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Definition of an optimization problem

� An optimization problem has the form

Find x̄ ∈ Rn such that f(x̄) = min {f(x) | x ∈ K} , (P )

where K ⊆ Rn is a given set. By definition, this mean to find x̄ ∈ K such that

f(x̄) ≤ f(x) ∀ x ∈ K.

� In the above, f is called an objective function, K is called a feasible set (or constraint

set) and any x̄ solving (P ) is called a global solution to problem (P ).

� Usually one also considers the weaker notion, but easier to characterize, of local solution

to problem (P ). Namely, x̄ ∈ K is a local solution to (P ) if there exists δ > 0 such

that f(x̄) ≤ f(x) for all x ∈ K ∩ B(x̄, δ), where

B(x̄, δ) := {x ∈ Rn | ‖x− x̄‖ ≤ δ} .
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� In optimization theory one usually studies the following features of problem (P ):

1.- Does there exist a solution x̄ (global or local)?

2.- Optimality conditions, i.e. properties satisfied by the solutions (or local solutions).

3.- Computation algorithms for finding approximate solutions.

� In this course we will mainly focus on points 1 and 2 of the previous program.

� We will also consider mainly two cases for the feasible set K:

� K = Rn (unconstrained case).

� Equality and inequality constraints:

K = {x ∈ Rn | gi(x) = 0, i = 1, . . . ,m, hj(x) ≤ 0, j = 1, . . . , `} . (1)

� In order to tackle point 2 we will assume that f is a smooth function. If the feasible

set (1) is considered, we will also assume that gi and hj are smooth functions.
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Some mathematical tools

� In what follows, we will work in the euclidean space Rn. We denote by 〈·, ·〉 the

standard scalar product and by ‖ · ‖ the corresponding norm. Namely,

〈x, y〉 = x
>
y =

n∑
i=1

xiyi ∀ x ∈ Rn, y ∈ Rn and ‖x‖ =
√
〈x, x〉.

We will often use the alternative notation x · y for 〈x, y〉.

� [Graph of a function] Let f : Rn → R. The graph Gr(f) ⊆ Rn+1 is defined by

Gr(f) := {(x, f(x)) | x ∈ Rn} .
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� [Level sets] Let c ∈ R. The level set of value c is defined by

Levf(c) := {x ∈ Rn | f(x) = c} .

• When n = 2, the sets Levf(c) are useful in order to draw the graph of a function.

• These sets will also be useful in order to solve graphically two dimensional linear

programming problems, i.e. n = 2, and the function f and the set K are defined

by means of affine functions.
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Example 1: We consider the function

R2 3 (x, y) 7→ f(x, y) := x+ y + 2 ∈ R,

whose level set is given, for all c ∈ R, by

Levf(c) :=
{

(x, y) ∈ R2 | x+ y + 2 = c
}
.

Note that the optimization problem with this f and K = R2 does not have a solution.

Example 2: Consider the function

R2 3 (x, y) 7→ f(x, y) := x
2

+ y
2 ∈ R.

Then Levf(c) = ∅ if c < 0 and, if c ≥ 0,

Levf(c) = {(x, y) | x2
+ y

2
= c},

i.e. the circle centered at 0 and of radius
√
c.
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Example 3: Consider the function

R2 3 (x, y) 7→ f(x, y) := x
2 − y2 ∈ R.

In this case the level sets are given, for all c ∈ R, by

Levf(c) = {(x, y) | y2
= x

2 − c}.
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� [Differentiability] Let f : Rn → R. We say that f is differentiable at x̄ ∈ Rn if for all

i = 1, . . . , n the partial derivatives

∂f

∂xi
(x̄) := lim

τ→0

f(x̄+ τei)− f(x̄)

τ
(where ei := (0, . . . , 1︷︸︸︷

i

, . . . , 0)),

exist and, defining the gradient of f at x̄ by

∇f(x̄) :=

(
∂f

∂x1

(x̄), . . . ,
∂f

∂xn
(x̄)

)
∈ Rn,

we have that

lim
h→0

f(x̄+ h)− f(x̄)−∇f(x̄) · h
‖h‖

= 0.

If f is differentiable at every x belonging to a set A ⊆ Rn, we say that f is

differentiable in A.
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Remark 1. Notice that f is differentiable at x̄ iff there exists εx̄ : Rn → R, with

limh→0 εx̄(h) = 0 and

f(x̄+ h) = f(x̄) +∇f(x̄) · h+ ‖h‖εx̄(h). (2)

In particular, f is continuous at x̄.

Lemma 1. [Directional differentiability] Assume that f is differentiable at x̄ and let

h ∈ Rn. Then,

lim
τ→0, τ>0

f(x̄+ τh)− f(x̄)

τ
= ∇f(x̄) · h.

Proof. By (2), for every τ > 0, we have

f(x̄+ τh)− f(x̄) = τ∇f(x̄) · h+ τ‖h‖εx̄(τh).

Dividing by τ and letting τ → 0 gives the result.
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Remark 2. (i) [Simple criterion to check differentiability] Suppose that A ⊆ Rn is

an open set containing x̄ and that

A 3 x 7→ ∇f(x) ∈ Rn,

is well-defined and continuous at x̄. Then, f is differentiable at x̄.

As a consequence, if ∇f is continuous in A, then f is differentiable in A. In this case,

we say that f is C1 in A (i.e. differentiability and continuity of ∇f in A). When f is

C1 in Rn we simply say that f is C1.

(ii) The notion of differentiability can be extended to a function f : Rn → Rm. In

this case, f is differentiable at x̄ if there exists L ∈ Mm×n(R) such that

lim
‖h‖→0

‖f(x̄+ h)− f(x̄)− Lh‖
‖h‖

→ 0.

