A non-integrability criterion for hamiltonian systems
illustrated on the planar three-body problem
Preliminary Version

Delphine Boucher
IRMAR, Université de Rennes I
delphine.boucher@univ-rennesl.fr

Jacques-Arthur Weil
Projet CAFE, INRIA Sophia Antipolis,
& Laboratoire d’Arithmétique, Calcul formel et Optimisation (LACO, Limoges),
jacques-arthur.weilQunilim.fr

12/08/2002



Contents

1 Introduction

2 Complete integrability of hamiltonian systems

2.1 Some definitions
2.2 J.J. Morales and

J.P. Ramis theorem . . . . . .. ... ... ... .....

2.3 A new criterion of non-integrability . . . . . ... ..o 0oL

3 The non-integrability of the planar three-body problem
3.1 Some directions for use of our criterion . . . . . . . . .. ... .. ... ..

3.2 The case m; =1
3.3 The case my # 1

4 Conclusion

10
10
12
15

17



1 Introduction

The hamiltonian systems are differential systems which describe the equations of motion
of mechanical systems whose mechanical energy (the Hamiltonian) is conserved. One says
that the mechanical energy is a first integral for the hamiltonian system. The complete
integrability of a hamiltonian system will be ensured by a sufficient supply of first inte-
grals.

The problem we are interested in here is the problem of three bodies moving in a Newto-
nian reference system with the only forces acting on them being their mutual gravitational
attraction (say the sun, Earth and moon). One knows classical integrals for this problem
but they don’t ensure the complete integrability of the system ([M-H]). The question
that we address is: can one find other (meromorphic) integrals for this system making it
(meromorphically) completely integrable ?

In 1890, Poincaré proved that the three-body problem does not have any additional ana-
lytic first integral besides the known integrals ([Poin]). To obtain this result, he studied
a variational equation which is a linear differential equation computed along a particular
solution of the hamiltonian system.

During the last twenty years many significant improvements regarding complete (mero-
morphic) integrability of hamiltonian systems have been obtained by Ziglin ([Zigl], [Zig2],
1982); Churchill, Rod and Singer ([C-R-S], 1996) and Morales and Ramis ([M-R], 1998).
They all found necessary conditions of complete (meromorphic) integrability based on the
monodromy group ([Zigl], [Zig2]) or the differential Galois group ([C-R-S], [M-R]) of this
variational equation.

Our study will rely on the criterion of Morales and Ramis (from [M-R], see section 2 for
details) : If the system (.S) is completely integrable, then the connected component of the
identity in the group G, denoted G?, is an abelian group. Before applying this theorem to
the example of the three-body problem, we deduce from it a new criterion based on a local
and global formal study (detection of logarithmics and factorization) of this variational
equation.

Theorem 1 Let (S) be a hamiltonian system and L(y) = 0 be the normal variational
equation computed along a particular solution of (S).
If the linear differential operator L has a right factor M such that

e the equation M(y) = 0 is completely reducible,

e the equation M(y) = 0 has formal solutions with logarithmic terms
then the system (S) is not completely integrable.

The main interest of this criterion is that one can easily apply it when the coefficients
of the variational equation lie in k(z) where k is an algebraic extension of @. Indeed
there exists algorithms to compute formal solutions ([Sch], [Barl], [Bar2], [D-C-T], [Hila],
[Hoel], [Ince],[Le], [Mal], [Som], [Tour|, ...); to factorize linear differential operators
([Sch], [Beke|, [Hoe|, [Hoe2], [Pflu], [Sinl],[B-P], ...) or to detect whether an equation is
completely reducible or not ([Sinl]).

However the variational equation has often the particularity to depend on a finite num-
ber of parameters (the masses of the bodies for the three-body problem). So we need to
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adapt the existing algorithms from the non parameterized (well mastered) situation to a
parameterized situation. In [Bou2], the first author studied this adaptation and met two
kinds of situations:

First, she shows that some computations (for example the computation of the generalized
exponents at a point) are reduced to computations on constructible sets (which can be
achieved by a computer ([Boud|); In such cases, computing with parameters is similar
(but just more difficult for computers) to computing without parameters.

Secondly, there may appear arithmetic conditions on the parameters, namely one may
have to look for polynomial solutions whose degree depends on parameters and is no
longer bounded or, equivalently, to try to solve a linear system whose size is a parameter.
This induces indecidability results ([Bou3)).

Here the symplectic structure of the variational equation enables to reduce the number
of these complicated situations where there appears arithmetic conditions on the param-
eters (this point will be more developped in a further work, [BWO01]). Furthermore, the
physical constraints on the parameters enable also to bound degrees which yet depend on
parameters.

So, using our criterion (theorem 1), some of the tools developped in [Bou2] and tak-
ing the constraints on the parameters into consideration, we establish the non complete
(meromorphic) integrability of the planar three-body problem along Lagrange’ solution.

Theorem 2 The planar three-body problem is not meromorphically completely integrable.

This result was also established by A. Tsygvintsev (see [Tsyl], [Tsy2]). A (restricted)
version was published in [Boul]. Other results on three-body problems involving the
Morales-Ramis theorem appear in [JTo] (see also [Au2])

In section 2, we define the hamiltonian systems and the notion of complete integrabil-
ity. We illustrate this part with the planar three-body problem. Then we recall Ramis
and Morales’ theorem (theorem 3) and we present our criterion (theorem 1).

In section 3 we consider the planar three-body problem along Lagrange’ solution. We first
give some directions for use of our criterion and prove our theorem 2 separating the two
cases m; = 1 and m; # 1. The way our criterion is applied in this section should also
apply to other situations from hamiltonian mechanics.

2 Complete integrability of hamiltonian systems

In section 2.1, we define hamiltonian systems, first integrals and complete integrability
of hamiltonian systems (see [Aul], [Chur|, [M-R]). In section 2.2, we present the non-
integrability criterion of J.J. Morales and J.P. Ramis ([M-R]). Lastly, in section 2.3, we
deduce from this criterion a new criterion which is simpler to test.



