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Abstract. This paper studies rational and Liouvillian first integrals of
homogeneous linear differential systems Y’ = AY over a differential field
k. Following [26], our strategy to compute them is to compute the Dar-
boux polynomials associated with the system. We show how to explicitly
interpret the coefficients of the Darboux polynomials as functions on the
solutions of the system; this provides a correspondence between Darboux
polynomials and semi-invariants of the differential Galois groups, which
in turn gives indications regarding the possible degrees for Darboux poly-
nomials (particularly in the completely reducible cases). The algorithm
is implemented and we give some examples of computations.

1 Introduction

Consider the equation L(y) =y + y = 0. If y is any solution of L(y) = 0, it is
easy to verify that the total derivative of (y')?+y? is zero. Thus, for any solution
y of L(y) = 0, there will exist some constant ¢ such that (y')? + y? = ¢. In that
case, we say that (y')? + y? is a first integral of L (see below for some more
precise definitions). The aim of this paper is to study a procedure allowing one
to decide whether or not a given system of linear differential equations admits a
first integral.

Our strategy to compute first integrals will be the use of the notion of Dar-
boux polynomials (see definition below). In [26], we gave a partial procedure for
computing Darboux polynomials of given degree for linear differential equations;
as systems can be converted to equations, this theoretically included the case of
systems. However, this conversion produces intermediate equations with “huge”
coefficients, so in this paper we show how to handle systems directly (without
converting to equations); we also study how to make good use of some degen-
erate situations, which improves our first algorithm from the practical point of
view.

In general, finding the degree of Darboux polynomialsis a very difficult prob-
lem (see e.g [12]). The main result of this paper is the ability to characterize the
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Darboux polynomials and their degree by relating them bijectively with the
semi-invariants of the differential Galois group. Thus, all results from invari-
ant/representation theory are at our disposal and this provides bounds on the
degrees of the Darboux polynomials in many cases.

The paper is organized as follows: in the rest of this section, we recall some
of the properties of the Darboux polynomials of linear differential systems; in
section 2, we give a characterization of the coefficients of the Darboux polyno-
mials (proposition 7); in section 3, we show how this characterization provides
a correspondence between the Darboux polynomials and the semi-invariants of
the differential Galois group (theorem 12). In section 4, we use this material
to design computational procedures and, in section 5, we conclude with some
examples and remarks.

1.1 Rational first integrals

Let (k,0%) be a differential field with an algebraically closed? constant field C;
we will often denote the derivation by the usual symbols ’, 7, etc. We assume
that k has the following property: given a linear differential equation L with
coefficients in k, we must have an algorithm that finds the rational and the
exponential solutions of L over k (recall that a solution is called exponential
over k if its logarithmic derivative lies in k). An example of such a field is C'(z),
where C' is any number field of characteristic 0, with the usual derivation % (see
[4], and [16] for a wider class of fields).

In this paper, we consider the following first order linear differential system:
(A): Y' =AY with A € M, (k) (1)

Let us first introduce the notion of rational first integral. One can alge-
braically modelise a “generic solution” of the system (A) the following way.
Consider some indeterminates (y1, ..., y,) and form the field k(y1,...,yn). Let
A; denote the i-th row of A and let Y = (y1,--+,yn)". Then, one can form the
derivation

0 0 0
D=0k +A1Y—+AY —+ ...+ A Y — 2
k=0 + A 8y1+ 2 8y2+ + un (2)
where 0y, denotes the derivation of the coefficients of an element of k(y1, ..., yn).
This derivation turns k(yi,...,yn) into a differential field of rational functions

on solutions of (A). Thus, we will say that an element M € k(y1,...,yn) (with
M ¢ C) is a rational first integral for (A) if Dy M = 0 (i.e, for any solution Y of
(A), M(Y) is a constant). When no confusion is possible, we will simply write
D instead of Dy.

2 This assumption will usually not be used for practical computations, but it is abso-
lutely necessary to prove theorems using differential Galois theory.



1.2 The Darboux polynomials of (A)

Consider the ring k[y1, ..., yn]; this is also turned into a differential ring by D.
Suppose that M € k(y1, ..., yn) is a rational first integral of (4). Then, M can be
written as a quotient M = g with F', G € k[y1, ..., yn] and F, G relatively prime.
Then, DM = 0 implies that D(F)G — D(G)F = 0. This in turn implies that F
divides DF. In other terms, there exist o € k[y1,...,yn] such that DF = «F.

Definition 1. Let F € k[y1, ..., yn]. We say that F is a Darbouz polynomial for
(A) if there exists o € k[yi, ..., yn] such that DF = oF.