If f is differentiable at x̄, then L = Df(x̄), called the Jacobian matrix of f at x̄,
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which is given by

Df(x̄) =



∂f1
∂x1

(x̄) . . .
∂f1
∂xn

(x̄)

. . . . . . . . .
∂fi
∂x1

(x̄) . . .
∂fi
∂xn

(x̄)

. . . . . . . . .
∂fm
∂x1

(x̄) . . . ∂fm
∂xn

(x̄)



Note that when m = 1 we have that Df(x̄) = ∇f(x̄)>.

The chain rule says that if f : Rn → Rm is differentiable at x̄ and g : Rm → Rp is

differentiable at f(x̄), then g ◦ f : Rn → Rp is differentiable at x̄ and the following

identity holds

D(g ◦ f)(x̄) = Dg(f(x̄))Df(x̄).

(iii) In the previous definitions the fact that the domain of definition of f is Rn is
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not important. The definition can be extended naturally for functions defined on open

subsets of Rn.

Basic examples:

(i) Let c ∈ Rn and consider the function f1 : Rn → R defined by f1(x) = c · x.

Then, for every x ∈ Rn, we have ∇f1(x) = c and, hence, f is differentiable.

(ii) Let Q ∈Mn×n(R) and consider the function f2 : Rn → R defined by

f2(x) = 1
2〈Qx, x〉 ∀ x ∈ Rn.

Then, for all x ∈ Rn and h ∈ Rn, we have

f2(x+ h) = 1
2〈Q(x+ h), x+ h〉

= 1
2〈Qx, x〉+ 1

2 [〈Qx, h〉+ 〈Qh, x〉] + 1
2〈Qh, h〉

= 1
2〈Qx, x〉+ 〈12

(
Q+Q>

)
x, h〉+ 1

2〈Qh, h〉
= f2(x̄) + 〈12

(
Q+Q>

)
x, h〉+ ‖h‖εx(h),
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where limh→0 εx(h) = 0. Therefore, f2 is differentiable and

∇f2(x) = 1
2

(
Q+Q

>
)
x ∀ x ∈ Rn.

In particular, if Q is symmetric, then ∇f2(x) = Qx.

(iii) Consider the function f3 : Rn → R defined by f3(x) = ‖x‖. Then, since

f3(x) =
√
‖x‖2, if x 6= 0, the chain rule shows that

Df(x) = D(
√
·)(‖x‖2

)D(‖ · ‖2
)(x) = 1

2

1√
‖x‖2

(2x)
>

=
x>

‖x‖
,

which implies that ∇f3(x) = x
‖x‖, and, since this function is continuous at every

x 6= 0, we have that f3 is C1 in the set Rn \ {0}. Let us show that f3 is not

differentiable at x = 0. Indeed, if this is not the case, then all the partial derivatives
∂f3
∂xi

(0) should exists for all i = 1, . . . , n. Taking, for instance, i = 1, we have

lim
τ→0

‖0 + τe1‖ − ‖0‖
τ

= lim
τ→0

|τ |
τ
,
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which does not exist, because

lim
τ→0−

|τ |
τ

= lim
τ→0−

−τ
τ

= −1 6= 1 = lim
τ→0+

τ

τ
= lim

τ→0+

|τ |
τ
.

� [Second order derivative and Taylor expansion] Suppose that f : Rn → R is C1. In

particular, the function Rn 3 x 7→ ∇f(x) ∈ Rn is well defined. If this function

is differentiable at x̄, then we say that f is twice differentiable at x̄. If f is twice

differentiable at every x belonging to a set A ⊆ Rn, then we say that f is twice

differentiable in A.

If this is the case, then, by definition,

∂2f

∂xi∂xj
(x̄) :=

∂

∂xj

(
∂f

∂xi

)
(x̄),

exists for all i, j = 1, . . . , n. The following result, due to Clairaut and also known

as Schwarz’s theorem, says that, under appropriate conditions we can change the

derivation order.
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Theorem 1. Suppose that the function f is twice differentiable in an open set

A ⊆ Rn containing x̄ and that for all i, j = 1, . . . , n the function A 3 x 7→
∂2f

∂xi∂xj
(x) ∈ R is continuous at x̄. Then,

∂2f

∂xi∂xj
(x̄) =

∂2f

∂xj∂xi
(x̄).

Under the assumptions of the previous theorem, the Jacobian of ∇f(x̄) takes the form

D
2
f(x̄) =



∂2f

∂x2
1
(x̄) . . . ∂2f

∂xn∂x1
(x̄)

... . . . ...

∂2f
∂xi∂x1

(x̄) . . . ∂2f
∂xn∂xi

(x̄)
... . . . ...

∂2f
∂xn∂x1

(x̄) . . . ∂2f

∂x2
n
(x̄)


.

This matrix, called the Hessian matrix of f at x̄ belongs to Mn×n(R) and it is a
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symmetric matrix by the previous result.

If f : Rn → R is twice differentiable in an open set A ⊆ Rn and for all i,

j = 1, . . . , n the function

A 3 x 7→
∂2f

∂xi∂xj
(x) ∈ R

is continuous, we say that f is C2 in A.

� [Taylor’s theorem] We admit the following important result:

Theorem 2. Suppose that f : Rn → R is C2 in an open set A ⊆ Rn. Then, for all

x ∈ A and h such that x+ h ∈ A, we have the following expansion

f(x+ h) = f(x) +∇f(x) · h+ 1
2〈D

2
f(x)h, h〉+ ‖h‖2

Rx(h),

where Rx(h)→ 0 as h→ 0.

Example: Consider the function f : R2 → R defined by f(x, y) = ex cos(y)−x−1.
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Then,
∂f
∂x(0, 0) = ex cos(y)

∣∣
(x,y)=(0,0)

− 1 = 0,
∂f
∂y(0, 0) = −ex sin(y)

∣∣
(x,y)=(0,0)

= 0,

∂2f

∂x2(0, 0) = ex cos(y)
∣∣
(x,y)=(0,0)

= 1,

∂2f

∂y2(0, 0) = −ex cos(y)
∣∣
(x,y)=(0,0)

= −1,

∂2f
∂x∂y(0, 0) = −ex sin(y)

∣∣
(x,y)=(0,0)

= 0.