2.1 Some definitions

We illustrate this part with the three-body problem (see section 3).
Let us consider three bodies in a newtonian reference system and let us assume that the
only forces acting on them are their mutual gravitational attraction ([M-H]).

>

Each body is represented by its mass m;, its position ¢; and its moment p; (p; = m; %).
According to the Newton law and the law of gravitation the equations of the motion of

these bodies can be written in the following form:

dg; _ OH
dt ~— Op;
dp; _ _0H
dt dq;
i=1,2,3

Ik mjmy,

3 )
where H = Z |Ip S A
j=1 2m; 1<5,k<3 llg; — axl|
These equations form a differential system, called hamiltonian system. It depends on the
three parameters my, my and my (we assume mg = 1).

Definition 1 Let n € N*, x = (z1,...,%2,) = (q1,-- -, Gn, D1, - - -, Pn) € R*",
A hamiltonian system on a non empty domain U of R* is a system of differential equa-
tions of the form:

% = 8l (q,p)
&= —5L(g,p)
i=1,...,n

where H : U — IR is the hamiltonian function.
The variables p; and q; are conjugate variables. The positive integer n is called the num-
ber of degrees of freedom.



For the three-body problem the number of degrees of freedom is 9 in the space and 6 in
the plan.

Remark 1 A hamiltonian system can also be written in the following form:
x'(t) = J VH(x(t))

0 I

wherer(_I 0

) and VH(x) is the gradient of H at x.

The hamiltonian H represents the mechanical energy and is conserved. Indeed, for each
solution x of the system, dH(x(t)) = 0. One says that H is a first integral for the
hamiltonian system.

Definition 2 A function G : U — R is a first integral of the hamiltonian system if, for

all solution x(t) of the system,
d
—(G(x(t)) = 0.
2G(x(0)
Remark 2 The first integral G of the hamiltonian system s also characterized by the
equality
{G(x), H(x)} =0

where

& (8G, 8G,  9G, 8G,\
{Gl, Gz} == ; <8pZ 8(]1 an 8]), ) == VGl(X), JVGQ(X)

is the Poisson bracket of G1 and GS.

The first integrals give the geometry of the solution curve. Indeed the solutions of the
system lie on the hypersurfaces G = cte.

There are ten classical first integrals for the three-body problem ([M-H]): the hamiltonian
H; the three components of the total linear moment (L = p; + ps + p3); the three
components of the vector Cy defined by C' = Lt 4+ C, where C' is the center of masses of
the system (C' = my ¢; + mago + m3qs) and the three components of the total angular

moment (A = ¢ p1 + g2 P2 + ¢3 ps3)-

Definition 3 A hamiltonian system with n degrees of freedom is said to be completely
integrable if it has n first integrals G4, ..., G, such that:

e (G1,...,G, are functionally independant
(VGy,..., VG, are linearly independant)

e (G1,...,G, are in involution: for all solution x of the hamiltonian system,
{Gi(x), G;(x)} ={G;(x), Gi(x)} = VGi(x), J VG;(x) =0
(G, ...,Gy, commute for the Poisson bracket).



It is necessary to give a more precise sense to this notion of complete integrability asking
which class of functions one wants the first integrals to belong to (analytic, algebraic
functions, ...).

In 1890, Poincaré proved that the three-body problem is not analytically completely in-
tegrable ([Poin]):

"...I establish for example that the three-body problem admits, beside the known inte-
grals, no uniform analytic integral. Many other circumstances make us think that the
complete solution, if ever one can discover it, will require analytic instruments absolutely
different from those we own and infinitely more complicated ...’

To answer the question of the analytic complete integrability, Poincaré studied the so-
lutions which are infinitesimaly close to a particular solution of the hamiltonian system.
The behavior of these solutions is given by a homogeneous linear differential system, the
variational system, which is obtained by linearization of the hamiltonian system along the
particular solution.

Definition 4 The variational system along a solution x¢(t) of a hamiltonian system is
the linear differential system:

h'(t) = J H(H,xo(t)) h(t)

where H(H,xo(t)) is the hessian of H at x¢(t) and J = < _OI é >

Remark 3 x{(t) is a particular solution of the variational system along the solution xo(t).

During the last twenty years many results on the meromorphic non integrability of the
hamiltonian systems were deduced from the study of this variational system. In 1982,
Ziglin ([Zigl], [Zig2]) established necessary conditions of meromorphic complete integra-
bility on the monodromy group of the variational system. In 1995, Baider, R.C. Churchill,
Rod and M. Singer ([C-R-S|) and in 1998, J.J. Morales and J.P. Ramis ([M-R]) estab-
lished necessary conditions of meromorphic complete integrability on the differential Ga-
lois group of the variational system.
Before presenting Morales and Ramis’ theorem in section 2.2, let us come back to the
planar three-body problem. The question one askes is: can we find 6 meromorphic first
integrals satisfying furthermore involution and independance properties 7
In [Tsyl], A. Tsygvintsev reduces the number of degrees of freedom of the planar three-
body problem from 6 to 3 and gets a new hamiltonian (that we denote H again):
H=1(GE+1)(p2+ Beepemd®y 4 1 (L4 1)(p2 + py?) + py o

my q1?

p3(P3g2—p2g3—c) mi mimo

my
a Valtes® B \/(a1—g2)’+as?

The parameter c¢ represents the integral of the angular moment of the system. The
non-integrability of this hamiltonian system will imply the non-integrability of the ini-
tial hamiltonian system: if one cannot find 3 independant meromorphic first integrals in
involution for this hamiltonian system, then the planar three-body problem will not be
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completely integrable.

He chooses the Lagrange solution as particular solution of the system ([Tsyl]). The three
bodies then form a configuration which is homographically equivalent to an equilateral
triangle :each body describes a parabola centered on a vertex of the equilateral triangle.

2.2 J.J. Morales and J.P. Ramis theorem

Theorem 3 Let (S) be a hamiltonian system, xo(t) a particular solution of (S), L(y(t)) =
0 the normal variational equation of (S) computed along the solution xo(t) and G the
differential Galois group of L(y(t)) = 0.

