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Preparatory Lectures

1 Algebraic Numbers, Algebraic Functions

Throughout this lecture, k£ denotes a field on which we assume that one can
perform the four operations +, —, %, / and one can tell when an element is
equal to zero (i.e a computable field). All fields and rings are assumed to be
commutative in this lecture.

We will study polynomial rings and show how to construct fields that
contains (unknown) roots of polynomial equations. Properties of this fields
will be adressed through Galois theory.

1.1 Polynomial Rings and the Euclidean Algorithm

Let k[X] denote the ring of polynomials in one variable over k. An ideal I is
a subring of k[X] such that: for all p in I and ¢ € k[X], we have pg € k[X].
A central tool in studying polynomial ideals is the Euclidean division.

Definition 1 Fuclidean division: Let Py, P, € k[X]| with P, # 0.
There exists a unique pair (Q,R) € k[X] such that P, = QP> + R and
deg(R) < deg(P,).
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We say that k[X] is a Euclidean ring. Proof. Exercise O

Ezxercise 2.

1. Principality:
Recall that an Ideal is principal if it is generated by a single element P
(i.e all elements of the ideal are multiples of P). Show that any ideal
of k[X] is principal.

2. Euclidean algorithm:
Let Ry = P;, Ry = P,, and perform successive Euclidean divisions:
R() = QlRl + RQ, R1 = QQRQ + Rg,. .. ,Rn,Q = ananf1 + Rn and
R, 1 = Q,R, (i.e R, is the last non-zero remainder in the sequence of
divisions). Show that R, is the greatest common divisor of P, and P;.

3. Use the Euclidean algorithm to prove Bézout’s relation: If D is the
greatest common divisor of P, and P, there exists polynomials S and
T such that SP, +TPFP, = D.
Using the Euclidean algorithm, give an algorithm to compute S and
T. Prove that S can be chosen of degree less than P, and that, in this
case, it is unique.

o

Ezercise 3. Let K C L be fields. Let F, G € K[X] and let D be their greatest

common divisor. Using Bézout’s relation, prove that D is also the greatest

common divisor of F' and G viewed as polynomials in L[X]. o

This Bézout relation and the Fuclidean structure will allow us to work
modulo polynomial ideals effectively.

1.2 Algebraic Extensions

Definition 2 We say that an element « s algebraic over k if there exists a
nonzero P € k[X] such that P(«) = 0. Otherwise, « is said to be transcen-
dental over k.

Let « be algebraic over k. Then I := {Q € k[X]|Q(«) = 0} is a (prime)
ideal. By exercise 2.1, we know that [ is generated by some polynomial P.
If we further ask that P is monic, then it is uniquely defined and it is called
the minimum polynomial of c.
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Exercise 4. Show that I is prime (i.e if ab € I for a,b € k[X] then either
a € Iorbel). Check that P is the monic polynomial of lowest degree such
that P(«) = 0. Deduce from this that P is irreducible. o

Example. The following simple example can lead you in what follows.
The element /2 is a zero of P = X? — 2 so it is algebraic over Q (prove that
it does not belong to Q). You can easily check that any element in Q[v/2]
can be written as a + by/2 for a,b in Q. So Q[v/2] is also a vector space of
dimension 2 over Q (basis: 1,/2). Moreover, any non zero element in Q[v/2]
has an inverse in Q[v/2] because (a + b\/ﬁ);‘;_b%{g =1 so Z{f;{g € Q[V?2] is

the desired inverse. We conclude that Q[v/2] is in fact also a field. o

In general, if P is an irreducible polynomial of degree n in k[X], we can
give a precise meaning to the expression ”let o be a root of P” using the
Euclidean division. Let I := (P) denote the ideal generated by P in k[X].
Because P is irreducible, I is a maximal ideal in k[X] (prove this). Consider
the map

b k[X] — k[X] )
’ P — R such thatP = QP + R, deg(R) < deg(P)

This map induces the canonical ring morphism from £[X] to the quotient
ring k[X]/I (i.e R is a canonical representant for the class of P modulo
I). One can then define a generic root « of P the image of X under this
canonical ring morphism, so k[a] = k[X]/I.

This construction shows that k[X]/I is also a vector field of dimension n,
generated by 1, ¢, ...,a"!

As in the case of Q(v/2), we now give a constructive proof that k[X]/I is
actually a field (this also follows from the fact that I is a maximal ideal, of
course). Let R(a) be a non-zero element in k[a]. Because R(«) # 0, R is
not a multiple of P. Now P is irreducible so it is prime with R and Bézout’s
relation shows that there exists a unique pair of polynomials (S, T) € k[X]?
such that deg(S) < deg(P) and SR+ TP = 1. Specializing in «, we see
that S(a)R(a) = 1 and hence R(«) admits the inverse S(«) in k[a]. We
conclude that k[a] is equal to the field k().

If k£ is a number field (e.g Q,R,...), then « is called an algebraic number.
If k£ is a function field in one variable (e.g Q(z),C(z)), then « is (a bit
abusively) called an algebraic function.
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A field extension k£ C K is called a finite extension if K is a finite di-
mensional vector space over k. Its dimension is denoted by [K : k] and is
called the degree of the extension. An algebraic element « is called separable
over k if it is either transcendental over k£ or a zero of a polynomial with no
multiple roots in k. An algebraic extension of k is called separable if all its
elements are separable over k. In characteristic zero, all algebraic elements
are separable.

Exercise 5. Composite algebraic extensions.

Let L be a finite extension of £ of degree n and M be a finite extension of L
of degree m. Show that M is a finite extension of k£ of degree mn.

Deduce that if v is an element of an algebraic extension L of k, then the
degree of v over k is a divisor of the degree [L : k] of L over k. o

2 A Short Introduction to Galois Theory

Let P be a polynomial of degree n in k[X]. The goal of Galois theory is
to describe the roots of P and the algebraic relations among them. We will
first introduce a field that contains all roots of P and then show how the
automorphisms of this field allow one to measure the relations among the
roots.

2.1 Splitting Fields
Definition 3 Let P € k[X]|. A field F is called a splitting field for P if

1. F contains all roots of P, 1.e P factors as a product of linear factors
in F[X].

2. If L is another field extension of k containing all roots of P, then we
can embed F' in L.

This definition means that F' is the field extension of k generated by all
roots of P. One can show iteratively that splitting fields can be constructed.
Let a; be a root of P. Then, P factors as P = (X — ay)P,Ps ... with the P,
being irreducible polynomials in k(aq)[X]. If the P; are linear, we are done.
Otherwise, let oy be a root of Py, factor the P; over k(ay, ag)[X] and iterate
the construction until the P; are linear. The process will stop (in at most
n steps) because at each step the degree of at least one of the P; is strictly
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lowered.

We may also view the construction of a splitting field another way. Let
P=X"—p X™ 1 4+p,X™ 24 . .+ (—1)"p,, be an irreducible polynomial.
Let o; denote the j-th symmetric function of the roots. Consider the ring
k[X1,...,Xn] in m indeterminates X; and let I denote the ideal generated
by (01(X1,-. -, Xm) = P1ye oy Om( X1y ooy Xon) — D) in K[ X, ..., X]. We
would like to view the zeroes of I as “models” of the roots of P. However,
we may miss some additional relations satisfied by the relation this way. So,
let J denote a proper (proper means different from k[X7, ..., X,,]) maximal
ideal of k[X1,..., X,,] containing I and let F := k[X,..., X,,|/J. Because
J is maximal, this is now a field and it can be checked that this indeed is a
splitting field for P. The ideal J is sometimes called the ideal of relations
among the roots.

Exzercise 6.

1. Show that the splitting field is unique, i.e any two splitting fields are
isomorphic.

2. Show that if K C L C M with M a spliting field for P € k[X], then M
is also a splitting field for P viewed as a polynomial in L[X].

o
Exercise 7.
1. Find the splitting field over @ for the polynomial z* + 4.
2. Let p be a prime number. Find the splitting field over Q for zP — 1.
o

A field extension is a Galois extension if it is the splitting field of some
polynomial.

2.2 Galois Groups

Let P denote a polynomial of degree n over k.

Definition 4 Let F' be an extension field of k. The set Gal(F/k) of field
automorphisms of F, that leave every element of k fixed, is called the Galois
group of F over k.