Note that all the first and second order partial derivatives are continuous in Rn.

Therefore, we can apply the previous result and obtain that the Taylor’s expansion of

f at (0, 0) is given by

f((0, 0) + h) = f(0, 0) +∇f(0, 0) · h+ 1
2〈D

2f(0, 0)h, h〉+ ‖h‖2Rx̄(h),

= 0 + 0 + 1
2h

2
1 − 1

2h
2
2 + ‖h‖2R(0,0)(h),

= 1
2h

2
1 − 1

2h
2
2 + ‖h‖2R(0,0)(h).

This expansion shows that locally around (0, 0) the function f above is similar to the

function in Example 3.
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Some good reading for the previous part

� Chapters 2 and 3 in “Vector calculus”, sixth edition, by J. E. Marsden and A. Tromba.

� Chapter 14 in “Calculus: Early transcendentals”, eight edition, by J. Stewart.
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Some basic existence results for problem (P )

� [Compactness] Recall that A ⊆ Rn is called compact if A is closed and bounded (i.e.

A is closed and there exists R > 0 such that ‖x‖ ≤ R for all x ∈ A).

Let us recall an important result concerning the compactness of a set A.

Theorem 3. [Bolzano-Weierstrass theorem] A set A ⊆ Rn is compact if and only

if every sequence (xk)k∈N of elements of A has a convergence subsequence. This

means that there exists x̄ ∈ A and a subsequence (xk`)`∈N of (xk)k∈N such that

x̄ = lim
`→∞

xk`.

� [The basic existence results] Note that by definition, if infx∈Kf(x) = −∞, then f

has no lower bounds in K and, hence, there are no solutions to (P ). On the other

hand, if infx∈Lf(x) is finite, then the existence of a solution can also fail to hold as

the following example shows.
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Example: Consider the function R 3 x 7→ f(x) := e−x and take K := [0,+∞[.

Then, infx∈K f(x) = 0 and there is no x ∈ K such that f(x) = 0.

Definition 1. We say that (xk)k∈N ⊆ K is a minimizing sequence for (P ) if

inf
x∈K

f(x) = lim
k→∞

f(xk).

By definition, a minimizing sequence always exists if K is non-empty.

Theorem 4. [Weierstrass theorem, K compact] Suppose that f : Rn → R is

continuous and that K is non-empty and compact. Then, problem (P ) admits at

least one global solution.

Proof. Let (xk)k∈N ∈ K be a minimizing sequence. By compactness, there exists

x̄ ∈ K and a subsequence (xk`)`∈N of (xk)k∈N such that x̄ = lim`→∞ xk`. Then,

by continuity

f(x̄) = lim
`→∞

f(xk`) = inf
x∈K

f(x).
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Example: Suppose that f : R3 → R is given by f(x, y, z) = x2 − y3 + sin z and

K = {(x, y, z) | x4 + y4 + z4 ≤ 1}. Then f is continuous and K is compact. As

a consequence, problem (P ) admits at least one solution.

Theorem 5. [K closed but not bounded] Suppose that K is non-empty, closed, and

that f is continuous and “coercive” or “infinity at the infinity” in K, i.e.

lim
x∈K, ‖x‖→∞

f(x) = +∞. (3)

Then, problem (P ) admits at least one global solution.

Proof. Let (xk)k∈N ∈ K be a minimizing sequence. Since infx∈K f(x) = −∞ or

infx∈K f(x) ∈ R and limk→∞ f(xk) = infx∈K f(x), there exists R > 0 such

that (xk)k∈N ⊆ KR := {x′ ∈ K |f(x′) ≤ R} ⊆ K. By continuity of f , this

set is closed and bounded because f is coercive. Arguing as in the previous proof,

the compactness of KR implies the existence of x̄ ∈ KR such that a subsequence of

(xk)k∈N converges to x̄, which, by continuity of f , implies that x̄ solves (P ).
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Example: Suppose that f : Rn → R is given by

f(x) = 〈Qx, x〉+ c
>
x ∀ x ∈ Rn,

where Q ∈ Mn,n(R) is symmetric and positive definite, and c ∈ Rn. Since

〈Qx, x〉 ≥ λmin(Q)‖x‖2 ∀ x ∈ Rn

(where λmin(Q) > 0 is the smallest eigenvalue of Q), we have that

f(x) ≥ λmin(Q)‖x‖2 − ‖c‖‖x‖ ∀ x ∈ Rn.

This implies that f(x)→∞ as ‖x‖ → ∞. Therefore,

lim
x∈K,‖x‖→∞

f(x) =∞, (4)

holds for every closed set K. Since f is also continuous, problem (P ) admits at least

one global solution for any given non-empty closed set K.
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Example: Suppose that f : R2 → R is given by

f(x, y) = x
2

+ y
3 ∀ (x, y) ∈ R2

,

and

K = {(x, y) ∈ R2 | y ≥ −1}.
Then,

lim
x∈K,‖x‖→∞

f(x) = +∞ (5)

holds (exercise) and, hence, (P ) admits at least one global solution.
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Optimality conditions for unconstrained problems

� Notice that, by the second existence theorem, if f is continuous and satisfies that

lim
‖x‖→∞

f(x) = +∞,

then, if K = Rn, problem (P ) admits at least one global solution.

� [First order optimality conditions for unconstrained problems]

We have the following result

Theorem 6. [Fermat’s rule] Suppose that K = Rn and that x̄ is a local solution to

problem (P ). If f is differentiable at x̄, then ∇f(x̄) = 0.

