈ BDMN , there exists P ∈ (E(D+1)2)(M+1)(N+1) such that ΨMN (P ) = γ is given
by χst(γ) = Θ−1

st ◦ Λst(γ). This gives the following proposition.

Proposition 10. Consider the map

TΨMN : T (E(D+1)2)(M+1)(N+1) −→ TBDMN .

Then, for any γ ∈ BDMN , the map

TΨ−1
MN (γ) : TγBDMN −→ Tχst(γ)(E

(D+1)2)(M+1)(N+1)

is given by TΨMN (χst(γ))−1(ε) = Θ−1
st ◦ Λst(ε) = χst(ε) for any ε(s, t) ∈ TγBDMN . Moreover, it

is a linear isomorphism.

Proof. Since ΨMN is an linear isomorphism between (E(D+1)2)(M+1)(N+1) and BDMN , we obtain
that,

TΨ−1
MN (γ)(ε) = TΨMN (χst(γ))−1(ε) = Ψ−1

MN (ε) = Θ−1
st ◦ Λst(ε) = χst(ε).

And hence, TΨ−1
MN (γ) is an isomorphism. �

An element of ε(s, t) ∈ TγBDMN is called a deformation surface. Proposition 10 is an essential
step proving that manipulating a uniform piecewise Bézier surface, it is enough to manipulate
its control polytope. This is shown in the lemma below.

Lemma 4. Let P ∈ (E(D+1)2)(M+1)(N+1), γ ∈ BDMN such that γ(s, t) = ΨMN (P )(s, t) =
B2(P ; s, t) and ε(s, t) ∈ TγBDMN , then:

i. ε(s, t) = ΨMN (χst(ε))(s, t),

ii. γ(s, t) + ε(s, t) = ΨMN (P + χst(ε))(s, t).
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Lemma 4 shows how a deformation on the space of uniform piecewise Bézier surfaces is lifted
to the space of control polytopes. This profits the convenience of the vector space structure of
both the space of uniform piecewise Bézier surfaces BDMN and the space of control polytopes

(E(D+1)2)(M+1)(N+1). Moreover, this structure also helps to define the distance between two
such surfaces.

It is a fact that a deformation of a surface implies the perturbation at its sampled points.
Conversely, a perturbation on a sampling of the surface can represent to a deformation of the
entire surface. This is shown in Proposition 11.

Proposition 11. Let γ ∈ BDMN with the control polytope P , Q = Λst(γ) be a sampling of γ
and δQ be a perturbation at the points Q, then the control points of the uniform piecewise
Bézier surface passing through Q+ δQ at (s, t) are given by P + δP where δP = Θ−1

st (δQ).

Proof. The perturbation δQ defines a deformation ε ∈ BDMN by ε = ΨMN ◦Θ−1
st (δQ). According

to Lemma 4, the deformed surface is then determined by

γ + ε = ΨMN (P + χst(ΨMN ◦Θ−1
st (δQ))).

Since χst ◦ΨMN = Id
(E(D+1)2 )(M+1)(N+1) , we obtain γ + ε = ΨMN (P + Θ−1

st (δQ)). In addition,

Λst(γ + ε) = Λst(ΨMN (P + Θ−1
st (δQ)))

= Λst(ΨMN (P )) + Λst(ΨMN (Θ−1
st (δQ))).

As Λst◦ΨMN◦Θ−1
st = Id

(E(D+1)2 )(M+1)(N+1) , see Equation (2.17), and it is trivial that Λst(ΨMN (P )) =

Q. Hence, Λst(γ + ε) = Q+ δQ. The proposition is proved. �

Reducing to the case of (D,D) Bézier surfaces, a deformation of a (D,D) Bézier surface is
described by Proposition 12. Figure 2.8 and Figure 2.9 give an illustration of deformation of
Bézier surfaces.
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Figure 2.8: Deformation of a Bézier surface. The end points are fixed.
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Proposition 12. Given a (D,D) Bézier surface Γ with control polytope P . Let Q = λst(Γ) be
a sampling of Γ and δQ be a perturbation of sampled points Q, then the control points of the
Bézier surface passing through Q+ δQ at (s, t) is given by P + δP where

δP = θ−1
st (δQ) = B−1

sD

 δQ00 ... δQ0D
...

. . .
...

δQD0 ... δQDD

B−TtD .

Note that the matrices B−1
sD and B−1

tD are also computed only once in the initialization for fixed
s, t. The deformation of the control polytope of a (D,D) Bézier surface then has the cost of
multiplication of three (D+ 1)× (D+ 1) matrices in three times. Thus, the computational cost
of the deformation of a (D,D) Bézier surface is the same with the cost of interpolation of the
same degree. This result is shown in Lemma 5.

Lemma 5. The computational cost of the deformation of a (D,D) Bézier surface is I(D).
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Figure 2.9: Deformation of a Bézier surface. The end points are moved.

2.2.4 Matrix form and subdivision of uniform piecewise Bézier surfaces

At first, we will show how to take a subdivision of a Bézier surface. We have known that the
surface is parametrized by two variables s and t. Then, each subdivision on s and t will give
a subdivision on the surface respectively. The subdivision corresponds to parameter s is called
horizontal subdivision and the one respects to t is called vertical subdivision. This section will
prove that it is possible to subdivide a Bézier surface with only its control polytope. This will
be done after interpreting its definition into matrix form.

B2(P ; s, t) =
D∑
j=0

D∑
i=0

PijbiD(s)bjD(t)

=

D∑
j=0

(
D∑
i=0

PijbiD(s)

)
bjD(t)
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B2(P ; s, t) =
D∑
j=0

(
D∑
i=0

Pij

(
i
D

)
(1− s)D−isi

)
bjD(t)

=
D∑
j=0

(
D∑
i=0

Pij

(
i
D

)
si
D−i∑
k=0

(
k

D − i

)
(−1)ksk

)
bjD(t)

=
D∑
j=0

(
D∑
i=0

Pij

D−i∑
k=0

(
i
D

)(
k

D − i

)
(−1)ksi+k

)
bjD(t).

Denote that

CiD =

(
i
D

)
, s = [ 1 s ... sD ], tT =


1
t
...
tD

 ,
and

C =


1 0 0 ... 0
−C1

D C1
D 0 ... 0

C2
D −C1

DC
1
D−1 C2

D ... 0
...

...
...

. . .
...

(−1)D (−1)D−1C1
D (−1)D−2C2

D ... 1

 , (2.19)

then,

B2(P ; s, t) =
D∑
j=0

[
1 s ... sD

]
C


P0j

P1j
...

PDj

 bjD(t).