If P € k[z] and F is a splitting field for P over k, then Gal(F/k) is called
the Galois group of P over k.
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The fact that elements of the Galois group leave the elements of £ fixed
means that they will preserve all algebraic relations between the roots of P.
In particular, if P(«) = 0 and 0 € Gal(P), we see that P(o(«)) = o(P(a)) =
0(0) = 0 so the Galois group maps roots to other roots. This gives Gal(P)
a representation as a group of permutation on n letters (the n roots). The
properties of these permutations will mirror the algebraic relations between
the roots.

In fact, let J denote the ideal of relations as in the second construction of
splitting fields above. Then the Galois group is the set of permutations of the
roots that preserve the ideal J. For example, let P = z* + 4 and follow the
second construction of the splitting field. We have the following generators
for the ideal 1.

I = ($1+.’E2+.’L’3+.’E4—0, T1To+. . .+$3.’L‘3—0, $1$2$3+$1$2$4+$2$3$4—0, 1‘1372.’11'3374—4)

Additional relations are given by zy = —a:l,x?,, + x% =0,24 = —x350 J =
(I,x9 + x1, 72 + 22, 24 + 13). The Galois group is the set of permutations of
the roots that preserve the (ideal of ) additional relations (the symmetric ones
are automatically preserved by a permutation), and you may (and should)
verify that there are exactly eight such permutations.

Let H be a subgroup of Gal(F/k). The fixed field of F under H, noted
FH ig the field F¥# = {v € F|Vh € H,h(v) = v}. We will admit the following
very important theorem of Galois theory:

Theorem 1 (Normality) Let G be the Galois group of F over k. Then k
is the fized field of F under G: k = F©.

This means that an element in F' is indeed in £ if and only if it is fixed by
G. This way, we can relate the degree of an element v of F' to the number
of its conjugates under the action of G. Let @ := [[,eq(Y — g(v)). If we let
any h € G act on the coefficients of @, we have h(Q) = [Tjec(Y —hg(v)) =
[Tyec(Y — g(v)) = @ because left multiplication by & is a bijection on G-
hence, the above theorem shows that ) has coefficients in k. Now assume
that v has exactly m conjugates corresponding to elements ¢, ..., g, of G.
Then we see that ) must be a power of [[,_; (Y — gi(v)) and hence this
polynomial has coefficients in k£ so v is algebraic of degree at most m. Now
it can’t be less than m otherwise v would have less than m conjugates, so
finally we see that v is algebraic of degree m.

Ezercise 8. Let F be a splitting field over Q for z* + 1
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1. Show that [F': Q] = 4. Show that the Galois group has four elements

2. Show that i € F and v/2 € F. Find automorphisms of F' that have
fixed field Q(7) and Q(+/2) respectively.

3. Compute the Galois group of F' over Q. Show that the groups computed
in the previous question are normal subgroups.

o

The normality theorem implies that, for any subgroup H of G, we

have H = Gal(F/F®). The above reasoning (and the primitive element

theorem) then show that [F : F¥] = |H| (in particular, [F : k] = |G|).

Consequently, [F'# : k] = |G/H|. Conversely, for any subfield F of F, we see
that Gal(F/E) is a subgroup of G and E = FGalF/E)

One can further show that F'¥ is a Galois extension of k if and only if H
is a normal subgroup.

Ezercise 9. Show that Q(i,v/2) is a splitting field (a Galois extension).
Compute its Galois group over @ and describe all intermediate subgroups
and subfields. o
The set of roots of unity, the complex roots of 2 — 1 = 0, form a cyclic
group of order n. There are ¢(n) generators for this group (check that ¢(n)
is the number of integers in {1,...,n} that are prime with n). If d divides n,
elements of order d generate a subgroup of order ¢(d) (thus there are exactly
¢(d) elements).
Ezercise 10. Let k = C(x). Show that, for f € k non zero, the Galois group
of Y™ — f is a cyclic group whose order is (a divisor of) n. o
Ezercise 11. Let P € k[X] be irreducible and let F' be a splitting field for P
over k. Assume that Gal(F/k) is abelian. Show that F' = k(«) for any root
a of P. o
Exercise 12. We say that an element f € F' is radical over k if there exist
an integer m and a € k such that f™ = a. Let F be the splitting field of
X™ — a. Prove that the Galois group of F' is abelian and isomorphic to the
group of m-th roots of unity. o
We say that P is solvable by radicals if the roots of f can be expressed by
compositions of radicals. This is equivalent with saying that we can construct
the splitting field via a tower of fields k =Fy C Fy C...C F, C...C F, =F
where each F; is a galois extension, generated over F;_; by a radical. if G; is
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the Galois group of F' over F;. We then have a tower of normal subgroups
such that G;41 is normal in G; and G,1/G; is the Galois group of a cyclic
extension, hence an abelian group. We conclude that G is solvable. We will
admit the converse,hence

Theorem 2 A polynomial P is solvable by radicals if and only if its Galois
group 1s solvable.



Part ii
Introduction to Differential
Algebra and Differential GGalois

Theory

A Differential Algebra

Let k£ be a field of caracteristic 0. Our most common examples will be the
field C(z) of rational functions, the field C((x)) of Laurent series (quotients
of power series), and the field C({z}) of convergent power series.

Definition 5 A derivation on k is an operator 0 satisfying
1. Va,b € k, d(a +b) = 0(a) + 0(b). (additivity)
2. Va,b € k, d(a.b) = (a)b+ ad(b). (Leibniz rule)

A field k (resp. a ring) equipped with such a derivation 0 will be called a
differential field (resp. a differential ring) and will be noted (k, ) unless the
context is clear.

For C(z), it is customary to consider the derivation d = - and for C((z))
it is customary to use the derivation § = x.%.
The elements whose derivative is equal to zero are called constants. The
constants of a field (resp. ring) form a field (resp. ring).
If (k1,0:) is a differential field, we say that it is differential extension of k if

k C ki and if the restriction of 0; to k£ coincides with 9.

A.1 Differential Polynomials

We now would like to mimic the construction that we gave on algebraic func-
tions to give models of a wider class of functions. We follow the construction
of Ritt in [Rit50]. Given an infinite set of indeterminates Y;, indexed by N,
we may extend the derivation of K to K|[Y;|;en by letting 6(Y;) = Yiy;. We
will write Y; =Y", Y; = Y® : we then say that Y is a differential indetermi-
nate. The ring of differential polynomials in YV is k{Y} = K[V, Y, Y" ...
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If we wish to consider partial differential equations, we may consider several
(commuting) derivations 01, ...,0; and let our set of indeterminates be in-
dexed by N°. However, in this lecture, we will focus on the ordinary case, i.e
we work with only one derivation 0.

Recall that the usual functions (exp(z), log(x), sin(z) or the special func-
tions) are defined as solutions of differential equations. We now would like
to mimic the construction of algebraic numbers or algebraic functions to give
an algebraic model for the usual functions. First note that we a function is
a solution of a differential equation, it is also a solution of all the equations
obtained by successive derivations of the initial one. So a model for our func-
tions should be a zero not only of a differential polynomial but also of all its
derivatives.

Given a differential polynomial P, we thus will call differential ideal gener-
ated by P, noted [P], the set of all combinations ¥;5; A;P®) (where the A;
are differential polynomials, and P® are the successive derivatives of P) :
The functions solutions of P = 0 are also solutions of all these differential
equations >~ A;P® = 0. More generally, we will say that an ideal I of
k{Y'} is a differential ideal if O(I) C I. Note that k{Y'} is Not principal any
more, ideals are generally not generated by a single polynomial.

Now it is as simple to construct a model of exp(z) as it was to model /2.
Let I = [Y' — Y] the differential ideal generated by Y’ — Y. One can show
that I is prime and even maximal. Let ¢ : C(z){Y} — C(z){Y}/[Y' - Y]
be the canonical morphism. If we set y = ¢(Y), then ¢y —y = 0. We
thus have constructed a differential extension of (C(z),") (because [Y' — Y]
is maximal, so C(z){Y}/[Y’ — Y] = C(z,y). Of course, this construction
does not give us The exponential function, but models the whole class of
solutions of ¢y’ —y = 0. What we have constructed is a field that "looks” like
C(z,exp(z)) in the sense that any property which is true in C(z,y) is also
true in C(z, exp(z)).

Functions obtained in this way are called differentially algebraic.

