ABSTRACT. The aim of this paper is to give sufficient conditions for a quasiconvex set-valued mapping to be convex. In particular, we recover several known characterizations of convex real-valued functions, given in terms of quasiconvexity and Jensen-type convexity by K. Nikodem [1], F.A. Behringer [2], and X.M. Yang, K.L. Teo and X.Q. Yang [3].

1. Introduction

Throughout the paper we denote by X a linear space and by Y a topological linear space, partially ordered by a closed convex cone K having a nonempty interior in Y. Let $F : D \to 2^Y$ be a set-valued mapping, defined on a nonempty convex subset D of X.

Recall (see e.g. [4]) that F is said to be K-convex if the inclusion

\begin{equation}
F(\{x\} + (1-t)F(x')) \subseteq F(tx + (1-t)x') + K
\end{equation}

holds for all $x, x' \in D$ and for every $t \in [0,1]$.

By analogy to vector-valued functions, we say that F is K-quasiconvex if for each $y \in Y$ the level set $L_F(y) := \{x \in D : y \in F(x) + K\}$ is convex. Since K is a convex cone, it can be easily seen that F is K-quasiconvex whenever it is K-convex.

1991 Mathematics Subject Classification. Primary 26B25; Secondary 49J53.

Key words and phrases. Generalized convexity, set-valued mappings.

This work was supported by a research grant of CNCSU under Contract Nr. 46174.
In order to get sufficient conditions for a K-quasiconvex mapping to be K-convex, we shall consider the following concept of generalized convexity:

F will be called \textit{weakly K-convex with respect to a nonempty set $T \subset]0,1[$} if for all $x, x' \in D$ there exists some $t \in T$ for which (1) holds.

Note that this concept extends several notions of generalized convexity, which were intensively studied in the literature in the particular case of real-valued functions. Indeed, if $T \subset]0,1[$ is a singleton, we recover the Jensen-type convexity (see e.g. [5] and references therein), which is nowadays also known as nearly convexity (see e.g. [6]). On the other hand, for $T =]0,1[$ we recover the notion of weakly convexity, introduced by A. Aleman in [7]. As an intermediate case, if $T = [\delta, 1 - \delta]$ with $\delta \in]0, 1/2[$, we recover the notion of uniform convexlikeness, which has been introduced by H. Hartwig in [8].

Our aim here is to study the set-valued mappings, but our main result also focus on vector-valued functions. Actually, if $f : D \to Y$ is a function defined on a nonempty convex subset D of X, then f will be called K-convex (respectively K-quasiconvex, or weakly K-convex with respect to a nonempty set $T \subset]0,1[)$ if and only if the set-valued mapping $F : D \to 2^Y$, defined by $F(x) = \{f(x)\}$ for all $x \in D$, is K-convex (respectively K-quasiconvex, or weakly K-convex with respect to T).

2. Main result

\textbf{Theorem 2.1.} Let $F : D \to 2^Y$ be a set-valued mapping defined on a nonempty convex subset D of X. If F has K-closed values (i.e. $F(x) + K$ is a closed set for every $x \in D$), then the following assertions are equivalent:

(i) F is K-convex;
(ii) F is both K-quasiconvex and weakly K-convex with respect to a nonempty compact set $T \subset]0,1[.$

Proof. Obviously (i) implies (ii), the conclusion being true for any $T \subset]0,1[.$

Conversely suppose that (ii) holds and let T be a nonempty compact subset of $]0,1[$ for which F is weakly K-convex. Let us denote, for all $x, x' \in D$,

$$T_{x,x'} := \{ t \in [0,1] : (1) \text{ holds } \}.$$

In order to prove (i), we just have to show that $T_{x,x'} = [0,1]$ for all $x, x' \in D$. To this end, consider two arbitrary points $x_0, x_1 \in D$ and let us firstly prove that T_{x_0,x_1} is dense in $[0,1]$. Suppose on the contrary that this is not the case. Then there exist some $a, b \in [0,1], a < b$, such that

$$[a, b] \cap T_{x_0,x_1} = \emptyset.$$

Since $[0,1] \subset T_{x_0,x_1}$, we can define the real numbers

$$\alpha := \sup [0, a] \cap T_{x_0,x_1} \text{ and } \beta := \inf [b, 1] \cap T_{x_0,x_1}.$$

Obviously $\alpha \leq a < b \leq \beta$ and, by (2) and (3), we have

$$]\alpha, \beta[\cap T_{x_0,x_1} = \emptyset.$$

Let us denote, for all $t \in [0,1]$,

$$x_t := tx_0 + (1-t)x_1 \text{ and } Y_t := tF(x_0) + (1-t)F(x_1).$$

Recalling (3) and taking into account that T is compact, we can find some numbers $u \in [0,\alpha] \cap T_{x_0,x_1}$ and $v \in [\beta,1] \cap T_{x_0,x_1}$ such that $tu + (1-t)v \in]\alpha, \beta[\text{ for all } t \in T$. On
the other hand, since F is weakly K-convex with respect to T, we can choose a number $\tau \in T_{x_u,x_v} \cap T$. Hence

$$\gamma := \tau u + (1 - \tau)v \in]\alpha, \beta[.$$

(5)

Since $u, v \in T_{x_0,x_1}$, we have $Y_u \subset F(x_u) + K$ and $Y_v \subset F(x_v) + K$. Hence

$$\tau Y_u + (1 - \tau)Y_v \subset \tau F(x_u) + (1 - \tau)F(x_v) + K.$$

Recalling that $\tau \in T_{x_u,x_v}$, i.e. $\tau F(x_u) + (1 - \tau)F(x_v) \subset F(\tau x_u + (1 - \tau)x_v) + K$, we obtain:

$$Y_{\gamma} = \tau Y_u + (1 - \tau)Y_v \subset F(\tau x_u + (1 - \tau)x_v) + K = F(x_{\gamma}) + K,$$

which means that $\gamma \in T_{x_0,x_1}$. By (5) it follows that $]\alpha, \beta[\cap T_{x_0,x_1} \neq \emptyset$, contradicting (4).