Relating the search for first integrals to the computation of Darboux poly-
nomials is an old method®. We will now recall some of the essential properties
of Darboux polynomials (see [26, 27] for more details and references). Let Sa
denote the set of the Darboux polynomials for (A) with coefficients in & (denoted
simply & when no confusion is possible). Then, any element of k is obviously in
8. Also note that, if k C K and M € k[y1, ..., yn] is Darboux for Dk, then M
is Darboux for Dy, (see e.g [24])

Lemma?2. [12, 26, 24] The set S of Darbouz polynomials is a semi-group: if
F,G eS8, then FG € 8. Moreover, if FF € S then all its irreducible factors are
mn S.

Thus, to describe 8, it will be enough to compute its irreducible elements.
In the case of the derivation D defined above, we have additional information
because D is a homogeneous and degree 0 application: if one picks a monomial of
degree m in the y;, then its derivative (by D) is easily seen to be a homogeneous
polynomial of the same degree m. As a consequence (see [26]):

Lemma3. [26] If M is a Darbouz polynomial for (A) verifying DM = oM,
then o € k and every homogeneous component M; of M (taken as a multivariate
polynomial in the y;) also verifies DM; = aM;.

In the sequel, this lemma will allow us to consider only homogeneous irre-
ducible Darboux polynomials. Before we introduce our next structure lemma,
we need a definition:

Definition4. A differential extension K D k is called a Liouvillian extension
if there exists a tower of extensions k = ko C k1 = k(61) C ... C kn, =
k(01,---,0,) = K such that we have 0; algebraic over k;_y or 0} € k;_1 or
(00)/0; € ki—y (foralli=1,--- n).

An element is said to be Liouvillian over k if it belongs to a Liouvillian extension
of k.

We will say that (A) has a louvillian first integral if it has a polynomial first
integral over a liouvillian extension of k.

% They appear with many names in the literature. Depending on the papers, they also
appear as “special polynomials”, “invariant algebraic curves”, “eigenpolynomials”,
or “algebraic solutions”.



We refer the reader to [15, 14, 20, 24, 6, 2] for more properties of Liouvillian
extensions; see also [17], where a more general definition of Liouvillian first in-
tegrals is studied. In the sequel, we will use the following structure result (see
[27] for a proof and more details):

Lemma5. [27] Let K D k be a Liouvillian extension of k. Then, the derivation
Dg admits a Darbouz polynomial over K if and only if Dy admits a Darboux
polynomial over k.

Remark. Note that, if DM = oM and f' = —«f, then D(fM) = 0.1f f € k,
then this means that fM is a polynomial first integral of (A4); else, this means

that a = ef ! and fM is a Liouvillian first integral of (A). In fact lemma 5 shows
that, for us, these will be the only interesting type of Liouvillian first integrals.

2 Duality and Darboux polynomials

In this section, we will show how to characterize the Darboux polynomials in
terms of constructions on the matrix A. This will enable us to interpret the
coefficients of Darboux polynomials in terms of solutions of (A).

Solutions. Let us first focus on the notion of solutions. In the case of a linear
differential system, there is a notion of minimal differential extension containing
a fundamental set of solutions of (A4):

Definition6. A differential field extension K D k is said to be a Picard- Vessiot
extension for (A) if

1. K = kY1, ....Yin,...,Yon), where Y7,...,Y, is a fundamental set of
solutions of (A) (i.e K is the differential field obtained by adjoining to k the
components of the vectors Y7,...,Y,).

2. K and k have the same field of constants.

As the constant field of k is algebraically closed of characteristic 0, one can
show that Picard-Vessiot extensions exist and are unique up to differential iso-
morphism (cf. [6] p.21 and [7]). In the sequel, the term “solution” will always
denote a solution in the Picard-Vessiot extension K.

Consider the n-dimensional C-vector space V of solutions of (4) and denote
by U a fundamental solution mairiz (i.e the columns w of U are solutions of
w' = Aw and they span V). We will call construction on V a vector space ob-
tained from V by successive use of the following operations: taking the dual, ten-
sor products, direct sums, symmetric and exterior powers. To any construction
Const(V), there is a corresponding linear differential system having Const(V)
as its solution space (see e.g [2, 11]). In this paper, we only use the dual and the
symmetric powers, which we will now make explicit for the reader’s convenience.