FEzercise 13. Show that the derivation on the field C(z,y) just constructed
is &+ Y- o
Ezercise 14.[Ros72] Let (K,') be a differential field whose constant field C
is of characteristic zero and y' = fy, where f € K, a differential equation
with no solution algebraic over K. Let T be a differential indeterminate
and t the solution of ¢ = ft constructed as the image of T in the quotient
k{T}/[T" — fT]. Check that k[t] is a differential ring.
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Let P € k[T] be an irreducible monic polynomial such that P(t) divides
P(t)". Show that P =T. o

Proposition 1 Let (k,0) be a differential field and let y be transcendental
over k Then, for all a € k(y), there exists a unique derivation A of k(y)
which extends 0 and such that A(y) = a.

Proof. Expressions in k(y) are rational functions in y with no relation
satisfied by y over k. Let 0y be the derivation of k(y) that coincides with 0
on k and sends y to 0. Then, we must have A = 9, + ad%. O

Proposition 2 Let (k,0) be a differential field and let y be algebraic over k.
Then there is only one derivation A on k(y) which extends 0.

Proof. We may give a constructive proof for this. It is necessary and
sufficient to find the image of y under A to specify A. Let P be the
minimum polynomial of P over k. Then P(y) = 0so A(P(y)) = A(0). Now,
A(P(y)) = 0c(P)(y) + A(y)‘fi—g(y). As P is irreducible, ‘;—5 is prime with P
so there exist S, T € k[X] so that S‘;—]; + TP = 1. Specializing in y, we have
S(y)z—ly)(y) =1s0 A(y) = =S(y)0k(P)(y) € k[y]. The latter relation defines

A uniquely. O

A.2 Models for the Usual Functions

We now introduce some terminology for functions that we will use a lot in
the rest of these lectures.

Definition 6 Let (k,0) be a differential field and (K,A) be a differential
field extension. Let a € K.

1. We say that a s rational if a s in the base field k.

2. We say that a is a logarithm on k if there exists u in k such that

a = %I More generally, we will say that a is an integral over k if there

erists w in k such that a’ = wu.
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3. We say that a is exponential' over k if there exists u € k such that
a = ua.

With our differential algebraic setting, we may, starting from C(z), con-
struct iteratively exponentials and integrals. The resulting class is the class
of Liouwillian functions, i.e the functions that are found in a tower of fields
that can be constructed by adjoining successively exponentials, integrals, or
algebraic elements.

Ezercise 15. Show that log(x), cos(z), v/exp(z2) + 1, [ exp(—z?) are liouvil-
lian functions. ©

We will see later that, for solving differential equations, the liouvillian
functions play a role somewhat analogous to the role played by radicals for
solving polynomials equations.

B Introduction to Differential (Galois Theory

Differential Galois theory is, as in the clasical case, a tool to study the
algebraic relations among solutions of linear differential equations; as we
will see in the lectures of J.P Ramis on integrability of Hamiltonian sys-
tems, it can also be used to study dynamical properties on solutions of
some non-linear systems. A general reference for differential Galois the-
ory is the forthcoming fundamental book [PS02]. Many other introduction
exist in the litterature, for example [Beu92, Kap57, Put97, Sin98, Tou90]
(see also the notes of M. Canalis-Durand and the notes of J.P Ramis).
The links between differential Galois theory and Hamiltonian mechanics
have been developped in many papers, among which we may mention
[Zig82a, Zig82b, Mor99, CRS95, BCRS96, MR01a, MRO1b]; lovely introduc-
tions to these aspects are also found in [Aud00, Chu98, Aud01, Mor00] and
of course [Ram01].

B.1 Differential Equations and Differential Systems

We consider a differential field & with a derivation that we note ' or 0 if the
context is not clear. For the rest of these notes, we assume that the field of

! This is a frequent abuse of notations in the litterature, as we should really say that a
is the exponential of an integral
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constants C of k is algebraically closed (i.e any polynomial over C' has all its
roots in C) and of characteristic zero. Typical examples are Q or C.

B.1.1 Equivalent differential systems and differential modules
A linear differential equation is an equation of the form
Ly) =y"™ + an_1y™ Y+ ...+ ay =0

with the a; being functions in £ (not constants). Solving this equation is
equivalent to solving the companion system

R A
Y2 0 0 1 0 Y2
= .. . O
Yn—1 0 0 1 Yn—1
Yn ap Gy " Qp—3 Qp-1 Yn
Conversely, suppose that (yi,ys, -, ,¥n) satisfy a homogeneous first or-

der linear differential system Y’ = AY of size n. To find an equation as-
sociated with Y’ = AY, we would like to find a system in companion form
whose solutions are equivalent (or ”isomorphic”) to the ones of the original
system (precisely: obtained with a change of variables Y = PZ with P an
invertible matrix with coefficients in k). This is done by the following cyclic
vector process (see e.g [MRa89, PS02, Wei95] for references and other meth-
ods). Consider A € k™ and let z; = AY = \y1 + ... + A\yn. We compute
Zo =20, i 2y = z§") by using the relation Y’ = AY. We obtain n+1 linear
expressions in the n variables y; and so they are linearly dependant: this pro-
vides a linear differential equation £(z1) = 0 for z;. Letting Z = (z1,- -, 2,)",
we now have a relation Z = PY and Z' = BY’; If the matrix P is invertible,
A is called a cyclic vector for the system and Z' = (BP~!)Z is a companion
system, equivalent to the first one. It can be shown that the cyclic vectors
form a Zariski open set, and almost all choices of A will fit [PS02].

Thus, in the following, everything that is stated for first order systems is
valid for n-th order equations and vice-versa.

A useful tool to describe an equivalence class of differential systems (in-
trinsically) is the notion of differential module:
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Definition 7 A differential module over (k, ) is finite-dimensional k-vector
space M ~ k™ with an operator D satisfying a Leibniz rule:

Vfe€ekveM: D(fw)=0(f)v+ f.D(v)

Differential modules are sometimes also called “modules with a connection”
in the litterature. To a differential system Y’ = AY’, one may cannonically
associate a differential module with a basis e = (ey,...,e,) and the operator
D acting by D(e;) = ¥7_; —a;,e;. This way, a solution Y = yre; +...+yne,
of Y = AY is caracterized by the relation D(Y) = 0 (check this) so that we
may write D =" —A.

It can be checked that two differential systems are equivalent if and only if
they are associated to the same differential module (in fact, the change of
variable that sends a system to the other can be viewed as a change of basis
in the differential module).

The cyclic vector method above amounts to finding an element v such that
v, D(v),...,Dn — 1)(v) are a basis of the differential module M (hence the
term “cyclic”).

B.1.2 First integrals of linear differential systems

Let U denote a fundamental matrix of solutions of Y’ = AY (i.e U is invert-
ible and its collumns are solutions of Y' = AY'). A linear first integral of
the system is a linear function R such that R(Y') is a constant whenever Y
satisfies Y/ = AY. Let Y, denote the columns of U and R; denote the rows
of U7'. As U™'U = 1, we see that R;.Y; = §;; (where ;; is the kronecker
symbol, 6;; = 1 and §; ; = 0 when 7 # j). It follows that the rows R; define
linear first integrals of the system. We see that the columns of ‘U~! are
coefficients of linear first integrals; they are also solutions of the adjoint sys-
tem Z' = —*AZ. We see that solutions of the adjoint (or dual) system yield
first integrals of the system. This simple fact is useful in the Morales-Ramis
theory of non-integrability of Hamiltonian systems (see the notes of Ramis).

B.2 The Differential Galois Group

We will proceed as in classical Galois theory: first, we construct a field
generated by all the solutions (and their derivatives)

Definition 8 A differential field extension K D k is said to be a Picard-
Vessiot extension of k (for L(y) =0) if
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1. K = k(y1,v5,-- .,yi(j), o,y D) where the y; are a basis of solutions
of L(y) = 0 (i.e K is the differential field generated® by the solutions
of L.

2. K and k have the same field of constants.

As the constant field of & is algebraically closed of characteristic 0, one can
show that Picard-Vessiot extensions exist and are unique up to differential
isomorphism ([PS02], [Kol48b] for the original proof). In the sequel, the term
“solution” will always denote a solution in the Picard-Vessiot extension K.

Ezample. Let k = C(z) and consider the equation L(y) =y’ — 5-y. We
know that the solution is 3 but let’s construct the Picard-Vessiot exten-
sion (hence the solution) like we did in the the preliminary lecture on Galois
groups.