If the system (S) is completely integrable, then the connected component of the identity in
the group G, denoted G°, is an abelian group.

Remark 4 One also says that G is virtually abelian (see [Au2]).

This theorem is a simple criterion of non-integrability of the hamiltonian systems, however
in practice it is not easy to apply it. Indeed it is theoretically possible to compute the
Galois group of a completely reducible equation ([C-S]) but it is difficult to achieve this
computation practically, especially when this equation depends on a finite number of
parameters. In the next section we propose a new criterion of non-integrability which is
based on a local study (the detection of logarithms in the formal solutions) and a global
study (the factorization of linear differential operators). That way, the above theorem
can be applied also by people not familiar with differential Galois theory.

2.3 A new criterion of non-integrability

Proposition 1 Let G C GL(n,C) be a completely reducible linear algebraic group acting
on'V = C™. The following assertions are equivalent:

(a) G° is solvable,

(b) G° is diagonalizable,

(c) G° is abelian.

Proof

The implications (b) = (¢) and (¢) = (a) are immediate ; Now assume that (a) holds.
First we assume that V' is irreducible under G. Because G° is solvable, it is triangu-
larizable. In particular, all its elements have a common eigenvector v;. Let g € G and

h € G°. Because G° is normal in G, we have h(g(vi)) = g(h(v1)) with h € G°. But,
as vy is a common eigenvector for G°, we have h(v;) = xj.v1 with x; € C. But now
h(g(v1)) = g(xj-v1) = Xx;5-9(v1) so all g(v; are eigenvectors of G°. The linear space
spanned by the g(vi(forg € G) is a subspace of V invariant under G. By irreducibility,
it is equal to V. Because it it is generated by the g(v;), G° acts diagonally on it.

Now, if V' is reducible, it is a direct sum of subspaces which are irreducible under GG, and
we apply inductively the above reasonning to these irreducible summands. O

Remark 5 While we were writing this paper, a result analogous to the above proposition
appeared in [Bro00], lemma 3.6.



Now, if G is the differential Galois group of a linear differential equation L(y) = 0, then it
is easier to find sufficient conditions of non diagonality of G° using the local information
that we can read in the formal solutions.

Proposition 2 Let L(y) = 0 be a homogeneous linear differential equation with Galois
group G.
Assume that the equation L(y) = 0 is completely reducible.

1. If it has formal solutions around some point which contain logarithmic terms, then
the connected component of the identity in the group G is not an abelian group.

2. If it has a non-trivial Stokes multiplier around some point (an irregular singularity),
then the connected component of the identity in the group G is not an abelian group.

Proof

Let L be a differential operator of degree n with coefficients in a field £ with differential
Galois group G.

Let us assume that L is irreducible. If the group G is abelian, then according to the
proposition 1, it is diagonalizable. Furthermore if a logarithmic term appears locally,
then the corresponding local group has a non trivial unipotent subgroup. So the group
G" contains non trivial unipotent elements, which contradicts the diagonality of G°.

If L is completely reducible one concludes in the same way as in the proof of proposition
1.

Part (b) is proved similarly because the presence of a Stokes multiplier induces a unipotent
element in the differential Galois group ([PS01]). 5 From the two previous propositions
one can establish the following criterion of non abelianity for the group G°.

Theorem 4 Let L(y) = 0 be a homogeneous linear differential equation et let M be a
right factor of L.

If the equation M (y) = 0 is completely reducible and has formal solutions with logarithmic
terms, then the component of the identity in the group G is not an abelian group.

Proof

Let Gjs be the differential Galois group of the equation M(y) = 0. There exists a
surjection from G° to GY, (see lemma 5.10 page 38 of [Ka]) so the non abelianity of GY,
implies the non abelianity of the group G°. 0

Remark 6 Similarly, as in the previous proposition, the presence of logarithms can be
replaced by the presence of a non-trivial Stokes multplier in this theorem. The key is
again that a unipotent element yields an obstruction to diagonalizability, and hence to
integrability.

From this theorem and the theorem 3 we deduce a criterion for the non complete integra-
bility of the hamiltonian systems:

Theorem 1 Let (S) be a hamiltonian system and L(y) = 0 be the normal variational
equation computed along a particular solution of (S).
If the linear differential operator L has a right factor M such that
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e the equation M(y) = 0 is completely reducible,
e the equation M(y) = 0 has formal solutions with logarithmic terms

then the system (S) is not completely integrable.

The advantage of this criterion is that there exists algorithms to compute the formal so-
lutions at a point ([Sch], [Barl], [Bar2], [D-C-T], [Hila], [Hoel], [Ince],[Le], [Mal], [Som],
[Tour], ...) and to factorize the equation ([Sch], [Beke], [Hoe], [Hoe2], [Pflu], [Sinl], [B-P],

The only difficulty consists in adapting these algorithms from the non parameterized case
to the parameterized case. One meets two kinds of situations in the parameterized case:
one situation where the algorithms can be adapted (generalized exponents) and one situ-
ation where the presence of the parameters imply problems of indecidability (polynomial
solutions).

In the example of the planar three-body problem we are going to overcome this last dif-
ficulty thanks to strong constraints on the parameters: they are positive real.

3 The non-integrability of the planar three-body prob-
lem

3.1 Some directions for use of our criterion

We explain here the main steps to apply our criterion.

‘What we have at our disposal before applying the criterion.‘

1. The Hamiltonian with 3 degrees of freedom ([Tsyl]):

_ _ )2
H=1(1+1)m2+ (p3@> P2 gs—)7) | L+ 1) (2 +ps?) + pips

m1 q1? ma

p3 (p3 g2—p2 g3—c) my m1mo

— m2 — —_—s
a Valtes® B \/(a1—g2)’+as®

2. A particular solution of the hamiltonian system, Lagrange’ solution ([Tsy1]):

2
XO(t):t(g(,wQ_écw—i_%L %7 ?Ch; (111)_1’ _£7 %pl_ﬁ)

w'(t) = %(311}(15)2 —VEew(t) + ).