Proof. For every h ∈ Rn and τ > 0, the local optimality of x̄ yields

f(x̄) ≤ f(x̄+ τh) = f(x̄) + τ∇f(x̄) · h+ τ‖h‖εx̄(τh),
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where limz→0 εx̄(z) = 0. Therefore,

0 ≤ τ∇f(x̄) · h+ τ‖h‖εx̄(τh).

Dividing by τ and letting τ → 0, we get

∇f(x̄) · h ≥ 0.

Since h is arbitrary, we get that ∇f(x̄) = 0 (take for instance h = −∇f(x̄) in the

previous inequality).

� [Second order optimality conditions for unconstrained problems]

We have the following second order necessary condition for local optimality:

Theorem 7. Suppose that K = Rn and that x̄ is a local solution to problem (P ). If

f is C2 in an open set A containing x̄, then D2f(x̄) is positive semidefinite.

In other words,

〈D2
f(x̄)h, h〉 ≥ 0 ∀ h ∈ Rn.
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Proof. Let us fix h ∈ Rn. By Taylor’s theorem, for all τ > 0 small enough, we have

f(x̄+ τh) = f(x̄) +∇f(x̄) · (τh) + 1
2〈D

2f(x̄)τh, τh〉+ ‖τh‖2Rx̄(τh),

where Rx̄(τh) → 0 as τ → 0. Using the local optimality of x̄, the previous result

implies that ∇f(x̄) = 0 and, hence,

0 ≤ f(x̄+ τh)− f(x̄) =
τ2

2
〈D2

f(x̄)h, h〉+ τ
2‖h‖2

Rx̄(τh).

Dividing by τ2 and passing to the limit with τ → 0, we get the result.
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We have the following second order sufficient condition for local optimality.

Theorem 8. Suppose that f : Rn → R is C2 in an open set A containing x̄ and

that

(i) ∇f(x̄) = 0.

(ii) The matrix D2f(x̄) is positive definite. In other words,

〈D2
f(x̄)h, h〉 > 0 ∀ h ∈ Rn, h 6= 0.

Then, x̄ is a local solution to (P ).

Proof. Let λ > 0 be the smallest eigenvalue of D2f(x̄), then

∀h ∈ Rn, 〈D2
f(x̄)h, h〉 ≥ λ‖h‖2

.

Using this inequality, the hypothesis ∇f(x̄) = 0, and the Taylor’s expansion, for all
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h ∈ Rn such that x̄+ h ∈ A we have that

f(x̄+ h)− f(x̄) = ∇f(x̄) · h+
1

2
〈D2

f(x̄)h, h〉+ ‖h‖2
Rx̄(h)

≥
λ

2
‖h‖2

+ ‖h‖2
Rx̄(h)

=

(
λ

2
+ Rx̄(h)

)
‖h‖2

.

Since Rx̄(h)→ 0 as h→ 0, we can choose δ > 0 such that ‖h‖ ≤ δ, x̄+ h ∈ A
and |Rx̄(h)| ≤ λ

4 . As a consequence,

f(x̄+ h)− f(x̄) ≥
λ

4
‖h‖2 ∀ h ∈ Rn with ‖h‖ ≤ δ,

which proves the local optimality of x̄.
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Example: Let us study problem (P ) with K = R2 and

R2 3 (x, y) 7→ f(x, y) = 2x
3

+ 3y
2

+ 3x
2
y − 24y.

First, consider the sequence (xk, yk) = (−k, 0) for k ∈ N. Then,

f(xk, yk) = −2k
3 → −∞ as k →∞.

Therefore, inf(x,y)∈R2 f(x, y) = −∞ and problem (P ) does not admit global

solutions. Let us look for local solutions. We know that if (x, y) is a local solution,

then it should satisfy ∇f(x, y) = (0, 0). This equation gives

6x2 + 6xy = 0,

6y + 3x2 = 24.

From the first equation, we get that x = 0 or x = −y. In the first case, the second

equation yields y = 4, while in the second case we obtain that x2−2x−8 = 0 which

yields the two solutions (4,−4) and (−2, 2). Therefore, we have the three candidates

(0, 4), (4,−4) and (−2, 2). Let us check what can be obtained from the Hessian at
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these three points. We have that

D
2
f(x, y) =

(
12x+ 6y 6x

6x 6

)
.

For the first candidate, we have

D
2
f(0, 4) =

(
24 0

0 6

)
.

which is positive definite. This implies that (0, 4) is a local solution of (P ). For the

second candidate, we have

D
2
f(4,−4) =

(
24 24

24 6

)
= 6

(
4 4

4 1

)
,

whose determinant is given by 36(−12) < 0, which implies that D2f(4,−4) is
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indefinite (the sign of the eigenvalues is not constant). Finally,

D
2
f(−2, 2) =

(
−12 −12

−12 6

)
which is also indefinite because the sign of the diagonal terms are not constant.

Therefore, (0, 4) is the unique local solution to (P ).

� [Maximization problems] If instead of problem (P ) we consider the problem

Find x̄ ∈ Rn such that f(x̄) = max {f(x) | x ∈ K} , (P ′)

then x̄ is a local (resp. global) solution to (P ′) iff x̄ is a local (resp. global) solution

to (P ) with f replaced by −f . In particular, if x̄ is a local solution to (P ′) and f is

regular enough, then we have the following first order necessary condition

∇f(x̄) = 0,

as well as the following second order necessary condition

〈D2
f(x̄)h, h〉 ≤ 0 ∀ h ∈ Rn.
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In other words, D2f(x̄) is negative semidefinite.

Conversely, if x̄ ∈ Rn is such that ∇f(x̄) = 0 and

〈D2
f(x̄)h, h〉 < 0 ∀ h ∈ Rn, h 6= 0.