We consider the ring k[y] with the derivation D = £ + 3%“%, where y is an
indeterminate. In this construction, y satisfies D(y) — %y = 0. However, it
is easily checked that D(%) = 0 so this ring contains a new constant. Take
the ideal I = (y® — z); it is prime (in fact, it is maximal) and stable under
the derivation. We now let K = k[y|/I. This is now a differential field and
it now has no new constant (the “new constant” is included in the relation
defined by I). This is now a Picard-Vessiot extension.

Note the similarity with the second construction of the splitting field in the
preliminary Galois lecture. o
In fact, the existence of Picard-Vessiot extension can be achieved through
this construction (see [PS02, Mag94, Put98]). Consider the ring R :=
k[Xi1,...,Xnn, W] where the X, ; are indeterminates and

X171 “en le

W.det : : = 1.
Xn1 oo Xan

Extend the derivation on & to a derivation D on R by letting D(X; ;) = X; j11
for 1 <j <nand D(X;,)= —sum?z_olalXi’lH. This way, we have formally
realized that L(X; ;) = 0. Let J denote a differential ideal in R (i.e D(J) = J)
which is maximal among differential ideals. It can be shown that then J is

2Note that as L(y;) = 0, we have yl(-”) and the higher derivatives in K, which really
makes it a differential field



B INTRODUCTION TO DIFFERENTIAL GALOIS THEORY 16

a prime ideal. So R/J has no zero-divisor and we may let K := Frac(R/J).
Now K has no new constant: if g was a new constant, then (P — @) would
be a differential ideal in R/J, contradicting the maximality of J. It follows
that this construction yields a Picard-Vessiot extension K. The ideal J is
called the ¢deal of relations among solutions.

Definition 9 We call a differential k-automorphism of K an automorphism
g of K which leaves k fixed et which commutes with the dérivation,i.e:

1. Vye K, g(y) = g9(y)

2.Vyek, gly) =y

The differential Galois group G = Gals(K/k) of a differential extension
K D k s the group of differential k-automorphisms of K.

The differential Galois group G of L(y) = 0 is defined as the differential
Galois group of K/k, where K is a Picard-Vessiot extension of k for L.

Consider the n-dimensional C-vector space V' of solutions of L(y) = 0 in
K, generated by the y; over C. Let g € G and let y denote a solution of
L(y) = 0. Then, g(y) is also a solution. Indeed, as a; € k, we have g(a;) = a;
and :

Lig®) = g()™ + an_19(y)™ + ... + acg(y)
= g™ + g(an-1)g(y" ) + g(ao)g(y)
= g(L(y)) = g(0) = 0.

As any solution is a linear combination of the y;, we deduce that there ex-
ists constants ¢; ; such that g(y;) = ¥;¢;;y;- As an automorphism is fully
determined by its action on the generators y; of K, this gives us a faithful
representation of G as a subgroup of the group GL(n,C) of invertible n x n
matrices. In fact, one can show ([PS02, Beu92, Kov86]), that G is a linear
algebraic group, i.e the entries ¢; ; of the matrices are defined as solutions of
a set of algebraic equations; the reason for this is the fact (intuitively clear,
but still deep) that G can also be viewed as the set of such automorphisms
that preserve all the relations among the solutions.

Recall the construction of the Picard-Vessiot extension; G' can be viewed as
the set of matrices with a right action on the X;; that preserve the ideal
of relations J, and this is what makes it a linear algebraic group. In what
follows, we will identify G to this representation as a group of matrices acting
on solutions.
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A little bit on linear algebraic groups Before proceeding with Galois
theory, a quick incursion (see e.g [CLO97, Spr81, PS02, Kap57] for more)
into linear algebraic groups.

Recall that an affine algebraic variety V' over C' is defined as the set of solu-
tion of some polynomial equations (e.g straight lines, a circle, conics,etc..).
The ideal I(V) associated to the variety is the set of polynomials that
vanish at every point of the variety. Conversely, to any ideal we associate
the variety of points that annul all polynomials of the ideal. The variety is
called irreducible if I(V') is prime. As every ideal is the intersection of a
finite number of prime ideals, we see that any affine variety is the union of
a finite number of irreducible varieties.

A linear algebraic group G is a group of n x n matrices whose entries
form an algebraic variety of C™*1. The reason for adding one dimension
is to include the condition that the determinant is not zero: if we add one
variable, the condition det(g) # 0 is rephrased as u.det(g) — 1 = 0 which
is now a polynomial equation. This way, we see that GL(n,C) is a linear
algebraic group.

If G is a linear algebraic group and G is irreducible as a variety, we will
say that it is connected (for the Zariski topology). If G is not connected, then
G is the finite union of irreducible (”connected”) varieties. Among those, the
one that contains the identity element is called the connected component of
the identity in G, and denoted by G°. One can show that G° is a normal
subgroup of finite index in G.

A linear algebraic group is said to wvirtually have a property if G° has that
property; for example, G is called wirtually abelian if G° is abelian (as a
group).

The dimension of G is defined as the transcendence degree of G° over C.

Ezample. Here are classical examples of linear algebraic groups.

1. GL(n,C) and SL(n,C) (defined by det(g) = 1).
2. The group of upper triangular matrices 7' (defined by T; ; = 0 for j < 7).

3. Let I,, denote the identity matrix of size n and the standard symplectic

matrix
0o I,
(% %)
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The set of matrices M that satisfy *M.J.M = J (this relation induces
a finite set of polynomial relations on the entries of M) is called the
Symplectic group Sp(2n,C) and will be central in the applications to
symplectic mechanics.

4. Any finite group of matrices (check this!)

<

To measure properties of the connected component of the identity G°,

one uses its Lie algebra. The Lie algebra of a linear algebraic group is the
tangent space at the identity (this makes sense: the group is an algebraic va-
riety, so there is a natural tangent space). This is simply computed with the
epsilon-trick (see [Put98, PS02]) as follows. Let € denote an object satisfying
¢ = 0 (think of € as being ideally small). A matrix M is in the tangent space
at the identity if and only if Id + e M satisfies the equations of the group (or
“is a C[e]-point of the variety”). This defines the Lie algebra Lie(G).
The dimension of G as a variety equals the dimension of Lie(G) as a vec-
tor space. If you compute the Lie algebra for the groups in the above ex-
amples (easy computation), you will find that sl(n,C) := Lie(SL(n,C))
is the set of matrices with zero trace, that the Lie algebra of T is T it-
self, that sp(2n,C) := Lie(Sp(2n,C)) is the set of matrices M satisfying
PMJ+ JM =0 (or M = JS, with S any symmetrical matrix), and that the
Lie algebra of a finite group is equal to 0.

B.3 Some Essential Properties

As in classical Galois theory, there is a Galois correspondence between alge-
braic subgroups of G' and differential subfields of K. We will admit here a
weak version of this correspondence which will be enough for our purposes
(see e.g [PS02] for a full proof).

Theorem 3 (Galois normality) Let K denote a Picard-Vessiot extension
of k, let G be its differential Galois group, and let z € K. Then:

z€k <<= Vgegq, g(z) =z

A first application of this concerns unimodularity of the Galois group:
recall that a matrix is called unimodular if its determinant is equal to 1, and
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that the group of unimodular matrices is denoted by SL(n,C).

Define the Wronskian matrix W = (yf] -b )ij=1.» and the Wronskian deter-
minant w = det(W).

Ezercise 16.

1. Show that y1,...,y, are linearly independent over C' if and only if the
Wronskian determinant w is not equal to zero.

2. Show that w' = aqyw

3. Show that, Vg € G, g(w) = w.det(g) (Hint: show that g acts on W by
multiplication on the right).

<

Lemma 1 There exists f € k such that a,_1 = fTI if and only if G C
SL(n,C).

Proof. Assume that G C SL(n,C). By the above exercise, we have
g(w) = w for all g in G hence the normality theorem shows that w € k and
it is thus a solution in k£ of W’ = a,,—w.

Conversely, if there exists f in k such that a,_; = fTI, then we must have
w = c.f with ¢ € C (because K contains no new constants) so w € k and
thus the relation g(w) = w. det(g) implies that det(g) = 1. O

Note that we can always arrange that the Galois group be unimodular
by letting y = z.el %T_l, we see that z satisfies a linear differential over &
where we have no term in z(» 1) any more, hence the wronskian is a constant
(necessarily in k) and the Galois group is unimodular.