3. The variational system along Lagrange’ solution (6 x 6 linear differential sys-
tem)

Y'(t) = JH(H,x(t)) Y (¢)

10



transformed in another differential system after a change of variable:

. A symplectic transformation (see annex 1 page 19) which enables to reduce
the variational system to a normal variational system (4 x 4 differential linear
system, annex 2 page 21)

0= (G e ) 7o

Remark 7 A. Tsyguintsev gets a normal variational system using Whittaker’ re-
ductions ([Tsyl]).

. A cyclic vector which enables to transform the normal variational system to a
(scalar) normal variational equation L(y(z)) = 0 (see [Sin2| for references
to the cyclic vector method for transforming linear differential systems to linear
differential equations).
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‘How we apply our criterion to our normal variational equation.

The normal variational equation L(y(z)) = 0 has the particularity to depend on parame-
ters (the masses of the bodies).

If we fix these parameters (for example m; = mo = m3 = 1) then the equation L(y(z)) = 0
is an equation with coefficients in Q(z).

In this case (non parameterized case), there exists algorithms to compute the formal so-
lutions at a point ([Sch], [Barl], [Bar2], [D-C-T], [Hila], [Hoel], [Ince],[Le|, [Mal], [Som],
[Tour], ...) and to factor the equation ([Sch], [Beke], [Hoe], [Hoe2], [Pflu], [Sinl],[B-P],

So when the masses are equal, one can quickly prove that the equation is completely
reducible and that there are logarithmic terms in some formal solutions. Thanks to our
criterion we can conclude that the planar three-body problem (with equal masses) is not
completely integrable (see [Boul]).

Now let us assume that we don’t give any particular numerical value to the parame-
ters (except ms that we can assume to be equal to one).
The two questions one then deals with to apply our criterion are the following ones:

How to detect whereas there are logarithmic terms locally in the formal
solutions of a parameterized linear differential equation ?

How to factor a parameterized linear differential operator ?

The main difficulty regarding these two last questions comes from the possible presence
of arithmetic conditions on the parameters. In particular there appears indecidability
problems during the computation of the polynomial solutions which we need to factorize
operators. In [Bou2], the first author proposes detailed tools helping to answer these two
last questions. Using these tools and taking the physical constraints into consideration
(i.e. the parameters are posistive real), we are going to prove now the following proposition
in the two situations: m; = 1 and m; # 1:

Proposition 3 The differential operator L has at least one irreducible right factor M
such that the equation M(y) = 0 has formal solutions with logarithmic terms.

3.2 The case m; =1

A scalar normal variational equation (obtained with the cyclic vector (1,0,0,0)) is
L(y(2)) = asy(2) + a3 y® (2) + a2y (2) + a1 9/ (2) + ap y(z) = 0
with
ao = (36mg — 922 (z—1)> =9 (ma+2)2ma+5)z (x —1) — 6 (mg +2)°
ag=3(my+2)xz2z—1)(z—1)Bz(x—1)+4+2my)
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ay =—=3(my +2)° 2z (z—1)+1) 22 (z — 1)
az = (me+2)° 2z —1) 23 (z — 1)°
ay = (mg +2)°z* (x —1)*.

Let us first prove that there are formal solutions at zero with logarithmic terms.
Let 3 c,x* be a series solution of the equation L(y) = 0.
The coefficients ¢, satisfy the recurrence relation

Jolk+p) e+ filk+p—1) ck1+ fo(k+p—2) cko+ f(k+p—3) ck_z+ falk+p—4) ck_s = 0

where

fo(k) = (my+2)*(k—1)(k—2) (k—3) (k+1).

There are four exponents at zero, 3, 2, 1 and —1. They do not depend on the paremeters
and they differ each other from an integer. The formal solution associated to the exponent
3 has no logarithmic term. The formal solution associated to the exponent 2 has no
logarithmic term if and only if f;(2) = 0 (see [Ince] page 405 for example). But

filk) = =(ma+2)(k = 1) (8K* — 30 k? + 4k + 45 + 4my k* — 15 my k? + 2 kmy + 18 my)

" f1(2) =3 (mge 4+ 2) (2ms + 1).

As the parameter my is positive, fi(2) never cancels and there always exists a formal
solution at zero with a logarithmic term. The only presence of logarithmic terms does not
suffice to contradict the abelianity of the group G°. One needs to study the irreducibility
of G so we are going to look for the factors of L.

The exponents at the point 0 are 3, 2, 1 and —1. Those at the point 1 are also 3, 2, 1
and —1. The exponents at oo are the solutions of

(me+2)n(n+1) —9) ((me+2)n(n+3)+1—4my) =0.

We notice that the exponents at oo depend on the parameter my whereas two sums of two
exponents at infinity are integers (independant of ms). This last property was foreseeable:
it comes from the symplectic structure of the equation (see [BWO01]). So it is easier to
look for factors of degree two than to look for factors of degree one. We adapt here the
algorithm of [B-P]. The second exterior equation associated to L (see chapter 2 and 4 of
[PS01]) has got two exponential solutions,

m2+2 1

=1
N TR ra Y

and
2o =z(x — 1)

(these solutions are in fact rational).
One can construct a differential operator of degree two associated to the rational solution
A z1 + 2o, which divides L if and only if A and p satisfy the Pl&quot;ucker relation

1 (3(mg + 2)p + (2m3 — 10my — 1) A) = 0.

13



We denote M; the factor associated to (A, ) = (1,0) and M, the factor associated to
A\ p) = (ﬁ%, 1) when 2m2 — 10 my — 1 is non zero.

The operator L is not irreducible, so one cannot conclude immediately.

One has now to see whether one of the equations M;(y) = 0 or Ms(y) = 0 is completely
reducible and if there are logarithmic terms in its formal solutions.

Although it is difficult to answer this question for these operators separately, we will show

the following lemma - this approach should be usable in other situations as well:

Lemma 1 The operators My, and My cannot be simultaneously reducible.

Proof

Let us first study the formal solutions at 0 of the equations M;(y) = 0 and M, (y) = 0.
The exponents at 0 and 1 for M;(y) = 0 and M,(y) = 0 are equal to —1 and 1.