Then, x̄ is a local solution to (P ′).
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Convexity

� [Convexity of a set] A non-empty set C ⊆ Rn is called convex if for any λ ∈ [0, 1]

and x, y ∈ C, we have that

λx+ (1− λ)y ∈ C.

Let us fix a convex set C ⊆ Rn.

� [Convexity of a function] A function f : C → R is said to be convex if for any

λ ∈ [0, 1] and x, y ∈ C, we have that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

� [Relation between convex functions and convex sets] Given f : Rn → R, let us define

its epigraph epi(f) by

epi(f) :=
{

(x, y) ∈ Rn+1 | y ≥ f(x)
}
.
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Proposition 1. The function f is convex iff the set epi(f) is convex.

Proof. Indeed, suppose that f is convex and let (x1, z1), (x2, z2) ∈ epi(f). Then,

given λ ∈ [0, 1] set

Pλ := λ(x1, z1) + (1− λ)(x2, z2) = (λx1 + (1− λ)x2, λz1 + (1− λ)z2)

Since, by convexity,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λz1 + (1− λ)z2,

we have that Pλ ∈ epi(f). Conversely, assume that epi(f) is convex and let x1,

x2 ∈ Rn and λ ∈ [0, 1]. Since (x1, f(x1)), (x2, f(x2)) ∈ epi(f), we deduce that

(λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)) ∈ epi(f),

and, hence,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2),

which proves the convexity of f .
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� [Strict convexity of a function] A function f : C → R is said to be strictly convex if

for any λ ∈ (0, 1) and x, y ∈ C, with x 6= y, we have that

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

� [Concavity and strict concavity of a function] A function f : C → R is said to be

concave if −f is convex. Similarly, the function f is strictly concave if −f is strictly

convex.

Example: Let us show that the function Rn 3 x 7→ ‖x‖ ∈ R is convex but not

strictly convex. Indeed, the convexity follows from the triangle inequality

‖λx+ (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖.

Now, if we have that for some λ ∈ (0, 1)

‖λx+ (1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖

the equality case in the triangle inequality (‖a+b‖ = ‖a‖+‖b‖ iff a = 0 and b = 0

or a = αb with α > 0) shows that the previous inequality holds iff that x = y = 0
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or x = γy for some γ > 0. By taking x 6= 0 and y = γx with γ ∈ (0,∞) \ {1}
we conclude that ‖ · ‖ is not strictly convex.

Example: Let β ∈ (1,+∞). Let us show that the function Rn 3 x 7→ ‖x‖β ∈ R
is strictly convex. Indeed, the real function [0,+∞) 3 t 7→ α(t) := tβ ∈ R is

increasing and strictly convex because

α
′
(t) = βt

β−1
> 0 and α

′′
(t) = β(β − 1)t

β−2
> 0 ∀ t ∈ (0,+∞).

As a consequence, for any λ ∈ [0, 1], using that

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖,

we get that

‖λx+ (1− λ)y‖β ≤ (λ‖x‖+ (1− λ)‖y‖)β

≤ λ‖x‖β + (1− λ)‖y‖β,
(6)

which implies the convexity of ‖ · ‖β. Now, in order to prove the strict convexity,
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assume that for some λ ∈ (0, 1) we have

‖λx+ (1− λ)y‖β = λ‖x‖β + (1− λ)‖y‖β,

and let us prove that x = y. Then, all the inequalities in (6) are equalities and, hence,

‖λx+ (1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖,

and (λ‖x‖+ (1− λ)‖y‖)β = λ‖x‖β + (1− λ)‖y‖β.

The equality case in the triangle inequality and the first relation above imply that

x = y = 0 or x = γy for some γ > 0. The strict convexity of α and the second

inequality above imply that ‖x‖ = ‖y‖. Therefore, either x = y = 0 or both x and

y are not zero and x = γy for some γ > 0 and ‖x‖ = ‖y‖. In the latter case, we

get that α = 1 and, hence, x = y from which the strict convexity follows.
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� [Convexity and differentiability] We have the following result:

Theorem 9. Let f : C → R be a differentiable function. Then,

(i) f is convex in Rn if and only if for every x ∈ C we have

f(y) ≥ f(x) +∇f(x) · (y − x), ∀ y ∈ C. (7)

(ii) f is strictly convex in Rn if and only if for every x ∈ C we have

f(y) > f(x) +∇f(x) · (y − x), ∀ y ∈ C, y 6= x. (8)

Proof. (i) By definition of convex function, for any x, y ∈ C and λ ∈ (0, 1), we have

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x),

and, hence,

f(λy + (1− λ)x)− f(x) ≤ λ (f(y)− f(x))
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Since, λy + (1− λ)x = x+ λ(y − x), we get

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x).

Letting λ→ 0, Lemma 1 yields

∇f(x) · (y − x) ≤ f(y)− f(x).

Conversely, take x1 and x2 in C, λ ∈]0, 1[ and define xλ := λx1 + (1− λ)x2. By

assumption,

∀i ∈ {1, 2} , f(xi) ≥ f(xλ) +∇f(xλ) · (xi − xλ),

and we obtain, by taking the convex combination, that

λf(x1) + (1− λ)f(x2) ≥ f(xλ) +∇f(xλ) · (λx1 + (1− λ)x2 − xλ) = f(xλ),

which shows that f is convex.
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(ii) Since f is convex, by (i) we have that

f(y) ≥ f(x) +∇f(x) · (y − x), ∀ y ∈ C. (9)

Suppose that there exists z ∈ C such that z 6= x and

f(z) = f(x) +∇f(x) · (z − x).

Let y = 1
2x+ 1

2z. Then, by (9), and strict convexity, we get

f(x)+∇f(x)·(1
2z−

1
2x) ≤ f(y) < 1

2f(x)+ 1
2f(z) = f(x)+∇f(x)·(1

2z−
1
2x),

which is impossible. The proof that (8) implies that f is strictly convex is completely

analogous to the proof that (7) implies that f is convex. The result follows.