If z € K, the orbit of z under G, noted Orbg(z) is the set of elements of

the form g(z) for some ¢ in G.

Proposition 3 Let z € K. Then z is algebraic of degree m over k if and
only if Orbg(z) has exactly m elements.
All solutions of L(y) = 0 are algebraic if and only if G is a finite group.

Proof. Assume that z is algebraic; let () be its minimum polynomial. Let

P=TL (¥ -g(2) € KIY].

geaG
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Of course, P(z) = 0 and we now show that the coefficients are in k. Let
go € G. As left multiplication by g, is a bijection of GG, we have

II v =g0.9(y) = 1] (V= 3(»).

geG geqG

So the coefficients of P are fixed by the group and hence, by Galois normal-
ity, they are all in k. The roots of P are exactly Orbg(z) by construction.
As (@) is the minimum polynomial of z, () is a divisor of P so the roots of @)
are in Orbg(z). Now, the image of a root of @ (here: z) by any element of
G is again a root of ). We conclude that there are as many roots of () as
elements in Orbg(z), hence deg(Q) = card (Orbg(z)).

Conversely, if Orbg(z) has exactly m elements, call g¢i,...,g, ele-
ments of G such that Orbg(z) = {g1(2),...,9m(2)}. As above, we
form P = [[ie1 (Y —gi(2)). Let g € G; as it is an automorphisms,
9(gi(2)) # g(gj(2)) when i # j so g acts as a transitive permutation on
the g;(z). It follows that P has coefficients in k. Now, if it was reducible,
z would be a zero of a factor and its orbit would hence have less than m
element. We conclude that z is algebraic of degree m.

Now, if G is a finite group, the above shows that any element in the Picard-
Vessiot extension is algebraic; conversely, if all solutions are algebraic, then
the y; have only a finite number of possible images under G so, as an
automorphism of K is defined by its action on the generators of K, the
group G must be finite. O

Exercise 17. Let z € K be algebraic of degree m. Let Stabg(z) := {g €
G, g(z) = z} denote the stabilizer of z in G. Show that m is the index in G
of Stabg(z) (i.e the cardinal of the quotient). o

Proposition 4 An non-zero element z of K s exponential over k if and
only if, for all g € G, there exists a constant ¢, € C such that g(y) = c,.y.

Proof. Let g € G.

(M)I _9(@) _ Z_'g(z) _92) (g(z—l) - il) ‘

z z 22 z

So, g(z)/z is a constant for all g € G if and only if 2//z is left fixed by all
g € G. By Galois normality, this is indeed equivalent with the fact that
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2 [z €k. O

Note that in fact, this means that an element z of K is exponential if and
only if the straight-line z.k is globally invariant under G.
Ezercise 18.[Put97]
We consider the equation y' = ay with a € C(z).

1. Show that any proper algebraic subgroup of C* is finite and cyclic.

2. By considering the possible Galois groups, show that an algebraic so-
lution y' = ay must satisfy y™ = f where f € C(z) (i.e y is radical
over C(z)). Show that the equation y’ = ay has an algebraic solution
if and only if there exists a positive integer m such that the equation
f"=maf has a solution f € C(z).

3. For m € N, show that the equation f' = maf has a rational solution
if and only if a = Y, ﬁ with n; € Z having their gcd prime to m.

What is the Galois group in this case.

4. Deduce from this a method which decides if the equation ' = ay has an
algebric solution, computes it, and gives the differential Galois group.

5. Application: compute the Galois group for y' = y, for y' = ﬁy, and
for y' = 2y.

Ezercise 19.[Logarithms]

1. Consider the field K = C(z,log(z)). Show that K is a Picard-Vessiot
extension of C(z) corresponding to a homogeneous linear differential
equation of order 2 and that its Galois group is conjugate to G, =

{((1) i),cé@}.

2. Show that G, is abelian, isomorphic to the additive group (C,+), and
that its only algebraic subgroups are itself and {Id}.

3. Show that the reasonning of (i) applies for any element f such that
f'=a € C(x). Deduce from this that either f is transcendental or f
is in C(z) (theorem of Liouville).
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o
These two exercises show that when one adjoins to k£ an exponential
or an integral, the Galois group of the extension is abelian. Recall that
the Liouvillian functions are the elements of fields obtained by adjoining
successively exponentials, integrals, or algebraic elements to C(x).
Ezercise 20. We say that a field K is a purely Liouvillian extension of C(z)
if it is constructed via a tower of fields C(z) = Ko C K; C ... C Ky = K
where K, is obtained from K; by adjoining either an exponential or an
integral.
Show that the differential Galois group of a purely Liouvillian extension K
is solvable. o
If we allow arbitrary algebraic extensions, their Galois group G is finite
and needs not be abelian any more (in general, it is not!). However, G° is
then reduced to the identity. This gives us the first step to the following
theorem of Kolchin (which we will admit)

Theorem 4 ([Kol48]) A linear differential has a basis of liouvillian solu-
tions if and only if its differential Galois group G is virtually solvable.

In [Kol48], Kolchin actually proved the Lie-Kolchin theorem: G° is
solvable if and only if its matrices can be put simultaneously in triangular
form. The above theorem then follows without too many difficulties. To
get convinced, you may study an exemple of this situation where a linear
differential equation has a solvable differential Galois group.

Ezercise 21. Consider the differential equation
Liy)=y" + (—g(x) = 2)y' + (9(x) + )y =0
with ¢ a non-zero rational function in C(z).
1. Show that it admits y; = e* as a solution.

2. Using variation of constants, show that it admits y, = e+ 9@) a5 a
second solution.

3. Show that the differential Galois group of L is solvable.
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4. Show that the differential Galois group of L is either

{(C 0),06@*} or {(C d),cEC*,dEC}
0 ¢ 0 ¢

and give a criterion to decide between either case.

C Second Order Differential Equations

We will now show how to use the differential Galois group for solving linear
differential equations. For simplicity, we focus on second order equations.
The idea is to first classify the possible Galois groups and then, on the basis
of this classification, to study the corresponding properties of the solutions.
We consider the differential equation L(y) = y" — a1y’ — agy = 0.

C.1 Subgroups of SL(2,C)

Recall from lemma 1 that we can assume that the differential Galois group
is unimodular, i.e a subgroup of SL(2,C). The subgroups of SL(2,C) are
classified and we now go through this construction.

C.1.1 Case I: Reducible Case

Definition 10 Let G be a linear group acting on a vector space. We say that
(the action of) G is reducible if there exists a non-trivial subspace W C V
such that G(IW) C W.

In our case, dim(V) = 2 so W has to be of dimension 1 and the matrices
in the Galois group are triangular (or diagonal). By proposition 4 (and the
remark right after it), this is equivalent with the fact that the differential
equation has an exponential solution. We also see that the group is diagonal
if there are (at least) two exponential solutions (this case is handled further
in exercise 23). In this case, W admits a complement subspace that is also
stable under G' and the group is then said to be completely reducible.

To the equation L(y) = 0, we associate the Riccati equation, i.e the equa-
tion satisfied by u = % Simple computation shows that v’ = ag + aju — u?.
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We see that the equation is reducible if and only if the Riccati equation has
a rational solution.

If GG is reducible, then L itself is reducible, in the sense that it can be
written as a composition of two operators (check this in exercise 21); you
may check that L has a right factor 0 — u if and only if u is a solution of the
Riccati equation.

If G does not act reducibly, it is called irreducible.

C.1.2 Case II: Imprimitive Case

Definition 11 Let G be an wrreducible group acting on a vector space V.. We
say that G 1s imprimitive if there exist subspaces V; such thatV = Vi®...®V,
and G permutes transitively the V; :

Vi=1,...,rVg €@, Jje{1,...,r}: g(Vi) =V,
We then say that Vi, ..., V. form a system of imprimitivity for G.

In our case, we must have r = 2 and dim(V;) = dim(V3) = 1. The
matrices have the form

( ’ a(_)l ) or < _2_1 8 ) with a,b € C*.

Lemma 2 Assume that G is irreducible. Then the Riccati equation has an
algebraic solution of degree 2 if and only if G is imprimitive.

Proof. Let P denote the minimum polynomial of an algebraic Riccati
solution of degree 2. Let uy,us be the roots of P. As wuq,uy satisfy the
Riccati equation, there exists solutions y; of L(y) = 0 such that y./y; = ;.
As G permutes the u;, it permutes the lines V; = C. < y; > and the V; form
a system of imprimitivity.