The dual system We construct a system whose solution space is isomorphic
to V*, the dual space of V. Indeed, consider the matrix (I/ ='); it is well defined
because the columns of U span V' and thus det(U) does not vanish. Then, for
any column w; of U and any column v; of (U~!)!, we have by construction
(vi, w;) = & ; (the Kronecker symbol); it follows that the columns of (U =!)! span
V*. Now, using the relation U.U~! = I, one easily finds that (U~1)! satisfies
Y = —A'Y; in the sequel, we will use the notation A* = —A? to denote the
matrix of a dual system.

Symmetric powers Let Y = (y1, -, y,)" denote a solution of Y/ = AY . If we
consider a monomial M of degree m in the y;, then DM is a linear combination
of monomials of degree m. As there are v = (n'zrfl_l) possible monomials of
degree m in n variables, we obtain that the vectors w = (Y, -+, yn—1y™ ", y7)
of all monomials of degree m in the y; satisfy a v x v system which we denote
by Y/ = S™(A)Y. The reason for this notation is that one can show (cf [3]) that
its v-dimensional solution space is isomorphic to S™(V'), the m-th symmetric

power of V' (see e.g [9] p. 635 for definition and properties of symmetric powers).

Back to Darboux polynomials. These constructions enable the following
characterization of Darboux polynomials:

Proposition7. The system (A) admits ¢ Darbouz polynomial of degree m with
a vector v of coefficients if and only if there exists a non-zero f exponential over

k (i.e f'/f € k) such that fv is a solution of the system Y' = (S™(A)*)Y.

Proof. Let M = v,y™ + v,_1y" 'yn_1 + ... + v1y" be a polynomial first
integral of (A) and let v denote its coefficient vector (i.e v = (vi, -, vy)).
Then, for any solution Y of (A), we have M(Y) € C. But now, if we let
w = (Y, -, yn—1y" "L, y7), then we have M(Y) = (v,w); thus, we obtain
(v,w) € C and thus v € S™(V)*. It follows that v is a solution of (S™(A)*) if
and only if M is a polynomial first integral.

Now, let M be a homogeneous Darboux polynomial of degree M with DM = aM
and let v denote the vector of its coefficients. Consider a minimal extension kq; =
k(f) of k containing an element f such that f' = —af (i.e if k contains such an
element, then k; = k). Then, it is immediately seen that D(fM) = 0. Thus, the
above construction shows that fv is a solution of the system Y’ = (S™(A)*)Y.
Conversely, suppose that fv is a solution of the system Y’/ = (S™(A4)*)Y with
f exponential over k (f # 0) and v € k”; let M denote as above the polynomial
whose coefficient vector is v. The relation D(fM) = 0 is then clearly equivalent

to DM = —fTIf\J and we are done. O

Remark. Using the language of vector spaces with a connection, some ideas in
this direction were also suggested in [10].

This characterization will be the key point for the algorithm of section 4. In
the following section, we will show how it may also provide a characterization of
the degrees of the Darboux polynomials.



3 Darboux polynomials and semi-invariants of the
differential Galois group

In this section, we recall and state some useful notions about differential Galois
theory (see e.g [6, 15, 11, 2]). In particular, we will show the link between first
integrals and semi-invariants of the differential Galois group; only the new results
are proved.

3.1 Differential Galois theory

Many of the properties of the solutions of (A) derive from the fact that there
is a group action on the vector space of solutions that induces a “differential
Galois theory”. To follow the frame of classical Galois theory, the Picard-Vessiot
extensions will play the role of a splitting field for (A).

Definition8. The differential Galois group of a differential extension K D k is
defined as the group of automorphisms of K that commute with the derivation
and that leave k pointwise fixed.

The differential Galois group G of (A) is defined as the differential Galois group
of K/k, where K is a Picard-Vessiot extension of &k for (A).

The main property that we will use is the following standard lemma (see e.g

[15, 19]):

Lemma9. Ify € K, theny €k if and only if g(y) =y for allg € G. If y # 0,
then y'/y € k if and only if for all g € G there ezxists a constant v, (g) € C such

that g(y) = ¥y(9)y-

If we choose a fundamental set of solutions {Y7,Ya,...,Y,} of the system
(A), then for each ¢ € G we get o(V;) = E;L:1 ¢i;Yj , where ¢;; € C. This
gives a faithful representation of G as a subgroup of GL(n,C) (in fact, G is a
linear algebraic subgroup of GL(n,C)). Different choices of bases give equiva-
lent representations. In the sequel, we always consider this equivalence class of
representation as the representation (module) of G.