For each of this factor there is a formal solution at 0 which contains a logarithmic term.
It can be easily proved using the criterion of [Ince] page 405.

Here, as the exponents do not depend on the parameters, one can use the program for-
malsol of maple and compute a basis of formal solutions at 0 for M;(y) = 0 and for
Ms(y) = 0.

We get the following basis of solutions at 0 for M;(y) = 0:

(01(z), m

In(z) o1(x) + 02(x))

1 (—142ma+41348ms?)a

o) = —11ylm=l 1 1 (8ma®—294m22+2787 m2—2339)
2 2z 2m 16 (ma+2)°

+ 16 (ma+2)3

A basis of formal solutions at 0 for Ms(y) = 0 is:

(0'1(.T), 4(m2+2)2 111(.7)) 01($)+02($))

40my2—-302my+397)z | (40m3—294my2+1971 mp—2419) 22
242 ' 16 (ma+2)? 16 (ma+2)3

9(2m2+1)

As my is positive, the coefficient T r2)?

logarithmic term.
Let us now see whether the operators M; and M, are irreducible or not.
The exponents at infinity of M;(y) = 0 are the solutions of

never cancels, which ensures the presence of a

Pi(n) = (my +2) (n®* +n) —9 =0.
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Those of M, are the solutions of
Py(n) = (my +2) (n*+3n)+1—4my =0.

To test whether the equation M;(y) = 0 (resp. Ms(y) = 0) is reducible, it suffices to look
for its exponential solutions. These solutions can be written in the following form:

_p(@)
z(x—1)

where p(z) is a polynomial whose degree satisfies P;(2 — d) = 0 (resp. Py(2 — d) = 0).
A necessary condition for reducibility of M; (resp. M,) is that the equation P;(n) = 0
(resp. P»(n) = 0) has an integer solution less than or equal to 2.

We prove that M, is irreducible when 2m3 — 10 my — 1 is equal to 0 and that M; and M,

cannot both be reducible when 2m3 — 10mgy — 1 is nonzero.

5433

5, then the solutions

If 2m32 — 10my — 1 is equal to 0, that is to say if ms is equal to
of Pi(n) =0 are —v/3 and V3 — 1.

If 2m2 — 10my — 1 is non zero then

Pi(ny) = Py(ny) =0, ny € Z, ny € ZZ

:>n%+n1—m29+2 :n§+3n2+1m_24%=0, ny € 2, ny € Z
=ni+n2+n +3ny—4=0,n €, ny €L

= 2m+1)24+2n,+3)2=26,n, € Z, ny € Z

= (n1,n9) € {(0,1), (0,—4), (-1,1), (-1,-4), (-2,-1), (-2,-2), (-3,-1), (-3,-2)}.
But P;(0) and P;(—1) cannot cancel.

Py (-1)=0=>my =
P(—2)=0=mp ="
so, My and M, cannot be simultaneously reducible. [ To conclude, the operator L has
always at least one factor M (M = M; or M = M) satisfying the two properties:

M (y) = 0 has formal solutions at 0 with logarithmic terms;

M is irreducible.

So the proposition 3 is fulfilled.

3.3 The case m; # 1

A scalar normal variational equation (obtained with the cyclic vector (—r+/3,1,0,0)) is
L(y(z)) = asy™ () + a3 y® (@) + a3y (2) + a1 ¢/ () + apy(z) = 0

with

ap =2 (—my+3mr+3r+1)(m —1—6r2+6mir>+3mir+3r)a?(z—1)>" -
6 (6mir+3mir?—m;—3r2+6r+1)(9myir?+21myr—4m; —9r2+21r +4)
z(z—1)—6 (6mir+3myr?—my —3r2+67+1)°

a1 =606myr+3mir?—m; —3r2+67+1)
2z—1)z(x—1)
(—mi+3mir+3r+1)z(x—1)+6mir+3mr2—m; —3r2+6r+1)
—3(6myr+3myr?—my —3r24+67r+1)" (1 +222 —22) 2% (x — 1)
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2
ag:—3(6m1r+3m17’2—m1—37’2+6r—|—1) (1+2x2—2x) 2% (z —1)°

2
a3:(6m1r+3m1r2—m1—3r2+6r+1) 2z—1)z° (z —1)°

2
Ay = (6m17“+3m17“2—m1 —3r2+6r+1) x4(x— 1)4
The parameter r is defined by the following relation:
3mi—D)r2+2(mi+1-2my)r+1—m; =0 (1)

The exponents at the points 0 and 1 are again 3, 2, 1 and —1 and one can easily prove
that the formal solution associated to the exponent 2 contains a logarithmic term.
The exponents at oo are the solutions of

m1—1 m1—1

(2(14my+ms)(n*+n)=9(1+m4)+3 )(2(14-my4+ms ) (n®4+3n)+mi+1—8ma—3 ) =0.

They depend on the parmeters but two of their sums two by two are integers.
The second exterior equation has two exponential solutions
16mir+3mir’—my =372 +67r+1

=14=
“ +8 zz—1)Bmir+3r+1—m)

and
zg =x(x — 1)

which are in fact rational.
The rational solution A z;+pu 29 satisfies P1&quot;ucker relation if, and only if, p (2 f(my, ma) (4 mgr—
2r—2my r+mi—1)A+3 (1+mo+my) (drmemi+4dmyr+mi>=3mi*r—2myr—1-37r)u =
0
where
f(ml,mg) = 2m22 + 2m12 — 5m2 — 5m2m1 — 5m1 + 2.

We denote M; the factor associated to (A, u) = (1,0).

If f(mq, my) is non zero, we denote M, the factor associated to

A1) = (L, = sy g e tr—zrr37y) # (1, 0).

These two factors are given in the annex 3 page 22.