Reciprocally, let V; = C. < y; > be a system of imprimitivity. If we let
u; = yi/y;, then G permutes the u; and proposition 3 shows that they are
algebraic of degree 2 and conjugate (you may also check that the symmetric
functions in the u; are left fixed by G). O
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C.1.3 Case III: Primitive case

Definition 12 If G is wrreducible and not imprimitive, we say that it is
primaitive.

One can show ([SUI93b]) that an equation whose Galois group is an infinite
primitive subgroup of SL(n,C) does not have Liouvillian solutions; And
if the group is finite, all solutions are algebraic (proposition 3) and hence
Liouvillian.

In the case of SL(2,C), there are three primitive groups (see
[SUI93a, SUI93b| or the lovely survey [Kov01l] by Kovacic himself which we
follow here): The tetraedral group (A5*2) of order 24, the octaedral group
(S7%?) of order 48, and the icosaedral group (A5%?) of order 120. We will
now review them

The tetraedral group Aj™

where ¢ denotes a primitive sixth root of unity, i.e £ — €&+ 1 = 0. The
subgroup < M; > generated by M; has order 6. Assume the second order
operator L has A" as its Galois group. Let y;,y, denote a basis of the
solution space on which these matrices act and have this form. We see that
the line generated by y; is left fixed by < M; >; this imposes that u; := z—i
is left fixed by < M; > (recall proposition 4) so its orbit under G has length
at most 4 (in fact, direct computation shows that it has length exactly 4).
By the Galois correspondenc (proposition 3), it follows that wu; is algebraic
of degree 4. We conclude that when the Galois group is A3%?, the Riccati
equation has a solution which is algebraic of degree 4.

Another way to see this result is the following. Computing the conjugates of
y1 under G shows that the polynomial Y; (2Y; + Y7) (4 V2l -2V, Y, + le)
is a semi-invariant of the Galois group (i.e it is sent to a multiple of itself by
the group acting by linear substitution, right action). It can also be checked
that its cube is an invariant. We will use this below to compute the minimum

polynomial of u;.

of order 24 is generated by matrices
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The octaedral group S;?  of order 48, is generated by matrices

¢ 0 , 11
M1:(0 51) and 1/25(5 —1—1)(1 _1)

where £ denotes a primitive eighth root of unity, i.e £*+1 = 0. The subgroup
< M, > generated by M; has order 8 and reasoning as above shows that the
riccati solution wu, is algebraic of degree 6 = %.

The group admits the semi-invariant Y°Y, —Y1Y.’, whose square is an invari-
ant.

The icosaedral group A" of order 120. is generated by matrices

() (1)
0 &t v -9

where & denotes a primitive tenth root of unity, i.e é* — &3+ €2 —&64+1 =0,
and ¢ = 2(€% — €2 + 46 — 2) and ¢ = $(€3 4 367 — 26 4+ 1). The subgroup
< M; > generated by M; has order 10 and reasoning as above shows that

the riccati solution wu; is algebraic of degree 12 = %

The group admits the invariant Y'Y, — 11VPYP — V1 V)M

In the cases of these three groups, all solutions are algebraic and hence all
solutions of the Riccati equation are of course also algebraic. By developping
on propositions 3 et 4, the study of those groups (see [UWe96, Kov86] or
push further the above calculations) shows that :

e For A;™?: The Riccati has algebraic solutions of degrees 4,6 ou 12.
e For S7%2: The Riccati has algebraic solutions of degrees 6,8,12, ou 24.

e For A? L2, The Riccati has algebraic solutions of degrees 12,20,30, ou
60.

Lastly, if G = SL(2,C), the differential equation does NOT have li-
ouvillian solutions. In view of the applications to hamiltonian mechanics
([Ram01]), we see that the only subgroup(s) of SL(2,C) that will yield ob-
structions to integrability are ...only SL(2,C) itself.

This classification work is summarized in Kovacic’s theorem
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Theorem 5 ([Kov86]) Let L(y) = 0 be a linear differential equation with
coefficients in k It has Liouvillian solutions if and only if it has solutions of

the form y = eJ ™ where u is an algebraic solution of degree 1 (reducible case
1), degree 2 (Imprimitive case 1), or degree in {4,6,12} (Primitive case III)
of the associated Riccati equation.

u

C.2 The Kovacic algorithm

We now give a (simplified) version of the algorithm of Kovacic for solving
second order linear differential equations.

C.2.1 Symmetric powers

Let P =U™+b,,_1U™ ' +...by be the minimum polynomial of an algebraic
solution of the Riccati equation. Let uy,...,u, be the roots of P, and y;
the solutions of L(y) = 0 of which they are logarithmic derivatives. We then

have . (M)
Y1 / Yi
b1 =—(U1+ ...+ Up) =—(=+ ... YpYm) = — .
' (u ) (yl ) [Ty
The coefficient —b,,_; is thus the logarithmique derivative of a product of m
solutions of L(y) = 0.

Lemma 3 Let yy, Yy, be a basis of solutions of L(y) = 0. There exists a linear
differential equation LO™ whose solution space is the set of homogeneous
polynomials of degree m in y1,ys with coefficients in C.

Proof. Let y be a generic solution of L(y) = 0. Let z = y™. Compute 2/,
2".....2™ by always replacing y” by its expression given by L(y) = 0.
The 2() are linear combinations of monomials of degree m in y,3’. These
monomials form a k-vector space of dimension m + 1 ; if we have m + 2
elements of such a space, they are linearly dependent, so z,2/, 2”,...,z™"!
satisfy a linear dependence relation over k that we note LO™(z) = 0 : what
we know is that it has order at most m + 1.

Let A be the differential ring K[X;, X5| where the derivation is given by
X! = X}, = 0. By construction, we have LO™((X,y; + Xyy,)™) = 0.
We easily infer that any monomial of degree m en y;,ys is a solution of
L@m(z) = 0. But, if these monomials were linearly dependent, then yy, ys
would be linearly dependent (any homogeneous polynomial in two variables
factors as a product of linear factors over C) : So they form a vector space
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of dimension m + 1, then LO™(2) is order m + 1, and its solution space is
precisely that vector space. O

We can calculate the linear dependence between z and 2’ using standard
linear algebra, but a faster method is the following:
Ezercise 22.[BMWOT]] Let L(y) = y" + ay’ + by = 0. we define recursively
a sequence of operators L; by :

L()(y) =Y
Ll(y) = yla
Lii(y) = Li(y)' + waLi(y) + i(lm — i+ 1)bLi_1(y).

1. Let y be a solution of L(y) = 0. Show by induction that

Li(y™) = m(m —1)---(m —i+1)y"""(y')".

2. Deduce that L,, 11 = LO®m,

C.2.2 Algebraic Solutions of the Riccati Equation

Theorem 6 The Riccati equation has a solution algebraic of degree at most
m if and only if the symmetric power L@m(z) = 0 has an exponential solu-
tion.

Proof. 1f the Riccati equation has an algebraic solution of degree m,
we have seen that the coefficient b,,_; of its minimum polynomial is the
logarithmic derivative of an exponential solution of L@m(z) =0.
Conversely, let z be an exponential solutions of L@m(z) = 0. Lemma
3 shows that there exists a polynomial Q(yi,ys) homogeneous of degree
m such that z = Q(y1,v2). Let v be the logarithmic derivative of z. As
Q(vy1,y2) factors as a product of linear factors over C, let uy, ..., U, be the
logarithmic derivatives of these factors. A linear combination of solutions is
a solution so the u; are Riccati solutions. For any g € G, as g(v) = v, g(u;)
must be one of the u; : by proposition 3, it follows that the u; are algebraic
of degree at most m. O
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If the u; do not have degree m, you may check that the product P of
their minimum polynomials will be of degree m and its coefficient, b, | will
be given by b,,_1 = —v'/v.

In [UWe96], it is shown how, in many cases, one can also ask for rational
solutions of L'¥™(y), which simplifies the algorithm.