Let V be again the solution space of (A); the action of G induces a structure
of G-module on V. One can show that any construction on V is also a G-module
(see [11] p.134). For example, G acts naturally on the dual V* and on V@ V in
the following way. Let ¢ € G and ¢ be its representation on V; the action of G
on V* is defined by (g(u),y) = (u,g7(y)) for u € V*,y € V (see e.g [2, 11]).
The representations of ¢ on V* and on V ® V' are respectively (0"1)t and c®o0.
The reader may consult [15, 6, 8, 11] for proofs and more properties of the Galois
group.

Computing the Galois group is, in general, an open problem. Algorithms
exist for n=2 (cf [24, 19] and references therein) and n=3 (cf [19]); see also [11]
for a survey of other important methods.



Systems of the same type. Consider the system Y’ = AY and suppose we
perform a change of variables Z = PY with P € GL(n, k). Then,

Z' = PY' + P'Y = (PAP~ '+ P'P~HZ. (3)

We will say that two systems are of the same type (or equivalent) if such a relation
(with P invertible) holds between them.

Note that if U is a fundamental matrix for (A), then PU is a fundamental
matrix for (PAP~! + P'P~!) and the entries of PU are in the same Picard-
Vessiot extension as those of U. Looking at the way the Galois group acts on
the solutions, we get a standard property that will be crucial in the sequel: two
systems of the same type have the same Galois group (see, e.g [11] or lemmas
2.5 and 2.6 in [18]).

In the sequel, the operation of changing to a system of the same type will
be called a G-change of variables. A property that we will use without further
mention is the following intuitive lemma:

Lemma 10. Letq/; :y — § be a G-change of variable. Then, the system (A)
defined by (1) has a Darbouz polynomial M if and only if (M) is a Darboux
polynomial for (A).

Proof. If V and V are isomorphic G-modules, then $™(V*) and S™(V*) are also
isomorphic G-modules. Thus, the systems S™(A)* and S™(A)* are equivalent
and one has a solution fv with f’/f € k if and only if the other one has the
solution fv. O

Equations and systems. For algorithmicissues, we sometimes need to convert
systems to equations and vice-versa. We now briefly review the standard ways of
performing this task (see also [11, 2]). Consider an ordinary homogeneous linear
differential equation

Ly) =y — a1y = —ary —agy =0 (a; € k). (4)

Then, solving this equation is equivalent to solving the companion system

! 010 --- 0

Y1 . 1
Y2 001 0 : Yo

y. .. =1 - S y. .
n—1 0 - ovnnn 0 1 n—1
Yn Yn

Gg A1+ Gp_2 Apn_1
Conversely, suppose that (yi,ya, - -,,yn) satisfy a homogeneous first order

linear differential system (A) of size n. To find an equation associated with
(A), we would like to find a system of the same type (in the above sense) in
companion form; this is done by the following cyclic vector process (see e.g
[1, 11, 2] for references and other methods). Consider A € k™ and let z; = AY =



Ay1 + ...+ Ayn. We compute zo = 24, ..., 2p41 = zgn) by using the relation

Y’ = AY. We obtain n + 1 linear expressions in the n variables y; and so they
are linearly dependant: this provides a linear differential equation £(z1) = 0 for
z1. Letting Z = (21,--+,2n)", we now have a relation Z = PY and Z' = BY
If the matrix P is invertible, A is called a cyclic vector for the system and
7' = (BP~1)Z is a companion system of the same type as (A). It can be shown
that the cyclic vectors form a Zariski open set, and almost all choices of A will
fit.

Thus, in the following, everything that is stated for first order systems is valid
for n-th order equations and vice-versa (for example, we call Darboux polynomial
of an equation a Darboux Polynomial of the associated companion system).

3.2 Invariants and semi-invariants of the differential Galois group

We now show how to characterize Darboux polynomials in terms of representa-
tion of the Galois group. Let V be a C vector space with basis yq,...,y, and
G C GL(V) alinear group. One defines an action of G on the symmetric algebra
S(V)Yof V(S(V)=mk[Y1,....Y,) by g- (p(Y1, ..., Y0)) =p(g(Y1),...,9(Ya)).

Definition11. A polynomial P with the property that

Vge G, g(P(Vi,...,Y)) = ¢p(g) - (P(Yi,...,yn)), with ¥p(g) €C (5)

is called a semi-invariant of G of degree deg(P) (where deg(P) is the total
degree). If Vg € G we have ¢p(g) = 1, then P(Y1,...,Y,) is called an invariant
of G.

Remark. This definition of invariants is the classic one. However, several authors
also call invariants elements of any construction on V that are left invariant by

G.