Similarly, one can do the same with respect to t to obtain that

B2(P ; s, t) =
[

1 s ... sD
]
C


P00 P01 ... P0D

P10 P11 ... P1D
...

...
. . .

...
PD0 PD1 ... PDD

CT


1
t
...
tD

 . (2.20)

Equation (2.20) gives the matrix form of a Bézier surface. A sampling of Bézier surface can
be obtained by using its matrix form. This is described in Algorithm 4.

Suppose that we want to subdivide the surface B2(P ; s, t) along the constant Bézier curve
s = ξ, then the reparametrization of Equation (2.20) represents the so-called left-half part of
the surface B2(P ; s, t),

B2(P ; sξ, t) =
[

1 sξ ... (sξ)D
]
C


P00 P01 ... P0D

P10 P11 ... P1D
...

...
. . .

...
PD0 PD1 ... PDD

CT


1
t
...
tD
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Algorithm 4 Sampling of (D,D) Bézier surfaces.

Input:  P00 ... P0D
...

. . .
...

PD0 ... PDD

 the matrix of the points of control polytope of the Bézier surface

B2(P00, P01, ..., PDD; s, t) and (s, t) ∈ [0, 1]× [0, 1];
Output: Coordinates of a surface point in R3;

return

[
1 s ... sD

]
C


P00 P01 ... P0D

P20 P21 ... P2D
...

...
. . .

...
PD0 PD1 ... PDD

CT


1
t
...
tD

;

Thus, the left-half surface is defined by

B2(P ; sξ, t) =
[

1 s ... sD
]


1 0 ... 0
0 ξ ... 0
...

...
. . .

...
0 0 ... ξD

CPCT


1
t
...
tD

 . (2.21)

We denote that

SLξ = C−1


1 0 ... 0
0 ξ ... 0
...

...
. . .

...
0 0 ... ξD

C, (2.22)

and rewrite Equation (2.21) as

B2(P ; sξ, t) = sCSLξ


P00 P01 ... P0D

P10 P11 ... P1D
...

...
. . .

...
PD0 PD1 ... PDD

CT tT . (2.23)

Equation (2.23) is to say that B2(P ; sξ, t), the left-half part of the surface B2(P ; s, t), is also
a Bézier surface and its control polytope is SLξP . The computation for the right-half part of
B2(P ; s, t) can be done by the same way. Reparametrize Equation (2.20) by substituting s by
(ξ + (1− ξ)s), we obtain

B2(P ; ξ + (1− ξ)s, t) =
[

1 ξ + (1− ξ)s ... (ξ + (1− ξ)s)D
]
CPCT tT . (2.24)

Since

[
1 ξ + (1− ξ)s ... (ξ + (1− ξ)s)D

]
= s


1 ξ ξ2 ... ξD

0 1− ξ 2ξ(1− ξ) ... C1
Dξ

D−1(1− ξ)
0 0 (1− ξ)2 ... C2

Dξ
D−2(1− ξ)2

...
...

...
. . .

...
0 0 0 ... (1− ξ)D

 ,
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the Equation (2.24) can be rewritten as

B2(P ; ξ + (1− ξ)s, t) =
[

1 s ... sD
]
CSξRPC

T


1
t
...
tD

 (2.25)

where

SξR = C−1


1 ξ ξ2 ... ξD

0 1− ξ 2ξ(1− ξ) ... C1
Dξ

D−1(1− ξ)
0 0 (1− ξ)2 ... C2

Dξ
D−2(1− ξ)2

...
...

...
. . .

...
0 0 0 ... (1− ξ)D

C. (2.26)

As consequence of Equation (2.25), the right-half part of B2(P ; s, t) is also a Bézier surface
determined by the control polytope SξRP .

Hence, the horizontal subdivision of the surface B2(P ; s, t) along the constant Bézier curve
s = ξ is given by [

SLξP
SξRP

]
.

With respect to t, the vertical subdivision of B2(P ; s, t) along the constant Bézier curve t = ζ
will be [

PSTLζ PSTζR
]

where PSTLζ , PS
T
ζR are respectively the control polytopes of two following Bézier surfaces,

B2(P ; s, ζt) =
[

1 s ... sD
]
CPSTLζC

T


1
t
...
tD


and

B2(P ; s, ζ + (1− ζ)t) =
[

1 s ... sD
]
CPSTζRC

T


1
t
...
tD

 .
These subdivisions of B2(P ; s, t) corresponding to s and t are respectively given by Algorithm

5 and Algorithm 6. The combination of these two methods give a segmentation of the considered
surface into quarters,  SLξPS

T
Lζ SLξPS

T
ζR

SξRPS
T
Lζ SξRPS

T
ζR

 .
They are associated with subdividing on the unit square [0, 1] × [0, 1], that the first one is of
0 ≤ s ≤ ξ and 0 ≤ t ≤ ζ, the second is of 0 ≤ s ≤ ξ and ζ ≤ t ≤ 1, etc. This is imple-
mented by Algorithm 7. Usually, ξ and ζ are chosen at 1

2 . Once ξ and ζ are fixed, the matrices
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Algorithm 5 Horizontal subdivision of (D,D) Bézier surfaces.

Input:

 P00 ... P0D
...

. . .
...

PD0 ... PDD

 the matrix of the points of control polytope of the Bézier surface

B([P00, ..., PDD]; s, t) and ξ ∈ (0, 1);
Output: Two patches of the surface subdivided with respect to s at s = ξ;

return 

SLξ

 P00 ... P0D
...

. . .
...

PD0 ... PDD



SξR

 P00 ... P0D
...

. . .
...

PD0 ... PDD





Algorithm 6 Vertical subdivision of (D,D) Bézier surfaces.

Input:

 P00 ... P0D
...

. . .
...

PD0 ... PDD

 the matrix of the points of control polytope of the Bézier surface

B([P00, ..., PDD]; s, t) and ζ ∈ (0, 1);
Output: Two patches of the surface subdivided with respect to t at t = ζ;

return 
 P00 ... P0D

...
. . .

...
PD0 ... PDD

STLζ
 P00 ... P0D

...
. . .

...
PD0 ... PDD

STζR


Algorithm 7 Quadrangular subdivision of (D,D) Bézier surfaces.

Input:

 P00 ... P0D
...

. . .
...

PD0 ... PDD

 the matrix of the points of control polytope of the Bézier surface

B([P00, ..., PDD]; s, t) and (ξ, ζ) ∈ [0, 1]× [0, 1];
Output: Four patches of the surface subdivided with both s and t along the curves s = ξ and
t = ζ;
return 

SLξ

 P00 ... P0D
...

. . .
...

PD0 ... PDD

STLζ SLξ

 P00 ... P0D
...

. . .
...

PD0 ... PDD

STζR

SξR

 P00 ... P0D
...