As the exponents at 0 and at 1 are equal to —1 and 1, the exponential solutions of
M;(y) = 0 (resp. My(y) = 0) are of the type xf’éfl) and the degree d of the polynomial

p(z) satisfies P;(2 —d) = 0 (resp. P»(2 — d) = 0) where

mp — 1
Pi(n) =2(1 +my +mg)(n®*+n) —9(1+my) +3 lr ,

m1—1

Py(n) =2(1+my +my)(n® +3n) +my +1—8my — 3

We prove that if f(m,ms) is equal to 0, then M; is irreducible and if f(mq, ms) is non
zero then M; and M, cannot be simultaneously reducible.
If f(my, ms) is equal to zero,

Pi(n) =0= (m; — 1)*(m} +my +1)*(n* +2n> — 5n° — 6n + 6) = 0.
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This result is obtained thanks to the package Groebner of maple.

So Py;(n) cannot have any integer solution and M; is irreducible.

Let us assume that f(m;, my) is non zero and that M; and M, are both reducible. Then
there exists two integers n; and ng such that Pj(n;) = Py(ng) = 0.

But

Pl(’fll) = P2(n2) =0,n; € Z, ng € 2

=n’4+ni+n +3n,—4=0,n€Z, ny € Z

= (n1,n9) € {(0,1), (0,-4), (-1,1), (—1,-4), (-2,-1), (-2,-2), (-3,-1), (—3,—-2)}.
Furthermore

Pi(—1) = Pi(0) and Py(—1) = P»(—2)

P(-1)=0=r= 3(mmll_+11) =my = oy

Py(-1)=0=r =24 = my = =L

m1—1 mi1+1°
As m; and my are both positive, the operators M; and My cannot be simultaneously

reducible.

To conclude, like in the section 3.2, the proposition 3 is again satisfied.

The non-integrability criterion 1 and the proposition 3 enable us to conclude that the
planar three-body problem along Lagrange’ solution is not completely integrable.

Theorem 2 The planar three-body problem is not meromorphically completely integrable.

4 Conclusion

In this paper we have established the non complete (meromorphic) integrability of the
planar three-body problem along Lagrange’ solution. This result has also been found by
A. Tsygvintsev ([Tsyl], [Tsy2]).
Our proof relies on many points:

e Morales and Ramis’ theorem ([M-R]) which gives a theoretical galoisian criterion of
non complete integrability for the hamiltonian systems;

e a new (practical) criterion deduced from this theorem and from ingredients coming
from differential Galois theory;

e algorithms to compute formal solutions ([Sch], [Bar1], [Bar2], [D-C-T], [Hila|, [Hoel],
[Ince],[Le], [Mal], [Som], [Tour], ...) and to factorize linear differential operators
([Sch], [Beke], [Hoe], [Hoe2], [Pflu], [Sinl],[B-P], ...);

e the (partial) study of the adaptation of these algorithms to a parameterized situa-
tion, with the effort to separate the automatisable parts from the non automatisable
parts ([Bou2]);

e strong constraints on the parameters coming from the physical structure of the
problem.

17



One can hope that all these tools can be used to treat many other problems on hamiltonian
systems.
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ANNEX 1
Symplectic transformation of the system
The variational system along Lagrange’ solution is
Y'(t) = JH(H,x0(t)) Y (2).

The vector x;(t) is a particular solution of this system.
After the changes of variables

—cmy (mg + 2) N cV/3myms
’/1: 7
2 (my + mg + mymy) 2 (my + may + mymy)

u=w(t)andu =

we get a 6 x 6 variational system
Y'(z) = M(z) Y ()

which has the following particular solution:
92 z(m1 m2+72n2+m1)
(1+z2)e

z(m1 ma+ma+my)
(1+=z?)c

V3z(m1 ma+ma+mi)
(1+z2)c

W . The matrix M (z) is

—my—2+22v3ma+a’ma+2 22 )ma (m1 matma+ma)?
(m1+ma+1)2(1422)3c4

o

(—ml +142m1 V3z+23z+m1 w2—w2)m2 (m1 ma+matmi)*

2 (m1+ma+1)2(1422)3c4

2 \/g(—3 m1—3+2v3z—2m1 V3z+3m1 22+3 a:z)mz (m1 ma+ma+my)?

3 (mi+ma+1)%(1+a2)3ct

symplectic:

where MQ =t MQ and M3 =t M3.
Let us consider the following symplectic matrix P (it satisfies P J P = J):

~Wo[1] 0 0 0 0 0

-Wo[2] -1 0 0 0 0
o) ~Wol3] 0 -1 0 0 0
€T =

Woll Wi Wi Cwm W e

~Wol5] 0 0 0 -1 0

—Wo[6] 0 0 0 ~1



The system satisfied by Z defined by Y = P 7 is
Z'(x) = M(z) Z(x)

where M (z) = P(z)~' (M(x) P(z) — P'(z)).

One can easily prove that the matrix M is also symplectic ([M-R]). Furthermore as —W;
is a solution of the equation Y’(z) = M(z) Y (), the first row of the matrix M (z) is equal
to zero. So M(x) can be written in the following form:

0 X X X X X
~ VA AW
M@ =149 090 0o 00

0 X

0 A3($) % —tAl(QT)

and the system Z'(z) = M(z) Z(z) is equivalent to the system

Az)  As(x) ﬁ;g
2@ =| Aslz) —'A(2) Zzg Z(x)

0 O 0 O 0 0
DPs De b7 DPs DP9 P10

One can extract from this variational equation the normal variational equation

o= (0 40 ) e
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ANNEX 2

Normal variational system along Lagrange’ solution.