As the action of G is homogeneous, the invariants (resp. semi-invariants) are
generated by homogeneous invariants (resp. semi-invariants). Therefore, they
will be found in the symmetric powers S™ (V) of V. From the definition, we get
the following nice characterization of Darboux polynomials:

Theorem 12. Let G, denote be the differential Galois group of the system Y' =
A*Y . Up to scalar multiplication, there is a one to one correspondence between
the Darbouz polynomials (resp. polynomial first integrals) of (A) and the semi-
invariants (resp. invariants) of G..

Proof. Let M be a Darboux polynomial of degree m and denote by Sol(S™ (A*))
the solution space of (S™(A*)); by construction, we have a G,-isomorphism
Gm 2 ST (V*) — Sol(S™(A*)). By proposition 7, the vector v of coefficients of M
is such that there exists f with f'/f € k and f.v € Sol(S™ (A*)); thus, if we call
z1, "+, Zn a basis of V*| there exists some homogeneous P(z1, -, z,) € S™(V*)
such that ¢,,(P) = f.v. By lemma 9, v is left fixed by G. and, for all ¢ € G,



there exists a constant ¥(g) such that g(f) = ¥(9)f. As ¢, commutes with any
g € Gy, we deduce that g(P) = ¢(g) P for all ¢ € G, and so P is a semi-invariant.
Conversely, let P be a semi-invariant and put u = ¢, (P) (i.e u = (uy, -+, uy) €
Sol(S™(A*))). Select i such that u; # 0. For all g € G, we have g(u) = ¥(g)u so
that g(u;) = ¥(g)u;. If we put f = u;, lemma 9 show that f'/f € k. Now, for all
J=1,--- v, we have g(l}—J) = YD U Therefore, if we let v = (ur/f, un/f),

BIZONN
we have v € k¥ such that f.v € Sol(S™(A*)) and proposition 7 shows that v is
the vector of coefficients of a Darboux polynomial. O

This result allows us to use representation theory to find bounds on the degree
of Darboux polynomials. For systems that have a Liouvillian solution, bounds
have been given by Singer ([14]) and improved/generalized by Ulmer (23, 20]).
Using representation theory, Singer and Ulmer have obtained sharp bounds for
n =2 and n = 3 (for n = 2 older bounds existed, see the references in [20, 24]).
Other comments on bounds can be found in [27]. For systems of size n > 3, we
don’t know yet how to bound the degree of a semi-invariant of minimal degree
in all cases: this is still an interesting (difficult) open problem.

3.3 Invariants of completely reducible systems.

In this part, we show that, with an assumption on the Galois group, one can
restate the above proposition directly in terms of G. Let V' be a C-vector space
and G € GL(V). We denote by Invy (G) the G-subspace of elements of V' that are
left invariant by all elements of G. We will say that G is reductive (or completely
reducible) if all constructions on V' are completely reducible G-modules (i.e any
G-invariant subspace has a complementary G-invariant subspace); we say that
a system is completely reducible if it has a reductive Galois group.

Proposition13. Consider a linear differential system with a reductive Galois
group G and solution space V ; let G, denote the Galois group of the dual system
whose solution space is V*. Then, G has s invariants (resp. semi-invariants) of
degree m if and only if G, has s invariants (resp. semi-invariants) of degree m.

In order to prove this, we will need the following three lemmas:
Lemma 14. The invariants of G on V* satisfy Invy«(G) = Homg(V, C)

Proof. We have u € Homg(V,C) if and only if {(u, g(y)) = g({u,y)) forally e V
and all g € G. As (u,y) € C, we have g((u,y)) = (u,y). Now, we have (u, g(y)) =
(g7 (u),y), and thus: (u, g(y)) = ¢((u,y)) if and only if u = g~ (u) for all g € G,
which is true if and only if u is an invariant of G in V*. O

Lemma 15. Suppose that G is reductive. Then, Invy«(G) is G-isomorphic with
Invy (G).



Proof. Let Vi = Invy(G). As G is reductive, there exist a G-submodule V3
such that V = V3 & Va. We embed V}* into V* by letting uqx € V" send Vi
to 0, so that V* = V* @ V5. Consider u € V{*. Any y € V can be expressed
as y = y1 + y2 with y; € V;; thus, g({u,y)) = (u,y) = (u,y1). Now, we have
(u, 9(y)) = (u, 9(y1) + 9(y2)) = (u, 9(y1)) (because the V; are G-invariant). But,
as y; is an invariant of G, this implies that (u, g(y)) = (u, 1) = 9({u,y)). By
lemma 14, this implies u € Invy«(G). If Vi* Cx Invy«(G) then, as Vi** = Vi,
the dimensions would be such that V7 Cx Invy (G), a contradiction. Thus, Vi =
Invy«(G).