. . .
...

PD0 ... PDD

STLζ SξR

 P00 ... P0D
...

. . .
...

PD0 ... PDD

STζR
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SLξ, SξR, SLζ , SζR is determined. Then, the subdivisions of (D,D) Bézier surfaces will be done
with only their control polytopes, without using sampling.

What we can do to split a uniform piecewise Bézier surface at s = ξ or t = ζ? Fortunately,
through the map α, each split on the surface reduces to a subdivision on the associated (D,D)
Bézier surface. But, remark that because of the singularity of uniform piecewise Bézier surfaces,
the subdivision must be taken for all associated Bézier surfaces along these curve s = ξ and,
respectively, t = ζ. For instance, given a uniform piecewise Bézier surface, named Γ(s, t), with
its control polytope denoted by P as following,

P 00
00 ... P 00

0D ... ... ... P 0j
00 ... P 0j

0D ... ... ... P 0N
00 ... P 0N

0D
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

P 00
D0 ... P 00

DD ... ... ... P 0j
D0 ... P 0j

DD ... ... ... P 0N
D0 ... P 0N

DD

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

P i000 ... P i00D ... ... ... P ij00 ... P ij0D ... ... ... P iN00 ... P iN0D
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

P i0D0 ... P i0DD ... ... ... P ijD0 ... P ijDD ... ... ... P iND0 ... P iNDD
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

PM0
00 ... PM0

0D ... ... ... PMj
00 ... PMj

0D ... ... ... PMN
00 ... PMN

0D
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

PM0
D0 ... PM0

DD ... ... ... PMj
D0 ... PMj

DD ... ... ... PMN
D0 ... PMN

DD
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Figure 2.10: A patch of a uniform piecewise Bézier surface need subdivided.
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and shortly,

P =


P 00 ... P 0j ... P 0N

...
. . .

...
. . .

...
P i0 ... P ij ... P iN

...
. . .

...
. . .

...
PM0 ... PMj ... PMN


where

P ij =

 P ij00 ... P ij0D
...

. . .
...

P ijD0 ... P ijDD

 .
Recall that each P ij defines a Bézier surface. They are the patches of the surface Γ. Assume
that we want to split Γ along the curve s = ξ, then the obtained surface Γξ is determined by its
control polytope as below,

Pξ =



P 00 ... P 0j ... P 0N

...
. . .

...
. . .

...
P i−1,0 ... P i−1,j ... P i−1,N

SLα(ξ)P
i0 ... SLα(ξ)P

ij ... SLα(ξ)P
iN

Sα(ξ)RP
i0 ... Sα(ξ)RP

ij ... Sα(ξ)RP
iN

P i+1,0 ... P i+1,j ... P i+1,N

...
. . .

...
. . .

...
PM0 ... PMj ... PMN


where α is given by Equations (2.10) and i is such that ξ ∈ [si0, siD]. If Γ is split along the curve
t = ζ then the resulted surface Γζ has control points being of the form, for ζ ∈ [tj0, tjD],

Pζ =



P 00 ... P 0,j−1 P 0jSTLα(ζ) P 0jSTα(ζ)R P 0,j+1 ... P 0N

...
. . .

...
...

...
...

. . .
...

P i0 ... P i,j−1 P ijSTLα(ζ) P ijSTα(ζ)R P i,j+1 ... P iN

...
. . .

...
...

...
...

. . .
...

PM0 ... PM,j−1 PMjSTLα(ζ) PMjSTα(ζ)R PM,j+1 ... PMN


In particular, if the surface Γ is simultaneously subdivided along the curves s = ξ and t = ζ
then the new surface Γξζ is determined by Pξζ as following,

P 00 ... P 0,j−1 P 0jSTLα(ζ) P 0jSTα(ζ)R P 0,j+1 ... P 0N

...
. . .

...
...

...
...

. . .
...

P i−1,0 ... P i−1,j−1 P i−1,jSTLα(ζ) P i−1,jSTα(ζ)R P i−1,j+1 ... P i−1,N

SLα(ξ)P
i0 ... SLα(ξ)P

i,j−1 SLα(ξ)P
ijSTLα(ζ) SLα(ξ)P

ijSTα(ζ)R SLα(ξ)P
i,j+1 ... SLα(ξ)P

iN

Sα(ξ)RP
i0 ... Sα(ξ)RP

i,j−1 Sα(ξ)RP
ijSTLα(ζ) Sα(ξ)RP

ijSTα(ζ)R Sα(ξ)RP
i,j+1 ... SξRP

iN

P i+1,0 ... P i+1,j−1 P i+1,jSTLα(ζ) P i+1,jSTα(ζ)R P i+1,j+1 ... P i+1,N

...
. . .

...
...

...
...

. . .
...

PM0 ... PM,j−1 PMjSTLα(ζ) PMjSTα(ζ)R PM,j+1 ... PMN
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We can see how these subdivisions work by illustrations in Figures 2.11-2.16.

We note that for given D, we can compute the matrix C and then, use it for all. In practice,
we use bicubic Bézier patches. This means D = 3. And when we fix ξ = ζ = 1

2 , then the
matrices C, SL 1

2
and S 1

2
R will be computed explicitly. They are used during the implementation

without computing again. We will discuss more about this in Chapter 5.

−2
0

2
4

6
8

−5

0

5

10
−100

−50

0

50

100

150

200

Figure 2.11: The considered patch of the uniform piecewise Bézier surface, in Figure 2.10, is
subdivided in horizontal direction.
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Figure 2.12: A regular subdivision of the uniform piecewise Bézier surface, in Figure 2.10, in
horizontal direction.
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Figure 2.13: The considered patch of the uniform piecewise Bézier surface, in Figure 2.10, is
subdivided in vertical direction.
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Figure 2.14: A regular subdivision of the uniform piecewise Bézier surface, in Figure 2.10, in
vertical direction.

36



−2
0

2
4

6
8

−5

0

5

10
−100

−50

0

50

100

150

200

Figure 2.15: The considered patch of the uniform piecewise Bézier surface, in Figure 2.10, is
subdivided into four new patches.
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Figure 2.16: A regular subdivision of the uniform piecewise Bézier surface, in Figure 2.10, in
both horizontal and vertical directions.
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Chapter 3

Applications to Shape Optimization

This chapter will show how to exploit what we have done in Chapter 2, in context of shape
optimization. The set of all shapes whose boundary is a simple closed uniform piecewise Bézier
surface is an admissible set. A computable shape gradient will generate a vector field on the set
of simple closed uniform piecewise Bézier surfaces. Thus, local extrema of shape cost functional
induce at least a fixed point of the vector field. The illustration for this one will be given by an
application to a problem of image segmentation presented in Chapter 5.