So, we have proved that T_{x_0,x_1} is dense in $[0,1]$. Now, let us show that $T_{x_0,x_1} = [0,1]$. Obviously $\{0,1\} \subset T_{x_0,x_1} \subset [0,1]$. Consider an arbitrary $t \in]0,1[$. We just need to prove that $t \in T_{x_0,x_1}$, i.e. $Y_t \subset F(x_t) + K$. If $Y_t = \emptyset$ the conclusion is obvious. Otherwise let $y \in Y_t$. By definition of Y_t we have $y = tz_0 + (1 - t)z_1$ for some $z_0 \in F(x_0)$ and $z_1 \in F(x_1)$.

Consider a point $e \in \text{int}K$. By density of T_{x_0,x_1} in $[0,1]$, we infer the existence of two sequences: $(t_n^-)_{n \in \mathbb{N}}$ in $T_{x_0,x_1} \cap [0,t]$ and $(t_n^+)_{n \in \mathbb{N}}$ in $T_{x_0,x_1} \cap [t,1]$, such that

$$\{y_n^-, y_n^+\} \subset y + \frac{1}{n}e - \text{int}K, \text{ for all } n \geq 1,$$

where $y_n^- = t_n^- z_0 + (1 - t_n^-)z_1$ and $y_n^+ = t_n^+ z_0 + (1 - t_n^+)z_1$. Then, we have

$$y + \frac{1}{n}e \in t_n^- F(x_0) + (1 - t_n^-)F(x_1) + \text{int}K \subset F(x_{t_n^-}) + K + \text{int}K \subset F(x_{t_n^-}) + K;$$

$$y + \frac{1}{n}e \in t_n^+ F(x_0) + (1 - t_n^+)F(x_1) + \text{int}K \subset F(x_{t_n^+}) + K + \text{int}K \subset F(x_{t_n^+}) + K;$$
implying that \(\{x_{t_n}^{-}, x_{t_n}^{+}\} \subset L_f(y + \frac{1}{n}e) \), for all \(n \geq 1 \). Recalling that \(F \) is \(K \)-quasiconvex and taking into account that \(x_t \in [x_{t_n}^{-}, x_{t_n}^{+}] \) for each \(n \in \mathbb{N} \), we can deduce that

\[
x_t \in L_f(y + \frac{1}{n}e), \text{ i.e. } y + \frac{1}{n}e \in F(x_t) + K, \text{ for all } n \geq 1.
\]

Finally, by letting \(n \to \infty \), we infer that \(y \in \overline{F(x_t) + K} = F(x_t) + K \).

\[\square\]

Corollary 2.2. Let \(f : D \to Y \) be a function defined on a nonempty convex subset \(D \) of \(X \). Then \(f \) is \(K \)-convex if and only if it is both \(K \)-quasiconvex and weakly \(K \)-convex with respect to a nonempty compact set \(T \subset]0, 1[\).

Proof. It follows by Theorem 2.1, where \(F : D \to 2^Y \) is defined by \(F(x) = \{f(x)\} \) for all \(x \in D \). In this case \(F(x) + K \) is closed for every \(x \in D \), since the cone \(K \) is closed.

\[\square\]

Remark 2.3. The assumption on the compactness of \(T \) is essential. Indeed, consider \(X = Y = \mathbb{R} \) and \(C = \mathbb{R}_+ \), and let \(f : D = [0, 1] \to \mathbb{R} \) be defined by: \(f(x) = 1 \) if \(x \in [0, 1/2] \), and \(f(x) = 0 \) if \(x \in]1/2, 1] \). Then \(f \) is both quasiconvex and weakly convex with respect to \(T =]0, 1[\), but \(f \) is not convex.

Remark 2.4. Corollary 2.2 generalizes some known characterization theorems given for real-valued convex functions, such as:

(a) Proposition 3 in [1], where \(X = \mathbb{R}^n \), \(Y = \mathbb{R} \), \(K = \mathbb{R}_+ \), \(D \subset \mathbb{R}^n \) is a nonempty convex open set, and \(T = \{1/2\} \).

(b) Theorem 2 in [2], where \(X \) is a linear space, \(Y = \mathbb{R} \), \(C = \mathbb{R}_+ \), \(D \subset X \) is a nonempty convex set, and \(T = \{1/2\} \).
(c) Theorem 3 in [3], where $X = \mathbb{R}^n$, $Y = \mathbb{R}$, $K = \mathbb{R}_+$, $D \subset \mathbb{R}^n$ is a nonempty convex set, and $T = \{\alpha\}$ with $\alpha \in]0, 1[$.

REFERENCES

LACO, UMR 6090, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LIMOGES, 87060 LIMOGES, FRANCE

E-mail address: benoist@unilim.fr

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, BABES-BOLYAI UNIVERSITY OF CLUJ, 3400 CLUJ-NAPOCA, ROMANIA

E-mail address: popovici@math.ubbcluj.ro