S1 S9 Sy 0
S3 84 0 s5
V(z) = v(z)
S6 57 —S51 —83
87 S8 —82 —84
with
_ ma ((—5m12—5—14m1)$2+4\/§(m1—1)(m1+1)z—(m1—1)2)
® 5= 4 (m1+ma+1) my z (224+1)
° 5, — —3v3(m1—1)(m1+1)ms2 22—4 (m1+1)(m1 ma—2m1+m2)z+v3(m1—1)(m1+1)m»
2= 4 (m1+ma+1) my x (z2+41)
N —3\/§(m1—1)(m1—|—1)m2 m2+(—4m12m2—8m1—4m2—24m1 m2—8m12)m+\/§(m1—1)(m1+1)m2
®S53= 4 (mi1+ma2+1)my z (z2+41)
_ ma ((m12+1+10m1)m2—4\/?:(m1—1)(m1+1) z—3 (m1+1)2)
® 54 = 4 (m1+ma+1)my z (22+1)
® 5 — e (mi+ma+1) (2241)
5 7 2m1 ma (mi+matmi ma)?
1 3 ((-13m1%ma—2my % —24 —2my—13 24+4+/3(m1—1 1 - -1)2
° . — (m1+1)ma (m1 ma+ma+m1)” ((—13m1°me—2my m1 ma—2m1—13m2 )z +4v3(m1—1)(m1+1)m2 z—m2 (Mm1—-1)")
56 = 2my (1+32)222c3(my +ma+1)°
[ ] 87 =

ma (M1 m2—|—m2—|—m1)3 (-3 \/§(m12m2+2 mi2+4mq ma+2 m1+m2)(m1—1)w2—4 mo (m1—|—1)(m12—|—4 m1+1)$+\/§(m1—1)m2 (m1+1)2)

2my (14+22)%22e3(m1+ma+1)°

[ ) 88 =
ma (m1+1)(m1 m2+m2+m1)3((—7 m12ma+10m124+12m1 ma+10mq —7 m2)$2—4 V3(mi—1)(m1+1)ma z—3mo (m1—|—1)2)
2my (1422)222¢3(m1+ma+1)°3
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ANNEX 3
Factors of the operator L (0 = %)

e FHirst case: m; = 1.

M1:b~282+516+50

b = z(2+m)*(27 — 1)(z — 1),

{ by = —1082%(x — 1)? + (—27my — 54)z(z — 1) — (2 + my)?,
by = 22(2+ myo)(z — 1)3(1222 — 122 + 2 + my)

M2:C~282+518+C~0

(G =—4 (4my —1) (2my2 — 10my — 1) 2% (x — 1)° — 24 (2 +ma) (M2® — 5mg — 5) 2 (x — 1)
+27 2+ m)’z (z = 1)+ (24+my)°,

{a=z(x—-1)2x—1) (—4 (2 + my) (2m22—10m2—1)x2(m—1)2—(2+m2)3),

& =22 (z —1)°
(4 2+ m2) @ma? —10my — 1) 2 (x = 1)* =12 2+ m)’ 2 (x — 1) — (24 mg)°)

\
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e Second case : m; # 1.

M126262+b16+b0

(Do = —48 (3myr —mi +1+437)° 22 (x — 1)
—18 (6myir+3myr? —my; =372 +6r+1)B3mir—m;+1+3r)z(z—1)—
(6m17’+3m1r2—m1—3r2+6r+1)2

bi=az6mir+3miri—mi—3r2+67r+1)°2z—1)(z—1)

by =2?(x —1)° (6myr +3mir? —my — 312+ 67 +1)
{ B Bmir—mi+1+3r)z(x—1)+(6myr+3mir?—my —3r°+67+1))

M2=0282+018—|—co
((cg=—16(6myr*+3mir+my —1+3r—67?%)
(97rtmi2 — 18 my?r® — 6 m ?r2 + 6 my%r + my2 — 18 myrt — 60my r? — 2my+
9rt +187% — 672 — 67+ 1)2® (z — 1)° —
24 (6mir+3myr? —my —3r°+67+1)
(—18m 23 — 187+ 97% — my2 4+ 2my + 1873 — 24my%r? — 18 my r* — 1+
18m1%r — 96 my 12 + 97*my 2 — 2472)2? (z — 1)° +
18 (6myr +3myr? —my —37“2-1-67“—1-1)2
Bmyr—my+3r+1)z(x—1)+
(6myr +3myr?—my —37“2+6r+1)3,

ca=z(xz—1)2x—-1)(-8 (6myr+3mir*—m; —3r2+67+1)

(97rtmi2 — 18 my?r® — 6 m ?r? + 6 my%r + my2 — 18 myrt — 60my r? — 2my+
91t +187% — 672 — 67 + 1)z (z — 1)° —

(6mir+3mir2—my — 372+ 67+ 1)),

co=2*(x—1)> 8 (6mir +3myr2—my — 372 +67+1)

(97r*my? — 18 my?r® — 6my%r? + 6 mi%r + my2 — 18 myr* — 60my r? — 2my+
91t + 1873 — 672 — 67 + 1)22 (x — 1)° —

8 (6myr+3mirt—my —37r2+6r+1)Bmir—mi+3r+1)z(z—1)—
| 6myr+3myr? —my — 37+ 67 +1)°)

23



References

[Aul] Audin, M. - Les systemes hamiltoniens et leur intégrabilité DEA de
Mathématiques 1999-2000, IRMA, Strasbourg.

[Au2] Audin, M. - Intégrabilité et non-intégrabilité de systémes hamiltoniens
Séminaire Nicolas Bourbaki, 53 éme année 2000 — 2001, n°884.

[Barl] Barkatou, M.A. - Rational Newton algorithm for computing formal solutions
of linear differential equations Symbolic and Algebraic Computation-ISSAC’88
(P.Gianni, ed.), ACM Press, 1988, pp. 183-195.

[Bar2] Barkatou, M.A. - An algorithm to compute the exponential part of a formal
fundamental matrix solution of a linear differential system Applicable Algebra
in Engineering, Communication and Computing 8 (1997), n 9, 1-24.

[Beke] Beke, E. - Die Irreduzibitat der homogenen linearen Differentialgleichungen,
Math. Ann. 45, 278-294.

[Boul] Boucher, D. - Sur la non intégrabilité du probleme plan des trois corps de
masses égales C.R.Acad.Sci.Paris, t.331, Série I, p.391-39/, septembre 2000.

[Bou2] Boucher, D. - Sur les équations différentielles linéaires paramétrées; une appli-
cation aux systemes hamiltoniens These de I’Université de Limoges, octobre
2000.