In this chapter, the considered space is still three-dimensional real space. We denote that
E = R3.

3.1 Shape optimization problem

A typical shape optimization problem can be posed as the problem of finding the shape which
is optimal in that it minimizes a certain cost functional while satisfying given constraints, as
followings: given a set of admissible shapes A and a functional F : A → R+, find a shape α ∈ A
such that for all other shapes β ∈ A, F (α) ≤ F (β). Usually, the space of admissible shapes
need equipped a structure of manifold. This will enable to compute the shape gradient ∇F (β)
which expresses the evolution of F with respect to a deformation of the shape β. It can be con-
sidered that ∇F (β) assigns each point M ∈ β to a deformation vector ∇F (β)(M) ∈ TME. The
computation of such a gradient often results in solving a system of partial differential equations.
Commonly, a gradient method is used to solve this kind of problem when ∇F (β) is computable.

Here we consider a shape optimization problem related to image segmentation and shape
recognition. The admissible shapes are ones whose boundary are closed compact oriented sur-
faces, and we will focus on geometric optimization, i.e, keep the topology of the shapes fixed.

Notation 7. We denote C0
c ([0, 1]2, E) the set of closed compact oriented surfaces, and

Bc =

γ ∈ BDMN

∣∣∣∣∣∣
γ(1, .) = γ(0, .),
γ(., 1) = γ(., 0),

∀(s, t), (u, v) ∈ (0, 1)2, γ(s, t) = γ(u, v)⇒ (s, t) = (u, v)

 .

Let Ω ⊂ P(E) be such that for each ω ∈ Ω the boundary ∂ω of ω is a closed compact oriented
surface, i.e,

Ω = {ω ∈ P(E)|∂ω ∈ C0
c ([0, 1]2, E)}.
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Let F : Ω → R+ be a smooth function such that ∇F (ω) : ∂ω → TE is well defined. Every
γ ∈ Bc is associated with the shape γ̄ such that ∂γ̄ = γ. Then ΩD

MN = {ω ∈ P|∂ω ∈ Bc} is
a set of admissible shapes. Recall that piecewise Bézier surfaces well approximate the space
C0([0, 1]2, E). Thus, ΩD

MN are rather good approximations of Ω. The shape optimization will be
stated in Problem 2.

Problem 2. Find ω0 ∈ Ω such that for all ω ∈ Ω, F (ω0) ≤ F (ω).

Consider the shape gradient ∇F , for each ω ∈ Ω, the geometric gradient ∇F (ω), then, assigns
to each point Q on the boundary ∂ω a perturbation vector ∇F (ω)(Q) ∈ TQE which needs to
decrease the objective functional,

∇F (ω) : ∂ω 3 Q 7−→ ∇F (ω)(Q) ∈ TQE.

The basic idea of the approach is to use ∇F (ω) as a deformation of the boundary ∂ω to obtain
a better shape.

Let γ̄ ∈ ΩD
MN , then ∂γ̄ = γ ∈ Bc. Let Q is of the form shown in (2.14) be a sampling of γ

for some s, t, i.e, Q = Λst(γ). The control polytope of γ is given by P = χst(γ) for given s, t.
A perturbation on Q is determined by the perturbation ∇F (γ̄) on the boundary γ of the shape
γ̄,

δQ =

 ∇F (γ̄)(Q00
00) ... ∇F (γ̄)(Q0N

DD)
...

. . .
...

∇F (γ̄)(QM0
00 ) ... ∇F (γ̄)(QMN

DD )


The control polytope of the deformation surface δQ will be computed by δP = χst(δQ). Then,
we obtain the sampling on the surface σ(s, t) = ΨMN (P + δP )(s, t) by following Proposition 13.

Proposition 13. σ(sij , tkl) = Qikjl + ∇F (γ̄)(Qikjl ) for all i ∈ {0, ...,M}, k ∈ {0, ..., N} and
j, l ∈ {0, ..., D}.

Proof. In fact, for given s, t, we have

Λst(σ) = Λst(ΨMN (P + δP ))

= Θst(P + δP )

= Θst(P ) + Θst(δP )

= Λst(ΨMN (P )) + Λst(ΨMN (δP ))

= Q+ δQ.

The proposition is proved. �

3.2 Vector field on Bc and local extrema of shape cost functional

Each shape gradient generates a vector field on Bc. The necessary condition to obtain a local
minimum of functional F is that this associating vector field vanishes at this point.

Proposition 14. For some compatible subdivision s, t, the map ΨMN ◦Θ−1
st associates to each

shape gradient ∇F a vector field VF : Bc → TBc, determined by

Bc 3 γ 7−→ ΨMN ◦Θ−1
st (∇F (γ̄)(Λst(γ))).
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Proposition 15. Assume that ∇F is such that ∇F (ω1)(q) = ∇F (ω2)(q) for all ω1, ω2 ∈ Ω and
for all q ∈ E. Let ω ∈ Ω such that ∇F (ω) ≡ 0, then for all M,N nonnegative integers there is
γ ∈ Bc satisfied VF (γ) = 0. In other words, every optimum of F induces at least a fixed point
of VF over Bc.

Proof. Since ∂ω ∈ C0
c ([0, 1]2, E), there exists a closed compact surface γ ∈ Bc such that they

coincides at least (D + 1)2(M + 1)(N + 1) points. Denote these points by Q being of the form
shown in (2.14), indeed, Q is determined by Λst(∂ω) for some s, t and γ is given by Ψst◦Θ−1

st (Q).
This means Q = Λst(∂ω) = Λst(γ). Thus,

VF (γ) = ΨMN ◦Θ−1
st (∇F (γ̄)(Λst(γ)))

= ΨMN ◦Θ−1
st (∇F (γ̄)(Q))

= ΨMN ◦Θ−1
st (∇F (ω)(Q))

= 0.

Moreover, the deformation surface of γ induced by de gradient of F vanishes at least (D +
1)2(M + 1)(N + 1) points while it is a uniform piecewise Bézier surface of bi-degree (D,D). So
it is parametrized by zero polynomials. Hence, its control polytope is reduced to origin. �

Proposition 15 is to say that a local extremum of F induces a local extremum of its restriction
to Bc.

Based on Proposition 13 and Proposition 15, an algorithm is developed to find a good
approximate solution of Problem 2. This is used in Algorithm 8.