We may verify that V4 and Vi* are G-isomorphic; let f: Vi — Vi y; — u;
(where y;,u; denote basis elements) be the standard isomorphism. As y; and
f(y;) are invariants of G, f(g9(v;)) = f(yi) = 9(f(v:)), and f is the desired G-

isomorphism. O
Lemma 16. The G-modules (S™(V))" and S™(V*) are G-isomorphic.

Proof. There is a classical (functorial) isomorphism between V* @ V* and (V ®
V)* (see [9] p. 567). Now, if o is a matrix, it is checked the same way that
(((7 ® a)_l)t = (U_l)t@) (0'_1)t; thus, G has the same representation on V* @ V*
and (V®V)*, and so they are G-isomorphic. Then, an immediate induction yields
the result. O

Proof of proposition 13. Suppose that G has s semi-invariants of degree m. This
means that there are s 1-dimensional G-invariants submodules V; and a G-
submodule W of S™ (V) such that W has no one-dimensional submodule and
S™(V) = Vi®...dV;®W. Thus (as in the proof of lemma 15), we have S™ (V)* =
Ve ...e Ve W*; by lemma 16, S™(V)* is G-isomorphic with S™(V™*); as
the V;* are 1-dimensional G-module, lemma 9 shows that the generators of the
V;* are exponential over k; thus, these are also 1-dimensional G,-modules.

Suppose that G has s invariants of degree m, i.e dime¢ (IHVSm(V)(G)) = s. By
lemma 15, we have a G-isomorphism between Invgmv)(G) and Inv(gm vy (G).
By lemma 16, the latter is G-isomorphic with Invgm(y+)(G) and we obtain that

dimec (Invsm(v*)(G)) =s. O

Remark: if G is not reductive, then the result is no longer true. For example,
consider the operator L = (0% — 2)(zd — 1) i.e L(y) = 2y — 3y" — 2%y + zy.
Then, the equation L(y) = 0 has the solution y = z, but it can be checked that
L*(y) = 0 has no rational solution (where L* denotes the adjoint equation whose
solution space is the dual of the solution space of L, cf [13]).

Corollary 17. Assume that the system (A) has a reductive Galois group G. Up
to scalar multiplication, there is a one to one correspondence between the Dar-
bouz polynomials (resp. polynomial first integrals) of (A) and the semi-invariants
(resp. invariants) of G.

Proof. This follows from theorem 12 and proposition 13. O



4 Algorithmic issues

4.1 The algorithm

Let M = v,y +vy— 19" 'yn—1+ ...+ v1y] be a Darboux polynomial of given
degree m and denote as usual by v = (vq,-- -, U,,)t the vector of its coefficients.
Assuming that m is given (by the bounds of the previous section), proposition
7 provides the following algorithm for computing v.

1. Compute the matrix A4 = S™(A*).

2. Take a cyclic vector and compute the G-change of variables P that makes
the system equivalent to a companion form, i.e to a homogeneous linear
differential equation L, .

3. Compute the solutions of £,, whose logarithmic derivative is in k. For any
such solution f, go to next step; else, return(0).

4. Apply P! to derive the corresponding vector V = fv with v € k¥. Then, v
is the coefficient vector of a Darboux polynomial.

In [26] (section 5.1), we gave a method for computing Darboux polynomials
of linear differential equations (and this method can be adapted to systems); it
is in fact a subclass of the above algorithm, as it corresponded to always choose
(0,--+,0,1) as a candidate cyclic vector. This yielded degeneracies that were
difficult to deal with; this problem does not occur with the above algorithm
(and we will see below how to take advantage of the degeneracies).

Remark. Cyclic vectors are not the only way to solve linear differential systems;
for example, in [1], Barkatou gives an algorithm for computing a “rational normal
form” that decouples the system into independent linear differential equations of
lower order. This form can be used as an alternative to step (2) of our algorithm.

4.2 Degenerate cases

If we take a putative cyclic vector A | then the corresponding G-change of vari-
ables P would be a matrix with rows P; satisfying P, = A and P;y1 = P/ + P A.
If the matrix P is invertible, then the solution spaces of (A) and L,, are iso-
morphic. However, if P does not have full rank, £,, has order less than v and
we theoretically cannot deduce the solutions of (A) from those of £,,. In this
subsection, we show how one can in fact take advantage of this situation and
how our algorithm can be improved in this case.