Theorem 10. Let f : C → R be C2 in C and suppose that C is open (besides being

convex). Then

(i) f is convex if and only if D2f(x) is positive semidefinite for all x ∈ C.

(ii) f is strictly convex if D2f(x) is positive definite for all x ∈ C
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Proof. (i) Suppose that f is convex. Then, by Taylor’s theorem for every x ∈ C,

h ∈ Rn and τ > 0 small enough such that x+ τh ∈ C we have

f(x+ τh) = f(x) + τ∇f(x) · h+
τ2

2
〈D2

f(x)h, h〉+ τ
2‖h‖2

Rx(τh),

which implies, by the first order characterization of convexity, that

0 ≤ 1
2〈D

2
f(x)h, h〉+ ‖h‖2

Rx(τh).

Using that limτ→0Rx(τh) = 0, and the fact that h is arbitrary, we get that

〈D2
f(x)h, h〉 ≥ 0 ∀ h ∈ Rn.

Suppose that D2f(x) is positive semidefinite for all x ∈ C and assume, for the time

being, that for every x, y ∈ C there exists cxy ∈ {λx + (1 − λ)y | λ ∈ (0, 1)}
such that

f(y) = f(x) +∇f(x) · (y − x) + 1
2〈D

2
f(cxy)(y − x), y − x〉. (10)
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Then, have that

f(y) ≥ f(x) +∇f(x) · (y − x) ∀ x, y ∈ C,

and, hence, f is convex. It remains to prove (10). Defining g(τ) := f(x+ τ(y−x))

for all τ ∈ [0, 1], formula (10) follows from the equality

g(1) = g(0) + g
′
(0) + 1

2g
′′
(τ̂)

for some τ̂ ∈ (0, 1).

(ii) The assertion follows directly from (10), with y 6= y, and Theorem 9(ii).

Remark 3. Note that the positive definiteness of D2f(x), for all x ∈ C, is only

a sufficient condition for strict convexity but not necessary. Indeed, the function

R 3 x 7→ f(x) = x4 ∈ R is strictly convex but f ′′(0) = 0.

Example: Let Q ∈ Mn,n(R) be symmetric and let f : Rn → R be defined by

f(x) = 1
2x
>
Qx+ c

>
x.
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Then, D2f(x) = Q and hence f is convex if Q is positive semidefinite and strictly

convex if Q is positive definite.

In this case, the fact that Q is positive definite is also a necessary condition for strict

convexity. Indeed, for simplicity suppose that c = 0 and write Q = PDP>, where

the set of columns of P is an orthonormal basis of eigenvectors of Q (which exists

because Q is symmetric), and D is the diagonal matrix containing the corresponding

eigenvalues {λi}Ni=1 in the diagonal. Set y(x) = P>x. Then,

f(x) =
∑

λ
n
i=1yi(x)

2
.

If Q is not definite positive, then there exists j ∈ {1, . . . , N} such that

λj ≤ 0. Then, it is easy to see that f is not strictly convex on the set

{x ∈ Rn | yi(x) = 0, for all i ∈ {1, . . . , n} \ {j}}.
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Convex optimization problems

� [Optimality conditions for convex problems] Let us begin with a definition.

Definition 2. Problem (P ) is called convex if f is convex and K is a non-empty

closed and convex set.

We have the following result.

Theorem 11. [Characterization of solutions for convex problems] Suppose that

problem (P ) is convex and that f : Rn → R is differentiable in K. Then, the

following statements are equivalent:

(i) x̄ is a local solution to (P ).

(ii) The following inequality holds:

〈∇f(x̄), x− x̄〉 ≥ 0 ∀ x ∈ K. (11)

(iii) x̄ is a global solution to (P ).
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Proof. Let us prove that (i) implies (ii). Indeed, by convexity of K we have that

given x ∈ K for any τ ∈ [0, 1] the point τx + (1 − τ)x̄ = x̄ + τ(x − x̄) ∈ K.

Therefore, by the differentiability of f , if τ is small enough, we have

0 ≤ f(x̄+ τ(x− x̄))− f(x̄) = τ∇f(x̄) · (x− x̄) + τ‖x− x̄‖εx̄(τ‖x− x̄‖),

where limh→0 εx̄(h) = 0. Dividing by τ and letting τ → 0, we get (ii).

The proof that (ii) implies (iii) follows directly from the inequalities

f(x) ≥ f(x̄) +∇f(x̄) · (x− x̄) ≥ f(x̄) ∀ x ∈ K.

Finally, (iii) implies (i) is trivial. The result follows.

Remark 4. In particular, if f : Rn → R is convex and differentiable and K = Rn, the

relation

∇f(x̄) = 0,

is a necessary and sufficient condition for x̄ to be a global solution to (P ).
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Proposition 2. Suppose that K is convex and that f is strictly convex in K. Then,

there exists at most one solution to problem (P ).

Proof. Assume, by contradiction, that x1 6= x2 are both solutions to (P ). Then,
1
2x1 + 1

2x2 ∈ K and

f(1
2x1 + 1

2x2) <
1
2f(x1) + 1

2f(x2) = 1
2 min
x∈K

f(x) + 1
2 min
x∈K

f(x) = min
x∈K

f(x),

which is impossible.

� [Least squares] Let A ∈ Mm,n(R), b ∈ Rm and consider the system Ax = b.

Suppose that m > n. This type of systems appear, for instance, in data fitting

problem and it is often ill-posed, in the sense that there is no x satisfying the equation.