Algorithm 8 Algorithm for shapes optimization

Input: An initial shape ω such that ∂ω = ΨMN (P ) ∈ Bc
Output: The control polytope P of the boundary of a local minimum of F (ω).
σ ← ΨMN (P )
while criterium not satisfied do
δP ← χst(∇F (σ̄)(Λst(σ)))
P ← P + δP
σ ← ΨMN (P )

end while
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Chapter 4

3D Image Segmentation

In this chapter, we try to approach image segmentation in case of dimension 3, about 3D images
and Canny edge detection for 3D images. 3D edge detectors play an important role in 3D free
form method. They produce the gradient edge map needed for 3D free form method. The
gradient edge map is then used to orient the deformation of active surfaces.

4.1 Images

Definition 5. An image is a function given by

I : Rm −→ Rn

x 7−→ I(x)

where x is a spatial point with coordinates of dimension m. Vector I(x) is called the color of
the point x and the value ||I(x)|| is called the intensity of the image at x.

For example, with m = 2 and n = 1, we have a regular black-and-white image. When m = 2 and
n = 3, the function I presents a color image. For these images, x has coordinates of dimension
2 and represents image position. We call them 2D images. In the case of color image, given a
point x, the quantity I(x) identify the color of the image at that point by a vector with three
components. They are the red, the green, the blue components of the desired color. If x and
I(x) are finite and discrete quantities, we call the image a digital image. A digital image is
composed of a finite number of elements named pixels. By this mean, a digital image can be
considered a matrix whose component presents a pixel. For instance, a gray image is a matrix
whose components are in the interval [0, 1], as shown in Figure 4.1.

Figure 4.1: A 2D gray image.
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In addition, when m = 3, the function I presents a three-dimensional image. Then a 3D
digital image is an (p× q × r) matrix whose component corresponds to a voxel. Like a pixel in
2D images, a voxel is a smallest unit of 3D images which has informations of image position and
image color, i.e, it represents a value on a regular grid in three-dimensional space. Figure 4.2
illustrates a 3D color image.
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Figure 4.2: A 3D image.

3D binary image is a particular example for 3D images. This image satisfies that each of
voxels has intensity level of either 0 or 1. This means 3D binary image is a (p × q × r) matrix
whose components are in the set {0, 1}. For instance, a sphere in three dimensional space is
described by a binary image shown in Figure 4.3.
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Figure 4.3: A binary image of a sphere in 3D space represented by voxels.
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Binary images are produced from color images by segmentation. Segmentation is the process
of assigning each pixel (corresponds to voxel for 3D images) in the source image to two or more
classes. If there are more than two classes then the usual result is several binary images. Typi-
cally, edge detection creates a binary image with some pixels (corresponds to voxels) assigned to
edge pixels (corresponds to edge voxels), and is also a first step in further segmentation. More
clearly, edge is the discontinuity of intensity in the image and edge detector is used to detect
them. Here we consider a particular one called Canny edge detector.

4.2 3D Canny edge detection

Many image processes work only based on the topological properties of images which are in-
volving to the edges in the images. Now several edge detectors exist. In general, their purpose
is to significant reduce the amount of data in an image while keeping the structural proper-
ties to be used for further image processing. Canny edge detector is a such one developed by
John F. Canny in 1986. It uses a multi-stage algorithm to detect a wide range of edges in images.

In this section, we focus on gray images, i.e, I : Rm −→ R.

Canny used the three following criteria to obtain an optimal edge detection algorithm:

1. Detection: The probability of detecting real edge points should be maximized while the
probability of falsely detecting non-edge points should be minimized, i.e the algorithm
should mark as many real edges in the image as possible.

2. Localization: The detected edges should be as close as possible to the edges in real image.

3. Responses: A real edge in the image should not result in more than one detected edge.

Canny edge detection can be summarized in 5 separate steps:

1. Smoothing: Image noise reduction.

2. Finding gradients: Marking the edges where the gradients of the image has large mag-
nitudes.

3. Non-maximum suppression: Only local maxima should be marked as edges.

4. Double thresholding: Potential edges are determined by thresholding.

5. Edge tracking by hysteresis: Final edges are determined by suppressing all edges that
are not connected to a very certain (strong) edge.

Now, we go on to detail these five steps of 3D Canny edge detection algorithm.

4.2.1 Smoothing

Noise largely affects on edge detection. Certainly, it is mistaken for edges. And all images
contain some amount of noise. Thus, the important step, also the first step is to remove the
noise. Usually, one uses Gaussian filter to smooth images. Gaussian filtering kernel is given by
Gaussian function,

g(x) =
1

(
√

2πσ2)m
exp

(
−||x||

2

2σ2

)
, (4.1)
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where m is the dimension of x, and ||.|| is Euclidean norm.

In higher dimension, indeed, Gaussian filter is composed of one-dimensional Gaussian filter-
ings on each direction with the same σ,

g1(t) =
1√

2πσ2
e(− t2

2σ2
).

Moreover, the smoothing effect of Gaussian filtering is generated by convolving an image with
a kernel of Gaussian values. Denote S the obtained image, then

S(x) = (I ∗ g)(x) =

∫
Rm

I(x− u)g(u)du.

In practice, because of working on digital images, one needs a discretization of the convolution,

S[x] = (I ∗ g)[x] =
∑
i

I[x− i]g[i].

This requires a discrete approximation of Gaussian kernel. For instance, the following is a
sampling of one-dimensional Gaussian function at discrete points, with σ = 1.04,

Kg1 = [ 0.0060 0.0604 0.2416 0.3836 0.2416 0.0604 0.0060 ]. (4.2)

And in two dimension, Patrice Delmas mentioned a 5× 5 approximating Gaussian matrix in his
lectures on Gaussian filtering [13], with σ = 1,

1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 (4.3)

When taking the discrete Gaussian values needed for a kernel from the continuous Gaussian
function, the sum of the values will be different from 1. This will lead to a darkening or bright-
ening of the image. In order to remedy this, the kernel should be normalized by dividing each
term in the kernel by the sum of all terms.

For 3D images, a three-dimensional Gaussian kernel can be used. But in fact, one can use
1D Gaussian kernel to each direction separably. This is the best way to take advantage of
Gaussian filtering’s property, and requires fewer calculations while the resulting effect is the
same as convolving with a three-dimensional kernel.

4.2.2 Finding gradients

Basically, Canny algorithm finds the gap of the intensity in the smoothed image. This is found
by determining the gradients of the image. In the discrete case, image gradients can be approx-
imated by the difference between the left and the right voxels [9],

∂I

∂x1
(i1) ≈ 1

2
(I(i1 + 1, i2, ..., im)− I(i1 − 1, i2, ..., im)) ,

then the associated convolution kernel is:

∂x1 =
1

2
[ −1 0 1 ].
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Canny algorithm uses Sobel operators, [3], to find the gradients of smoothed image. For 2D
images, they are given by the following kernels for each direction,

KGx =

 −1 0 1
−2 0 2
−1 0 1


and

KGy =

 1 2 1
0 0 0
−1 −2 −1

 .
The convolutions of the image with KGx and KGy give the image gradients in the x- and the
y-direction respectively. Edge strengths characterize to edges. They are needed by Canny edge
detector to track the edges. Indeed, they are the gradient magnitudes computed by Euclidean
norm or simplified by Manhattan norm of the gradient vectors G = (Gx, Gy),

||G||2 =
√
G2
x +G2

y,

||G||1 = |Gx|+ |Gy|,

where Gx is the gradient in the x-directions and Gy is the one corresponds to the y-direction.