Let ker(P) have dimension r» > 0 and compute a basis Vi, -+, V, of ker(P).
For all 4, j we have P;V; = 0. Now, on one hand, we have P;41V; = P/V;+ AV, =
0; on the other hand, we have (F;V;)" = 0 = P/V; + B V/; thus, we obtain
that P;(V/ — AV;) = and so, for all j, there are elements c; ; € k such that
VI —AV; =377, ¢ jVi. We compute these elements.

First, let us assume for simplicity that £,, has no exponential solution. If V'
is an exponential solution of (\A) then, by construction, V must satisfy PV = 0;



Writing V' =Y 4;V; in the basis (V) of ker(P), we obtain that V! — AV =0 if
and only if
,

.
E 7§+E7j6i,j Vi=0.
j=1

i=1

As the V; form a basis of ker(P), this yields a system " = CT" (with C =
(—¢ij)i,;) for the ;. Thus, we have reduced our v-dimensional problem to finding
the exponential solutions of the r-dimensional system IV = CTI".

Remark. Tf dim (ker(P)) = 1 then we directly have that V; is the coefficient
vector of a Darboux polynomial. Also, note that if I/ = C'I" has an exponential
solution, then this yields a Darboux polynomial even if £,, has exponential
solutions. Therefore, the above construction leads to a notable improvement of
the algorithm (which should be performed before even solving L,,).

Assume that £, has an exponential solution f and let F' = (f,-- -, f(”_l))t.
Letting Vi be a particular solution of PV = I, we obtain a general solution
(of PV = F) in the foom V = Vo + Y vVi. As PV = F = (RV), we
obtain again that P/V + P,AV = P!V + P;V' and thus V! — AV € ker P; in
particular, we find constants s; such that Vj — AVy = Ezzl s;V; and derive an
r X r inhomogeneous system I'" = CI"+ S for the 7;. Such a system can be also
solved by a cyclic vector process. Note that the produced equation will then be
inhomogeneous with an exponential right-hand side and the techniques from [16]
must then be used.

5 Examples and remarks

The algorithm has been implemented in the computer algebra system MAPLE.
Let us see some examples of computations.

5.1 Some easy examples

Let L be a linear differential equation and (A) the corresponding system. The
m-th symmetric power of L, noted LO™  is the equation produced from S™(A)
by using the (putative) cyclic vector (1,0,---,0) (cf [14, 19, 20]). This equation
has its solution space spanned by all monomials of degree m in the solutions of
L.

Consider the equation L(y) = y"” + y = 0. Then, its symmetric square is
L®2(y) = y"" + 4y'. This has the solution y = 1, and thus the Galois group has
an invariant of degree 2. The corresponding first integral is (y')? + y?.

More generally* consider the equation I(2) = 2/ — rz with r € k and let
21,22 be a basis for the solution. We can form the equation L(y) = (®%(y) =

y'" — dry' — 2r'y with (y1 = 22,y2 = z122,y3 = 22) as a basis for its solution

* T am indebted to M.F Singer for having suggested this example.



space. Then, we have y1y3 —y2 = 0. Thus, L®? has order 5 (instead of 6) and one
can check that the Galois group has an invariant of degree 2. The corresponding
polynomial first integral is —2yy” + (y')? — 4ry? (for some values of r, this result
appears in the literature as the “Brioschi identity”, see [13]). This is a case where
our techniques for degeneracies apply.

5.2 The Hurwitz system

Consider the Hurwitz system Y/ = AY with

0 1 0

A= 0 0 1
_ IRe-gRRlt  72/T07- BB 2420/9  7e-4
z? (z—1)2 z2? (z—1)2 z(z—1)

This system is irreducible. Singer and Ulmer have shown in [21] that it has
Galois group Gigs. From [19], we derive that it has an invariant of degree 4
and corrolary 17 proves that (S™(A4*)) has a rational solution. We have used
our implementation to treat this example. Using the cyclic vector (0,---,0,1),
we produced an equation L,, which was found to admit the rational solution
f = 28%(z — 1)%; from this, we obtained the Darboux polynomial M equal to:

(Tr—4)y-"y1  8(3420-49)y2ye  3(—27435+47844240027 )y22 y,°

4
yau 42
z(x—-1) 44122 (z-1) 98z (z—1)?
(133920#-95735 x+10976)y22 Y1 Y0 (74649601:3—9607401x2+22921361‘—153664)1/22 yo?
20583 (x—1)2 518616(x—1)%z*