In this case, one usually considers the optimization problem

min
x∈K:=Rn

f(x) := ‖Ax− b‖2
. (12)

Note that

f(x) = 〈A>Ax, x〉 − 2〈A>b, x〉+ ‖b‖2
.
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and, hence, D2f(x) = 2A>A, which is symmetric positive semidefinite, and, hence,

f is convex. Let us assume that the columns of A are linearly independent. Then, for

any h ∈ Rn,

〈A>Ah, h〉 = 0⇔ Ah = 0⇔ h = 0,

i.e. for all x ∈ Rn, the matrix D2f(x) is symmetric positive definite and, hence, f

is strictly convex. Moreover, denoting by λmin > 0 the smallest eigenvalue of 2A>A,

we have

f(x) ≥ λmin‖x‖2 − 2〈A>b, x〉+ ‖b‖2
.

and, hence, f is infinity at the infinity. Therefore, problem (12) admits only one solution

x̄. By Remark 4, the solution x̄ is characterized by

A
>
Ax̄ = A

>
b, i.e. x̄ = (A

>
A)
−1
A
>
b.

� [Projection on a closed and convex set] Suppose that K is a nonempty closed and

convex set and let y ∈ Rn. Consider the problem the projection problem

inf {‖x− y‖ | x ∈ K} . (ProjK)
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Note that K being closed and the cost functional being coercive, we have the existence

of at least one solution x̄. In order, to characterize x̄ notice that the set of solutions to

(ProjK) is the same as the set of solutions to the problem

inf
{

1
2‖x− y‖

2 | x ∈ K
}
.

Then, since the cost functional of the problem above is strictly convex, Proposition 2

implies that x̄ is its unique solution and, hence, is also the unique solution to (ProjK).

Moreover, by Theorem 11(ii), we have that x̄ is characterized by the inequality

(y − x̄) · (x− x̄) ≤ 0 ∀ x ∈ K. (13)

Example: Let b ∈ Rm and A ∈ Mm×n be such that

b ∈ Im(A) := {Ax | x ∈ Rm}.

Suppose that

K = {x ∈ Rn | Ax = b}. (14)
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Then, K is closed, convex and nonempty. Moreover, for any h ∈ Ker(A) we have

that x̄+ h ∈ K. As a consequence, (13) implies that

(y − x̄) · h ≤ 0 ∀ h ∈ Ker(A),

and, using that h ∈ Ker(A) iff −h ∈ Ker(A), we get that

(y − x̄) · h = 0 ∀ h ∈ Ker(A). (15)

Conversely, since for every x ∈ K we have x − x̄ ∈ Ker(A), relation (15) implies

(13), and, hence, (15) characterizes x̄. Note that (15) can be written as1

y − x̄ ∈ Ker(A)
⊥

=
{
v ∈ Rn | v>h = 0 ∀ h ∈ Ker(A)

}
,

1Recall that given a subspace V of Rn, the orthogonal space V ⊥ is defined by

V
⊥

:= {z ∈ Rn | z>v = 0 ∀ v ∈ V }.

Two important properties of the orthogonal space are V ⊕ V ⊥ = Rn, and (V ⊥)⊥ = V .
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or, equivalently,

y = x̄+ z for some z ∈ Ker(A)
⊥
. (16)

� [Convex problems with equality constraints] Now, we consider the same set K as in

(14) but we consider a general differentiable convex objective function f : Rn → R.

We will need the following result from Linear Algebra.

Lemma 2. Let A ∈ Mm,n(R). Then, Ker(A)⊥ = Im(A>).

Proof. By the previous footnote, the desired relation is equivalent to Im(A>)⊥ =

Ker(A). Now, x ∈ Im(A>)⊥ iff 〈x,A>y〉 = 0 for all y ∈ Rm, and this holds iff

〈Ax, y〉 = 0 for all y ∈ Rm, i.e. x ∈ Ker(A).

Proposition 3. Let f : Rn → R be differentiable and convex and suppose that the

set K in (14) is nonempty. Then x̄ is a global solution to (P ) iff x̄ ∈ K and there

exists λ ∈ Rm such that

∇f(x̄) + A
>
λ = 0. (17)

Proof. We are going to show that (17) is equivalent to (11) from which the result

follows. Indeed, exactly as in the previous example, we have that (11) is equivalent to

∇f(x̄) · h = 0 ∀ h ∈ Ker(A),
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i.e.

∇f(x̄) ∈ Ker(A)
⊥
.

Lemma 2 implies the existence of µ ∈ Rm such that ∇f(x̄) = A>µ. Setting

λ = −µ we get (17).

Example: Let Q ∈ Mn,n(R) be symmetric and positive definite, and c ∈ Rn. In the

framework of the previous proposition, suppose that f is given by

f(x) = 1
2〈Qx, x〉+ c

>
x ∀ x ∈ Rn,

and that A has m linearly independent columns. A classical linear algebra result states

that this is equivalent to the fact that the m lines of A are linearly independent. In

this case, we say that A has full rank.

Under the previous assumptions on Q, we have seen that f is strictly convex.

Moreover, the condition on the columns of A implies that Im(A) = Rm and, hence,

K 6= ∅. Now, by Proposition 3 the point x̄ solves (P ) iff x̄ ∈ K and there exists

λ ∈ Rm such that (17) holds. In other words, there exists λ ∈ Rm such that

Ax̄ = b, and Qx̄+ c+ A
>
λ = 0.
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The second equation above yields x̄ = −Q−1(c + A>λ) and, hence, by the first

equation, we get

AQ
−1
c+ AQ

−1
A
>
λ+ b = 0. (18)

Let us show that M := AQ−1A> is invertible. Indeed, since M ∈ Mm,m(R) it

suffices to show that My = 0 implies that y = 0. Now, let y ∈ Rm such that

My = 0. Then, 〈My, y〉 = 0 and, hence, 〈Q−1A>y,A>y〉 = 0, which implies,

since Q−1 is also positive definite, that A>y = 0. Now, since the columns of A> are

also linearly independent, we deduce that y = 0, i.e. M is invertible. Using this fact,

we can solve for λ in (18), obtaining

λ = −M−1
(
AQ

−1
c+ b

)
.