Note that Sobel kernel is a combination of a differentiation kernel for a given direction and
a smoothing kernel for the orthogonal directions. For example, the kernel KGx can be rewritten
as a product,

KGx =

 −1 0 1
−2 0 2
−1 0 1

 =

 1
2
1

 [ −1 0 1
]
.

This gives a way to transfer the 2D version to 3D case. A 3D Sobel operator can be obtained
by calculating the partial derivative in a given direction and smoothing in the 2 orthogonal
directions. For instance, the Sobel kernel for z-direction is as below,

KGz(:, :,−1) =

 −1 −2 −1
−2 −4 −2
−1 −2 −1

 , KGz(:, :, 0) =

 0 0 0
0 0 0
0 0 0



KGz(:, :, 1) =

 1 2 1
2 4 2
1 2 1

 .
Then we also have a 3D version to calculate the gradient magnitudes,

||G||2 =
√
G2
x +G2

y +G2
z,

or ||G||1 = |Gx|+ |Gy|+ |Gz|,

where Gx , Gy, Gz are the gradients in the x-, y- and z-directions respectively.
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4.2.3 Non-maximum suppression

This step is to make the edges in the image of gradient magnitudes become ”sharper”. Since
only the locally biggest gaps of image intensity need found, the step will be done by keeping
all local maxima in the gradient image and deleting others. For 2D images, each pixel of the
gradient image is locally compared with two points which are located in the gradient direction
at this considered pixel. For instance, the considered pixel is at i, then it will be compared with
two points, i− = i− G(i)

||G(i)|| and i+ = i+ G(i)
||G(i)|| , where G(i) = (Gx(i), Gy(i)) is the gradient vector

at i. If it is the largest, it is kept. Otherwise, it is suppressed, i.e, removed. In practice, we use
linear interpolation to compute G(i−) and G(i+) and then the comparison follows, source from
David Forsyth, UC Berkeley, [14].

In the case of three dimension, one can do by the same way. Each voxel i will be compared

with two points in its gradient direction, i− =
(
i− G(i)

||G(i)||

)
and i+ =

(
i+ G(i)

||G(i)||

)
where G(i) =

(Gx(i), Gy(i), Gz(i)) is the gradient vector at i, so as to determine whether it is a local maximum,
see in Figure 4.4. If G(i) > G (i−) and G(i) > G (i+), it is kept. Otherwise, it is suppressed.
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Figure 4.4: 3D non-maximum suppression.

4.2.4 Double thresholding

After non-maximum suppression step, the resulting image contains the edge-voxels which are
marked with their strength voxel-by-voxel. Some of them can be true edges in the image, but
others may come from noise and color variations for example due to rough surfaces. Thus, as
possible, Canny edge detection algorithm uses double-thresholding to decrease the number of
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false ones. Edge voxels stronger than the high threshold are marked as strong, edge voxels
weaker than the low threshold are removed and others are marked weak.

4.2.5 Edge tracking by hysteresis

Right now, strong edges become ”certain edges” which are present in the final edge image, while
weak edges are either true edges or false ones coming from noise or color variations. Logically,
there is no reason that noise and other small variations result in a strong edge. They are dis-
tributed independently of edges on the entire image. So weak edges are chosen if and only if they
are connected to strong edges. By observing the neighborhood voxels (8-connected neighbor-
hood for 2D and 26-connected neighborhood for 3D), see in Figure 4.5, a weak edge is present
in the final edge image if and only if there is a strong one in its neighborhood.

Some resulting image of Canny edge detector are presented in Figures 4.6-4.11.
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Figure 4.5: Neighborhood voxels of the red one.
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Figure 4.6: 3D image of a solid box represented by points.
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Figure 4.7: 3D Canny edge detector’s result. A gradient edge image of the image shown in
Figure 4.6, represented by points.
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Figure 4.8: 3D image of a solid sphere represented by points.
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Figure 4.9: 3D Canny edge detector’s result. A gradient edge image of the image shown in
Figure 4.8, represented by points.
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Figure 4.10: A 3D image represented by points.
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Figure 4.11: 3D Canny edge detector’s result. A gradient edge image of the image shown in
Figure 4.10, represented by points.
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Chapter 5

3D Free Form Method

This method is a generalization of the 2D free form segmentation method. This last method is
an extension of snake method, [12]. The improvements of free form method compare to snake
method is that we do not need to change the energy function to maintain the set of points to be
a curve. Here, the data structure guaranties that. This allows also extension to 3D-case which
is very hard for snake method.

Recall that an active surface is constructed with many linked patches, each of them is described
with a continuous Bézier surface of bi-degree (D,D), called a 3D free form. In previous chapters,
we have already discussed about the geometry, the deformation of free form active surfaces and
some results on image segmentation. This chapter will show how to realize our method to solve
the shape optimization problem from image segmentation. In implementation, we use closed
bicubic piecewise Bézier surfaces as a parametrization of an active surface. The active surface is
then deformed to detect the boundaries of regions in the image grace to the gradient edge map of
the image. Followings are in details the computation of bicubic Bézier surfaces and description
of 3D free form method.

5.1 Bicubic Bézier surfaces

A bicubic Bézier surface is a (3, 3) Bézier surface. This kind of surfaces is determined by a
(4× 4) matrix of control points. We denote the control polytope by P as below,

P =


P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

 .