Recall that the Riccati equation associated with " + a1y’ + agy is v’ =
—ay — ayu — u?. Differentiating the identity P(u) = 0 and replacing v’ by
its expression, we obtain a polynomial relation of degree m + 1 for u. The
remainder of the Euclidean division of this polynomial of degree m + 1 by P
must be zero which gives us the following recursion to obtain all coefficients
b; once b,,_; is known.

b, =1
_H . y . y .
(B)on b — b, + by_1b; + a1 (i 'm)b,+a0(z+1)bz+1’ m—1>i>0
; 0 m-—1+1
-1 =

Finally, we obtain the following algorithm to calculate algebraic solutions
of Riccati equations:

For m € {1,2,4,6,12} :
e Compute LO™(y)
e Seek exponential solutions f

e If there are some: let b,,_1 = —fTI, compute the other coeffi-
cients b; of P by using (f),,, and return P
else, proceed with next m.

If no solution is found this way, there are no Liouvillian solutions.

FEzercise 23. Consider the differential equation L(y) = y” — ry = 0.
1. Write the Riccati equation R(u) = 0 satisfied by u = ¢'/y.
2. Show that LO2(y) = ¢ — dry’ — 2r'y".

3. We assume that R has an algebraic solution of degree 2.
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(a) Show that its minimum polynomial has the form

P=u2—f71u+§—;—r

where LO?(f) = 0.
(b) Show that fdisc(P) = ¢ where c is a constant.

(c) We assume that LO2(f) = 0 has a solution f € C(z) and that
disc(P) # 0. Show that the Riccati equation has one or two
rational solutions; Compute them, and deduce that L admits the

Ve
liouvillian solutions y = \/}eif 27,

(d) Conversely, show that if L(y) = 0 has two linearly independent
exponential solutions, then the matrices of the Galois group are
diagonal matrices and LO2(y) = 0 has a rational solution (recall
that the Galois group is unimodular)

c

1622

(e) Application : solve y" — y=0ouc e C.

D Local and Global Differential Galois The-
ory

In the lectures of Canalis-Durand [CaD01] and Ramis [Ram01], it is shown
how local information gives indications on the structure of the differential
Galois group. We will now explain some (easiest) algebraic aspects of this
local approach, and how to realize actual computations with it.

D.1 Local Solutions
D.1.1 Power Series Solutions

We make the coefficients of our differential equation polynomials: L(y) =
any(”) +an,1y(”_1) +...4a,y = 0 where the a; are now polynomials (in fact,
analytic would be enough). If a,(z¢) # 0, then Cauchy’s theorem shows that
the equation has a basis of analytic solutions around zero.

Computing these power series is achieved the following way. Let T =
z—x20if 2o € Cof T = 1 if 2y = oo. Perform the change of variables
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x +— T in the equation and plug ¥, ¢;T" into the equation: you will obtain a
recurrence relation for the ¢; and they will be uniquely determined by their
first n terms (exercise: prove this cleanly).

To fix notations, let’s make this recursion explicit. The operator L can be
viewed as an endomorphism of the infinite dimensional vector space Cl[[z]].
Assume that a; = 31" a; j27. We write the action of L on a basis of C|[[z]]:
we get L(z™) =1 X N(N —1)... (N —i+ 1)a; 2V, Now,

LY enz™)y=>" ZZlN(N —1)...(N =i+ DeyazV770 (1)
N=0 N=0i=0 j=0

So, grouping powers of x, we obtain a recurrence relation

m

(Rw): 2_Ei(N)ey-1=0 (2)

=0

with E; being a polynomial. In particular, if v is the valuation of the power
series (the smallest integer such that ¢, # 0), we must have Ey(v) = 0 (all
the ¢,_; are zero).

If a,(zo) # 0, then direct computation shows that Eo(N) = N(N—1)...(N—
(n—1)).

Ezercise 24. Use this to show the formal part of Cauchy’s theorem i.e the
existence of a basis of solutions in power series. o

D.1.2 Exponents and Quasi-Series

We now turn to the singular case. For notational convenience, we assume

that the considered singular point is zero (i.e a,(0) = 0).

We say that a solution y is a quasi-series if it is of the form y = z%¢ with

¢ analytic and o € C. If o € Z, this is a Laurent series; if a € Q, this is a

Puiseux series. If further ¢ has valuation zero (i.e its constant term is not

zero), then « is well defined and we call it the ezponent of the quasi-series y.
Example. The Euler homogeneous equation ([Ince]).

Consider the equation L(y) = 2%y + c1zy’ + coy = 0 with ¢y, ¢, constants

(this equation is often called, as many other equations, an Euler equation).

Computation shows that L(z*) = Ey(a)z* with Ey(a) = a(a—1)+ca+c.

We see that there is a solution of the form z* if and only if Ey(a) = 0.

If Ey has two distinct roots aq, o, then we have distinct solutions z¢ and

x5 (check that they are linearly independent over C).
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If Ey has a double root oy, we have Ey(on) = Ej(ay) = 0. We dif-
ferentiate the relation L(z®) = Fy(a)z® with respect to a (note that
2 (@) = o log()):

we obtain L(z*log(z)) = (E{(a) + log(z)Ey(a))z®, from which it follows
that L(z$log(x)) = 0 so a second solution is z¢ log(x). o

FEzercise 25. Show that the equation L(y) := 2zy” + 3y’ + 2y = 0 has a
basis of quasi-series solutions at z = 0. Hint: Compute L(z**") for an
arbitrary integer N and show that L(3X%_,cyz®™) = 0 if and only if we
both have that Ey(«) = 0 for some polynomial E, and the cy are solutions
of a recursion relation (compute it). o

To make this general, look at equation 1 and replace N by a+ N in there.
Relation 2 then becomes

m

(RN) . ZE[((X+N)CN_1 =0 (3)
1=0
A necessary condition for the existence of a quasi-series solution with
exponent « is that Ey(a) = 0 (from the case N = 0 in recursion 3).

Definition 13 .

The polynomial Ey is called the indicial polynomial of L at zero.

The roots of Ey are called the exponents of L at zero.

If Ey has degree exactly n, then zero is called a regular singularity; otherwise,
Ey has degree strictly less than n and zero is an irregular singularity.

Exercise 26. Let o be an exponent at zero such that, for all 2 € N, oo + 7 is
Not an exponent. Prove that L admits a quasi-series solution of exponent .
o

More generally, if the singularity is regular singular, then (see [Ram01]
or [Ince]) either there is a basis of quasi-series solutions, or there is a ba-
sis formed of quasi-series and of solutions of the form z®'¢;, z*17"1(¢y +
" ¢ log(x)), ... (this may happen in the case when two exponents differ by
an integer). Moreover, the power series ¢; are analytic. So in this case, the
formal theory and the analytical theory coincide.

D.1.3 Generalised Exponents

If the singularity zero is not regular, then quasi-series and logarithms are
clearly not enough to define solutions. For example, consider the equation
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2%y’ +y = 0: the solution ex can not be written as a quasi-series at zero, so
we need to add exponentials to our formal local objects.

Definition 14 An element e; € Clz™~] is called a generalized exponent if
there is a formal solution of the form el % ¢; where ¢; € Cl[z]][e:, log(z)] and
the valuation (with respect to x, not counting the log) of ¢; is equal to zero.
If r > 1, then r is called the ramification index of the generalized exponent.

Note that exponents themselves are generalized exponents: indeed z® = el <.
To compute generalized exponents, one looks for formal Puiseux series solu-
tions for the Riccati equation associated with L (i.e solutions in C((z+)) for
some r € IN) and keeps only the parts of such solutions whose valuation is
less or equal to —1; the degrees of the generalized exponents can be measured
from the Newton polygon of L at zero.

One can show ([PSO2 Hoe97]) that one can compute a basis of formal

solutions of the form e/ = ¢; where ¢; € Cl[z]][e:, log(x)].

D.1.4 The Formal Local Galois group

We still assume that we work at zero (otherwise, take a local parameter
1

t=x—x at rp € C or £ = _ at infinity and work with t). We consider
the field C((z)) as our base field. The formal local Galois group Gy at zero
is defined as the differential Galois group of a Picard-Vessiot extension of

C((z)) for L.

Because we know the structure of the formal solutions, we may describe
the structure of the formal local Galois group: for each i, we may write
e T = gaieh (with P; of negative degree in ).

The formal local monodromy is defined as the Galois group over C((z)) of

1. either C((z))(z*,...,z%) if there are no logarithms in the solutions
(in which case it is a torus)

2. or C((z))(x*,..., 2% log(x)) if there are logarithms in the solutions
(in this case, it contains a unipotent element)

The ezponential Torus is defined as the Galois group of C((z))(ef?, ..., ef").
One readily sees that these two groups generate the formal local Galois group;
moreover, they can be easily computed from the given of local solutions.