(117504x3—201457x2+1151661‘—21952)y2 y1®

686 ¢ (x—1)°
(32762881:3—4215051x2+1607956x—153664)y2 y12yo

14406(z—1)z*
(—”1659952x+365036544x4—678527307173+380764774r2+4302592)y2 Y102

3630312¢°(x—1)*
(—93927904x+14511882241:4—20770510051‘3+7135251391‘2+4302592)y2 yo®

980184242°(x—1)*
(—42981120+57507842* 131468205 ° 4112739732 +614656 )y, *

38416z (c—1)*
(—15004192x+45785088a:4—85081374x3+56160371x2+1229312’)y13 Yo

1728722°%(z—1)*
+(375858001837° 1415366824022 417844240384 2% — 433735508167 *42215900736 =

—120472576)y:” yo° /(101648736 2°(z—1)%)
+(13009592134712°—343699174616224+9926127452162°— 1988514598464 ¢ *
+39750571840x—1686616064)y1y8’/(19211611104177(17—1)5)

+(551683715235842° —1421259935915522°4125442123785361 2 —45962050792788«°

+81561582578565° — 7022690662407 +23612624896)yo* / (96826519964162° (z—1)°)



and, of course, fM is a polynomial first integral of the system. Now, we can
easily obtain the other first integrals. It is classic (see e.g [25] pages 223-226)
that the Hessian of an invariant is an invariant, the bordered Hessian of two
invariants is an invariant, and the Jacobian of n invariants is again an invariant
(same for semi-invariants). With the isomorphism of theorem 12, one can check
(see [27]) that this remains true for the Darboux polynomials. Thus, taking the
Hessian of M, we obtain a Darboux polynomial H (M) of degree 6 that yields a
first integral; their bordered Hessian yields a first integral of degree 14 and the
Jacobian of these three yields a first integral of degree 21. This way, we obtain
all first integrals of the system because these four invariants generate (see[22])
the invariant ring of G'1gs. Note that, in this example, this strategy is absolutely
necessary in practice because the size of the coefficients obtained from cyclic
vectors of the symmetric power grows dramatically and the equations for degrees
14 and 21 are too big to be constructed (see e.g [27, 5]). This emphasizes another
contribution of this paper: given a linear differential equation (or system), one
can detect invariants by finding rational solutions of symmetric power but this
does not give their expression; our construction gives us explicit expressions that
allow symbolic manipulations on invariants or semi-invariants.

5.3 Some remarks and questions

e This example yields a first question. In [20], it is shown that, if the Galois
group of a three-dimensional system is a proper irreducible subgroup of SLz(C),
then it has a semi-invariant of degree at most 36. However, in a careful reading
of their paper (and of the classical literature on invariants of finite groups),
one finds that a semi-invariant of minimal degree has degree at most 6 (and
an invariant has degree at most 12). It would be of interest to have such sharp
bounds for higher values of n.

e Usually, when a differential equation is reducible, one factors the equation
into equations of lower order. But, it is not clear then what the degrees of the
semi-invariants are. For example, consider the equation

L(y) = (8% = 2)(0* —2)(y) = y'*) — 209" — 2/ + 2’y = 0

Note that (02 — z)(y) has Galois group SLz(C) and thus no first integral (see
[6]). However, one can check (and theoretically prove, see [27]) that L has a
polynomial first integral of degree 2. So, an interesting question would be: how
can one bound the degree of the semi-invariantsin the case of a reducible system?

e In [17], Singer proves that a second order homogeneous linear differential equa-
tion has a liouvillian first integral if and only if it has a liouvillian solution. Our
results show how this statement behaves for higher order equations:

Proposition18. Assume that a homogeneous linear differential equation L has
a reductive Galois group. If L has a liouvillian solution, then it has a liouvillian
first integral. The converse is false in general.



Proof. If L has a liouvillian solution, then it has a solution z whose logarithmic
derivative is algebraic (see [14]) and G has a semi-invariant z; by theorem 12, we
can deduce a Darboux polynomial M, from this semi-invariant, and then zM,
is a liouvillian first integral of L. Conversely, it may occur that there is a semi-
invariant but no liouvillian solution. For example, take the equation y/ —zy = 0.
This equation has Galois group SL(2, C'). We form its symmetric square L(y) =
y"" —4zy' —2y = 0. This equation has Galois group PSL(2, C') and no liouvillian
solutions; however, we saw in section 5.1 that it has a polynomial first integral.

O

e More developpements and applications of the results of this paper will be
found in the author’s PhD dissertation ([27]).
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