Repeat the computation mentioned in Section 2.2.4, Chapter 2, so that we obtain the matrix
form of a bicubic Bézier surface,

B2(P ; s, t) =
3∑
j=0

3∑
i=0

Pijbi3(s)bj3(t)

=

3∑
j=0

(
3∑
i=0

Pijbi3(s)

)
bj3(t)
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B2(P ; s, t) =
3∑
j=0

[
1 s s2 s3

] 
1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1



P0j

P1j

P2j

P3j

 bj3(t)

=
[

1 s s2 s3
] 

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1



P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33




1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1




1
t
t2

t3

 .
In short,

B2(P ; s, t) =
[

1 s s2 s3
]
C


P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

CT


1
t
t2

t3

 ,
where

C =


1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

 . (5.1)

Suppose that we want to subdivide the surface at the point s = 1
2 . A reparametrization of the

matrix equation above given by substituting s
2 for s is to represent the first half of the surface,

B2(P ;
s

2
, t) =

[
1 s

2

(
s
2

)2 (
s
2

)3 ]C

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

CT


1
t
t2

t3



=
[

1 s s2 s3
] 

1 0 0 0
0 1

2 0 0
0 0 1

4 0
0 0 0 1

8

CPCT


1
t
t2

t3

 .
We denote SL 1

2
the matrix derived from following,

SL 1
2

= C−1


1 0 0 0
0 1

2 0 0
0 0 1

4 0
0 0 0 1

8

C

=


1 0 0 0
1 1

3 0 0
1 2

3
1
3 0

1 1 1 1




1 0 0 0
0 1

2 0 0
0 0 1

4 0
0 0 0 1

8




1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1



=


1 0 0 0
1 1

16 0 0
1 1

3
1
12 0

1 1
2

1
4

1
8




1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 ,
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that

SL 1
2

=


1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8

 . (5.2)

Then, we obtain

B2(P ;
s

2
, t) =

[
1 s s2 s3

]
CSL 1

2


P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

CT


1
t
t2

t3

 .
Hence, the subsurface B2(P ; s2 , t) is also a Bézier surface and its control points is defined by
SL 1

2
P ,

SL 1
2
P =


1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8



P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

 .
Now, calculation for the second half of the surface is obtained by the same way. To do this,

we reparametrize the surface by substituting (1
2 + s

2) for s,

B2(P ;
1

2
+
s

2
, t) =

[
1
(

1
2 + s

2

) (
1
2 + s

2

)2 (
1
2 + s

2

)3 ]CPCT


1
t
t2

t3



=
[

1 s s2 s3
] 

1 1
2

1
4

1
8

0 1
2

1
2

3
8

0 0 1
4

3
8

0 0 0 1
8

CPCT


1
t
t2

t3

 .
Thus, the second half of the surface is determined by

B2(P ;
1

2
+
s

2
, t) = [ 1 s s2 s3 ]CS 1

2
R

 P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

CT
 1

t
t2

t3

,
where S 1

2
R is given by

S 1
2
R = C−1


1 1

2
1
4

1
8

0 1
2

1
2

3
8

0 0 1
4

3
8

0 0 0 1
8

C =


1
8

3
8

3
8

1
8

0 1
4

1
2

1
4

0 0 1
2

1
2

0 0 0 1

 . (5.3)

And the control points are defined by S 1
2
RP ,

S 1
2
RP =


1
8

3
8

3
8

1
8

0 1
4

1
2

1
4

0 0 1
2

1
2

0 0 0 1



P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

 .
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Similarly, a subdivision of the surface can be done with respect to t. The first and second
portions of the surface are PST

L 1
2

and PST1
2
R

. We can combine these two methods to obtain a

segmentation of the surface into quarters,[
SL 1

2
PST

L 1
2

SL 1
2
PST1

2
R

S 1
2
RPS

T
L 1

2

S 1
2
RPS

T
1
2
R

]
.

The first one corresponds to the quarter of 0 ≤ s ≤ 1
2 , 0 ≤ t ≤ 1

2 and the second is to 0 ≤ s ≤ 1
2 ,

1
2 ≤ t ≤ 1, etc.

As before, the De Casteljau algorithm is used to evaluate a bicubic Bézier surface. Now,
we can also use Algorithm 4 with the matrix C given by Equation (5.1) to get a sampling on
bicubic surfaces. The matrices SL 1

2
given by Equation (5.2) and S 1

2
R given by Equation (5.3)

also allow to take subdivisions on bicubic Bézier surfaces by Algorithm 5 and Algorithm 6. A
quadrangular subdivision of bicubic Bézier surfaces is then implemented by Algorithm 7.

5.2 3D free form method’s applications to Image Segmentation

This section will briefly describe the geometric shape optimization arising in image segmentation.
The goal is to minimize an energy functional,

E∗Γ = min
Γ

{∫∫
Γ
Eint(Γ(s, t)) + Eext(Γ(s, t))dsdt

}
(5.4)

where Γ(s, t) is a parametric active surface. Γ(s, t) is a deformable surface. The evolution of the
active surface Γ(s, t) is constrained by the internal energy Eint(Γ) and oriented by the external
energy Eext(Γ).

The internal energy involves to the so-called internal forces. These forces ensure the smooth-
ness and regularity constraints on the surface propagation. By using free form deformation
models, the formulation of the geometric shape optimization becomes simplified. Since the reg-
ularization constraints are naturally derived from Bézier surfaces, it is indeed not necessary to
include them in the formulation. Within free form deformation models, an active surface is de-
scribed by a net of linked Bézier surface. Each Bézier surface defines a patch of the active surface
called free form. Bézier surfaces carry the characteristics of polynomial surfaces and they has
several advantages. It is the fact that we obtain an efficient way to evaluate the parametrization
of a free form using the De Casteljau algorithm for each patch of the active surface. Moreover,
the active surface inherits the smoothness from the regularity of Bézier surfaces, that it is con-
tinuous and differentiable almost everywhere (except the set of points lying on the boundaries
of patches). Furthermore, the evolution of the active surface is induced by local deformation of
free forms which are Bézier surfaces constructing it. Fortunately, a local deformation of Bézier
surfaces is efficiently done on their control polytopes. A deformation on control polytopes gen-
erates an essential movement of Bézier surfaces needed for the evolution of the active surface
toward its destination.

The local deformation of free forms is only derived from a pressure force and a gradient
edge map of the image. The pressure force is some type of the so-called external forces. There
exist many types of dynamic external forces, [1]. Here, we just focus on the simple one, called
”balloon force”. It is introduced in the ”balloon model”,[4]. The balloon model needs a gradient
edge map of the image to realize its algorithms. It can be said that the gradient edge map is
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a dial for the dynamic behavior of balloon forces. The edge map is defined such that its values
is only large in the instant neighborhood of edges, almost zero in homogeneous regions and
that the gradient vectors are pointing toward and are normal to the edges. As usual, one uses
three-dimensional Canny edge detector to obtain an edge map of a 3D image. The acting of the
balloon model is defined by a computational diffusion process, shown in Equation (5.5),[12], in
the image so that the boundaries of regions in the image attract free forms. Then, the active
free form surface is attracted to edges and stopped.