[Bou3] Boucher, D. - About the polynomial solutions of homogeneous linear differen-

tial equations depending on parameters, Proceedings of the 1999 International
Symposium on Symbolic and Algebraic Computation: ISSAC’99, Sam Dooley,
ed., ACM, New York 1999.

[Bou4| Boucher, D. - Exponential solutions of parameterized linear differential equa-
tions, Rapport 2001-02 du LACO (Limoges).

[Boub] Boucher, D. - web page:
http://www.unilim.fr/pages_perso/delphine.boucher/hamiltonian/Publish/

[BW01]  About the applicability of the Morales-Ramis criterion for testing integrability
of hamiltonian systems, in preparation 2001.

[B-P] Bronstein, M., Petkovsek, M. - On the Factorisation of Skew Polynomials
J.Symb.Comp. 11, 1-20 (1995).

[Bro00] Bronstein, M. - Algorithms for Linear Ordinary Differential and Difference
Equations, preprint 2000.

[Chur] Churchill, R.C. - Galoisian Obstructions to the Integrability of hamiltonian
Systems Prepared for the The Kolchin Seminar in Differential Algebra, De-
partment of Mathematics, City College of New York, 1998.

24



[C-R-S]

[D-C-T]

[Hila]

[Hoe]
[Hoel]

[Hoe2]

[Ince]

Compoint, E., Singer, M.F. - Computing Galois Groups of Completely Re-
ducible Differential Equations Journal of Symbolic Computation, 28/4-5,
1999, 4753-494.

Churchill, R.C., Rod, D.L. & Singer, M.F. - On the Infinitesimal Geometry of
Integrable Systems in Mechanics Day, Shadwich et. al., eds, Fields Institute
Communications, 7 , American Mathematical Society, 1996, 5-56.

Della Dora, J., di Crescenzo, C. & Tournier E. - An algorithm to obtain
formal solutions of a linear differential equation at an irregular singular point
Computer Algebra-EUROCAM‘82 (Lecture Notes in Computer Science, 144
(J.Calmet, ed.), 1982, pp. 273-280).

Hilali, A. - On the algebraic and differential Newton-Puiseux polygons Journal
of Symbolic Computation 4 (1987), n. 3, 335-349

Hoeij, M. van - Factorization of Linear Differential Operators, Thesis (1996).

Hoeij, M. van - Formal solutions and factorization of differential operators
with power series coefficients J. Symb. Comput., 24, 1-80 (1997).

Hoeij, M. van - Factorization of Differential Operators with Rational Functions
Coefficients J. Symb. Comput., 24, 537-561 (1997).

Ince, E. L. - Ordinary Differential Equations, Dover Publications, INC. New
York (1956).

Julliard-Tosel, E. - Non-intégrabilité algébrique et méromorphe de problemes
de N corps Theése de Doctorat de I’Université Paris VII, (1999).

Kaplansky, I. - An Introduction to Differential Algebra Publications de
PInstitut de Mathématique de I’Université de Nancago (1957).

Kovacic, J. - An algorithm for solving second order linear homogeneous dif-
ferential equations J. Symb. Comput. 2 3-43 (1986).

Levelt, A. H. M. - Jordan decomposition for a class of singular differential
operators Archiv féquot;ur Mathematik 13 (1975), n1, 1-27.

Malgrange B. - Sur la réduction formelle des équations différentielles a singu-
larités irrégulieres manuscript, 1979.

Meyer, K.R., Hall, G.R. - Introduction to hamiltonian Dynamical Systems
and the N—Body Problem Applied Mathematical Sciences 90, Springer Verlag
(1991).

Morales-Ruiz J., Ramis J.-P. - Galoisian obstructions to integrability of hamil-
tonian systems prépublication (1998).

25



[PS01]

[Pflu]

[Poin]

[Sch]

[Sin1]

[Sin2]

[Som]

[Tour]

[Tsyl]

[Tsy2]

1]

[U1-We]

[Zigl]

[Zig2]

Put, M. van der, Singer, M. F. - Differential Galois Theory, book to appear,
2001.

Pfuegel, E. - Résolution symbolique des systemes différentiels linéaires, Thése,
Université de Grenoble (1998).

Poincaré, H. - Sur le probléme des trois corps et les équations de la dynamique
Acta Mathematica (1890).

Schlesinger L. - Handbuch der Theorie der Linearen Differentialgleichungen,
Teubner, Leipzig, 1887.

Singer, M. F. - Testing Reducibility of Linear Differential Operators: A Group
Theoretic Perspective Applicable Algebra in Engineering, Communication and
Computing, 7(2), 1996, 77-10/.

Singer M. F. - Direct and inverse problems in differential Galois theory, Se-
lected Works of Ellis Kolchin with Commentary , Bass, Buium, Cassidy, eds.,
American Mathematical Society, 527-554 (1999).

Sommeling, R. - Characteristic classes for irregular singularities, Ph.D. thesis,
Catholic University of Nijmegen, 1993,

An extended abstract appeared as : Characteristic Classes for Irregular Singulari-
ties, Proccedings of ISSAC’94, ACM Press, 1994.

Tournier, E. - Solutions Formelles d’Equations Différentielles, thése, Univer-
sité de Grenoble I (1987).

Tsygvintsev, A. - The meromorphic non-integrability of the three-body prob-
lem Prépublication, Université de Genéve, 2000.

Tsygvintsev, A. - La non-intégrabilité méromorphe du probléme plan des trois
corps C.R.Acad.Sci.Paris, t.331, Série I, p.241-244, aout 2000.

Ulmer, F. - On Liouvillian Solutions Of Linear Differential Equations
AAECC?2, 171-193 (1992).

Ulmer, F.,; Weil, J.-A. - Note on Kovacic’s algorithm J.Symb. Comput. vol 22
n° 2, 179-200 (1996).

Ziglin, S. L. - Branching of solutions and non existence of first integrals in
Hamiltonian mechanics I Funct. Anal. Appl. 16 (1982), p. 181-189.

Ziglin, S. L. - Branching of solutions and non existence of first integrals in
Hamiltonian mechanics IT Funct. Anal. Appl. 17 (1983), p. 6-17.

26