D LOCAL AND GLOBAL DIFFERENTIAL GALOIS THEORY 34

Lemma 4 The formal local Galois group can be embedded into a subgroup
of the differential Galois group of L over C(z).

Proof. ~ We use the fact that C(xz) can be embedded in C((z)) so
we view it as a subfield. Consider the following Kaplansky diagram:
5 where H is the differential Galois group

) K
2N
C((z))
S

K
e

Cl(z))n K

C(z)
of K. Galois theory shows that H is a subgroup of K. Then, the above
diagram shows ([Kap57]) that the Galois groups H and Gy are isomorphic.
Thus, Gy can be viewed as a subgroup of G. O

If we now take for our base field the field C({z}) of convergent power
series, we define the local Galois group Gy as the differential Galois group
of a Picard-Vessiot extension of C({z}). A Kaplansky diagram again shows
that Gy C Gy C G.

At a regular singularities, we have Gy = G, and the Schlesinger density
theorem ([Ram01]) shows that the global Galois group is generated by its
local Galois groups.

At irregular singularities, though, then new phenomena may occur
(Stokes phenomenon) and in this case Go € Go. This subject is adressed
in the notes of M. Canalis-Durand [CaD01].

A very simple illustration of a link between local and global information
is given in the following

Proposition 5 Assume that the Global galois group is finite. Then the ex-
ponents at all singularities are rational.

Proof. The local Galois group is embedded in the global Galois group and
hence finite. The exponential torus is infinite so there cannot be irregular
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points and all points must be regular. Now, if there are logarithms, the
monodromy contains an additive subgroup and is infinite (alternatively: a
logarithm is transcendental hence not algebraic, contradicting the fact that
the group is finite). So the monodromy must be diagonal. But, because it is
finite, it is cyclic and hence the exponents must be rational. O
We note that this result is proved more naturally using Puiseux expansions
of algebraic functions, but this proof gives light on the power of the Galois
theoretic tools.

D.2 Local and Global Algorithms
D.2.1 Rational Solutions

Let S denote the set of singular points (i.e the zeroes of a, and possibly
infinity). We search for a method to check if our differential equation has
a rational solution. Let y be a rational function. Then y can be written
as ¥ = [lpes(@ — ). (pma™ + Pm12™ '+ ... + py). So to compute y,
we need to find the «;, the degree m, and the coefficients p;. Expansion in
Laurent series (or partial fraction decomposition) shows that the a; must
be exponents of L at x;. Now, expansion at infinity (expand in powers
of %) shows that there must exist an integer exponent a., at infinity such
that m = —ae — Xp,c5 @i- We thus obtain the following algorithm, whose
solutions are a basis of rational solutions (if any) of L(y) = 0:

1. Select the minimal integer exponents «; at all singularities, including
oo. If one singularity does not have integer exponents, then STOP.

2. Let m := —0oo — 24,5 - if m is not positive, then STOP.
Plug y = [la,es(z—2:)* . (Pmt™ +Prm—12™ ' +.. . 4po) into the equation

3. solve the resulting linear system in the p;.

D.2.2 Radical and Global Solutions

The same reasoning applies to radical solutions, i.e the exponents may be
used also to compute solutions having some power which is rational: one
can similarly prove (see e.g [Hoe97]) that there is a radical solution only
if there are rational exponents e; at all singular points z; € S such that
M = —€c — Jyes56€ 18 a positive integer. The solution would again be
y = P.[1,,es(x — ;)% with P of degree m. Pluging this expression L(y) =0
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with indeterminate coefficients of P gives a linear system for the coefficients
of P, any (non-zero) solution of this system leading to a solution of L;
Note that unlike the case of rational solutions, there may be different com-
binations of the e; to be tested. Also, note that if some factors of a, are
irreducible polynomials, then we may have to compute with a splitting field
of those to check for combinations, and this can make the algorithm more
costly.

For the more general case of exponential solutions, the process is similar,
though a little bit more technical, see [Hoe97] or [PS02].

Now we would like to see how to use these tools in the Kovacic algorithm.
We introduce the following useful trick from [Hoe97]:

Note that if we have two formal solutions e/ %(bi, then their product is

eJ $¢1¢2, hence e; + e, is a generalized exponent for the symmetric square
of L. In general, it is easy to verify that the expressions ie; + (m — i)ey form
the generalized exponents of LO™_ So we can check necessary conditions
on rational (or radical) solutions of LO™ without having to compute this
equation.

D.2.3 The Art of Computing Galois Groups

We now have all tools to smoothly use and apply the Kovacic algorithm (and
generalisations like [SU196, HRUW99]). We will show on examples how to
combine all these tools together to obtain differential Galois groups.
Ezample. Consider the Airy equation L(y) = y” — zy = 0. The only
singularity is infinity. The local (generalised) exponents are — + 2,7 at
infinity. Because of the ramification at infinity, we see that the equation
cannot have exponential solutions. Now we look at the second symmetric
power.
Looking at sums of the exponents, we see that the only rational exponent
of the second symmetric power LO? will be () at infinity. This cannot be
the degree of a polynomial. so there cannot exists a radical solution the the
second symmetric power.
Now, as the equation is irregular at infinity, the group cannot be finite by
proposition 5: this excludes case 3 of the Kovacic algorithm. Finally, the
only possibility is that the Galois group is SL(2,C). o
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Example. Consider the equation (from the notes of J.P Ramis [Ram01])
Liy)=y"+ (1/4 (x=1) " +5/4 (z—1) > +3/162 %) y =0

The local (generalised) exponents are (1, 2) at zero, the roots of X? —2X +5
at 1 and —; + 2y/—z at infinity. Because of the ramification at infinity, we
see that the equation cannot have exponential solutions. Now we look at
the second symmetric power.

Looking at sums of the exponents, we see that the only rational expo-
nents of the second symmetric power L®? will be (1,1,2) at zero, (1)
at 1 and (—%) at infinity. Taking the lowest eq,e1, e, possible, we have
—e0o — €1 —eg = —1 < 0 and the latter cannot be the degree of a polynomial
so there cannot exists a radical solution the the second symmetric power.
Now, as the equation is irregular at infinity (and does not have rational
exponents at 1), the group cannot be finite by proposition 5: this excludes
case 3 of the Kovacic algorithm. Finally, the only possibility is that the

Galois group is SL(2,C). o

Ezercise 27. Consider the equation L(y) = z3y” + (z* + z)y’ — y = 0 (from
the notes of M. Canalis-Durand [CaDO01]).

1. Show that the exponents at oo are (0,0) and that the generalized ex-
ponents at 0 are (1, —1).

2. Show that ex is an exponential solution, the only one (up to scalar
multiplication).
Show that there is a unique power series solution at zero, and that it is
divergent (and Gevrey). Compute the formal local Galois group at 0.

3. Show that the formal solutions at infinity are of the form ¥ and
Y1 00 10g(2) + Y200 Where the y; o are power series in 2. Compute the
formal local Galois group at infinity.

4. Compute the global Galois group, and compare it with the formal local
Galois groups.

<

Ezercise 28. The Whittaker equation L(y) = ¢" — (3 + L)y = 0. The

exponents at zero are the roots of AX? — AX — 12 and at infinity +7.
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1. Show (using the above examples) that for generic values of A the Galois
group is SL(2,C).

12
n(n—1)

2. Show that the exponents at zero are rational if and only if A =
with n € Q.

3. In this case, the equation is y” — ; — % Show that the exponents

at zero are (n,1 —n) and £§ at infinity. Prove that the Galois group
is SL(2,C) unless n is an integer.

4. Perform the change of variables y(z) = e2 f(x). Search for f as a power
series: its coefficients uy satisfy the recursion Nuy — (n+N)*(n—1—
N)u(N+1) =0 and u(0) = 0. Conclude that when n is an integer, f is
a polynomial and hence L has one (in fact, two) exponential solutions.

o
In this exercise, we see that these tools give strong necessary conditions.
However, question (4) shows that when there are parameters and the nec-
essary conditions are satisfied, then it is not that easy to decide if there
actually exists a solution. In this case, it was feasible; in general, it is not
(see [Bou99]) and even sometimes undecidable.
Still, in the applications to Hamiltonian mechanics, we encounter many sys-
tems where ”mysteriously” reasonings like the above (and many other tricks)
allow one to say a lot about non-integrability of entire families of equations.
This last topic is an active field of research.
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