Fdiff =
1

1 + Fedge
with Fedge = |∇Gσ ∗ I|p, p ≥ 1 (5.5)

where Gσ ∗ I is a Gaussian smoothing of image I and p ∈ N.
A balloon force generates a pressure force that moves the active surface along the normal di-
rection to Bézier surfaces defining active patches. This effect of the balloon force only acts in
the homogeneous domains of the gradient edge map. The computation of the normal directions
inherits the benefits from the polynomial parametrization of the active surface. The normal vec-
tor at a considered surface point is derived from computing the partial derivative of Equation
(2.4). This is done only once. Moreover, this computation reduces to compute the derivative
of Bernstein polynomials since the control points are constant. The points of the active sur-
face Γ(s, t) are then moved to a new position by local movement of its patches. Indeed, this
is achieved by the movement of control points of the active Bézier patches. Control points of
these patches at the new position obtained by Lemma 4 will define the new position of the
entire active surface by Bézier surface parametrization. This process executes Algorithm 8 until
convergence. Remark that our process maintain the regularity of the active surface during its
evolution. And the smoothness properties of Bézier surface significantly contribute to this effect.

The evolution of the active surface Γ(s, t) is indeed done through some selected points and
depends on the gradient edge map. When the active surface is deformed to expand, the density of
these particular points significantly influences on the convergence of the process. Because these
points is used not only to move free forms but also to recognize the boundaries of the regions
so as to attract free forms toward them. Moreover, we do not know much information of the
regions in the image. Thus, in order to increase the density of these points, more Bézier patches
are dynamically added into the active surface during the evolution such that its regularity is
maintained. This is realized locally by consider the distance between adjacent points of the free
form patches. New patches will be added if the distances are large. Since free forms are surfaces,
imagine that they look like rectangles, we have to check the distances in two directions: one along
the width and one along the height. In our method, this test is based on the maximal distances
separating control points of the same patch in two mentioned directions. They are then compared
with a fixed distance threshold. The considered patch will be split into two different patches of
the same bi-degree (D,D) as the original one along the associating mentioned direction. This
technique is done locally on Bézier patches by Algorithm 5 and Algorithm 6. It is important to
note that a splitting occurs at some patch will lead to the splittings on all the patches located
on the Bézier constant curve passing through the former, mentioned in Section 2.2.4. This is
necessary to guard the regularity of the active surface. The distance test allows to know when
a free form patch need split in two ones, during the deformation of the active surface. This
geometric constraint on the patch resolution advances the adaptation of the active surface to
large or complex shapes of the free spatial boundaries. It is described in Algorithm 9. The
complexity of this algorithm is discussed in Lemma 6.

Lemma 6. The split procedure at a patch requires at most four multiplication of two (D+1)×
(D + 1) square matrices. So the computational cost of this procedure is in O(D3).
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Algorithm 9 Split procedure.

Input: Active surface Γ(s, t) with (M + 1) × (N + 1) free form patches of degree (D + D)
(represented by its control polytope [P ij ]) and a density threshold ε;

Output: New active surface (represented by its control points);
nCP ← []
mp← 0
for i ∈ {0, ...,M} do

for j ∈ {0, ..., N} do
CP ← P ij

if maxk 6=k′ d(P ijkl , P
ij
k′l) > ε then

do Horizontal subdivision on P pq for all p = i by Algorithm 5;

CP ←
[
P i∗L
P i∗R

]
mp← mp+ 1
break

end if
Concatenate nCP and CP ;

end for
end for
M ←M +mp
NCP ← []
np← 0
for j ∈ {0, ..., N} do

for i ∈ {0, ...,M} do
CP ← nCP ij

if maxl 6=l′ d(nCP ijkl , nCP
ij
kl′) > ε then

do Vertical subdivision on nCP pq for all q = j by Algorithm 6;

CP ←
[
nCP ∗jL nCP ∗jR

]
np← np+ 1
break

end if
Concatenate NCP and CP ;

end for
end for
N ← N + np
return NCP (the new control points);
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Algorithm 10 summarizes our method using the active surface deformation based on Bézier
free forms. At each patch, the computation requires at most the cost in O(D3). This is the cost
of split and insert algorithm or of interpolation algorithm. Thus, the global cost of the method
is bounded by O(D3µ) where µ = (M + 1) × (N + 1) is the number of active patches.. When
D is fixed, this cost is linear with respect to the number of patches, shown in Lemma 7. Some
experiments with 3D toy images presented in Figures 5.1-5.8 are to say that the method adapts
to many complex boundary regions.

Lemma 7. The global computational cost of the method using the active surface deformation
based on Bézier free forms is linear O(µ) where µ = (M + 1)× (N + 1) is the number of active
patches.

Algorithm 10 Free form active surface deformation.

Input: Active surface Γ;
Output: Deformed active surface Γ;

while non convergence do
Split and insert Γ (Algorithm 9);
for each patch of Γ do

Sample the patch;
Compute the deformation at each sampled point of the patch;
Deform the patch;

end for
end while
return Γ;
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Figure 5.1: A 3D free region.
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Figure 5.2: Using 3D Canny edge detector to obtain gradient edge map of the image shown in
Figure 5.1, and adding initial active surface.
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Figure 5.3: Dectected 3D free region.

58



0
10

20
30

40
50

0

20

40

60
0

10

20

30

40

50

Figure 5.4: A 3D free region with complex boundary.
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Figure 5.5: Using 3D Canny edge detector to obtain gradient edge map of the image shown in
Figure 5.4, and adding initial active surface.
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Figure 5.6: Dectected 3D free region of the image shown in Figure 5.4.
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Figure 5.7: An empty box.
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Figure 5.8: An approximation of the empty box shown in Figure 5.7.
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Chapter 6

Conclusion

This thesis performed an approach on the geometry and the deformation of shapes represented
by uniform piecewise Bézier surfaces. Its results contribute to solving the shape optimization
problems arising in 3D images segmentation. This is a method using active surfaces based on
free form modeling and deformation with three-dimensional settings. The deformation of ac-
tive surfaces is controlled by local deformations which are fast and smooth. This 3D free form
method can be adapted to complex shapes with convex or concave boundaries.

The complexity of the method is also discussed. The resulting algorithm of 3D free form
method requires almost linear computational cost with respect to the size of the output, which
is advantageous for real-time image processing and robotic applications.

The 3D free form method is applied to robotics. The deformation of free form active surface
allows to detect free spatial regions around a robot so that the robot can move dynamically and
autonomously from 3D images of its environment.

An autonomous robot certainly needs to recognize obstacles in the spatial neighborhood
environment around it and we give a practical implementation showing the efficiency of the
method. Our ongoing work is attracted by this. It requires more techniques to make topological
changes on free form active surfaces during their deformations.
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2.2 A bicubic Bézier surface. The circles are the control points. The red is the control
polytope. The blue are the points on the surface. . . . . . . . . . . . . . . . . . . 13
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2.4 A uniform piecewise bicubic Bézier surface with 4 patches. Each color is a path
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