We deduce that

x̄ = −Q−1
(
c− A>M−1

(
AQ

−1
c+ b

))
, (19)

is the unique solution to this problem.
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Example: Let us now consider the projection problem

min 1
2‖x− y‖

2

s.t. Ax = b.

Noting that 1
2‖x− y‖

2 = 1
2‖x‖

2− y>x+ 1
2‖y‖

2, the previous problem has the same

solution than

min 1
2‖x‖

2 − y>x
s.t. Ax = b,

which corresponds to Q = In×n (the n × n identity matrix) and c = −y. Then,

(19) implies that the solution of this problem is given by

x̄ = (I − A>(AA
>

)
−1
A)y + A

>
(AA

>
)
−1
b.
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Note that if h ∈ Ker(A)

〈y − x̄, h〉 = 〈A>(AA>)−1Ay − A>(AA>)−1b, h〉

= 〈AA>)−1Ay − (AA>)−1b, Ah〉

= 0,

confirming (16).

� [Separation of a point and a closed convex set] We have the following result:

Proposition 4. Let K be a nonempty closed and convex set and let y /∈ K. Then,

there exists p ∈ Rn such that

〈p, x〉 < 〈p, y〉 ∀ x ∈ K.

Proof. Let x̄ ∈ K be the projection of y onto K. Let us define the affine function

`(x) := 〈y − x̄, x〉 − 〈y − x̄, x̄〉.

Then, the tangent plane to K at x̄ is given by Πx̄ := {x ∈ Rd | `(x) = 0}. Indeed,
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x̄ ∈ Πx̄ and, by (13), `(x) ≤ 0 for all x ∈ K. Now, since `(y) = ‖y − x‖2 > 0

(because y /∈ K), we deduce that `(x) < `(y) for all x ∈ K, which yields

〈y − x̄, x〉 < 〈y − x̄, y〉 for all x ∈ K. Setting p := y − x̄, we have proven the

result.

� [Cones and polar cones]

Definition 3. (i) A set C ⊆ Rn is a cone if

∀ h ∈ C, ∀ τ ≥ 0 we have τh ∈ C.

(ii) The set

C
◦

:= {u ∈ Rn | 〈u, h〉 ≤ 0 ∀ h ∈ C} ,
is called the polar cone of C.

The simplest example of a cone is any subspace V of Rn. In this case, V is a convex

cone and we have V ◦ = V ⊥, the orthogonal space to V . In particular, if ai ∈ Rn

(i = 1, . . . ,m), then, the set

C = {h ∈ Rn | 〈ai, h〉 = 0 ∀ i = 1, . . . ,m},
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which, denoting by A ∈ Mm,n(R) the matrix whose ith row is ai, can be written as

C = {h ∈ Rn | Ax = 0} = Ker(A),

is a convex cone and, as a consequence of Lemma 2, we have

C
◦

= Ker(A)
⊥

= Im(A
>

) =
{
A
>
λ | λ ∈ Rm

}
.

Now, suppose that C is given by

C = {h ∈ Rn | 〈ai, h〉 ≤ 0 ∀ i = 1, . . . ,m}.

Our purpose now is to compute C◦.

Lemma 3. Denote, as before, by A ∈ Mm×n(R) the matrix whose ith row is given

by ai. Then

C◦ =
{
A>λ | λ ∈ Rm, λi ≥ 0 ∀ i = 1, . . . ,m

}
,

= {
∑m

i=1 λiai | λi ≥ 0 ∀ i = 1, . . . ,m} .
(20)
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Proof. If λ ∈ Rm with λi ≥ 0 ∀ i = 1, . . . ,m, then for every h ∈ C we have

〈A>λ, h〉 = 〈λ,Ah〉 =

m∑
i=1

λi〈ai, h〉 ≤ 0,

and, hence, A>λ ∈ C◦. Now, denote by B the set on the right hand side of (20).

Clearly, B is convex and nonempty. Moreover, B can also be shown to be closed.

Suppose that u ∈ C◦ and u /∈ B. Then, by Proposition 4, there exists p ∈ Rn such

that

〈p, x〉 < 〈p, u〉 ∀ x ∈ B,
i.e.

〈p,A>λ〉 < 〈p, u〉 ∀ λ ∈ Rm, λi ≥ 0 ∀ i = 1, . . . ,m. (21)

Now, the previous inequality has the following two consequences:

(i) 〈p, u〉 > 0. Indeed, it suffices to take λ = 0 in (21).

(ii) 〈p, ai〉 ≤ 0 for all i = 1, . . . ,m. Indeed, fix i ∈ {1, . . . ,m} and γ > 0. By

taking

λ = (0, . . . , γ︷︸︸︷
i

, . . . , 0)
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in (21) we get γ〈p, ai〉 < 〈p, u〉 which implies that 〈p, ai〉 ≤ 0 (if this is not the

case, by taking γ large enough we get a contradiction).

From (i)-(ii), we conclude that p ∈ C and 〈p, u〉 > 0 which contradicts the fact that

u ∈ C◦.

Now, let us consider the case where C is defined by both linear equalities and

inequalities. Let ai ∈ Rn (i = 1, . . . ,m) and a′j ∈ Rn (j = 1, . . . , p). Suppose

that C is given by

C =

{
h ∈ Rn

∣∣∣∣ 〈ai, h〉 = 0 ∀ i = 1, . . . ,m

〈a′j, h〉 ≤ 0 ∀ j = 1, . . . , p

}
.

Lemma 4. We have

C
◦

=


m∑
i=1

λiai +

p∑
j=1

µja
′
j

∣∣∣∣ µj ≥ 0 ∀ j = 1, . . . , p

 .
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Proof. The set C can be written as

C =

h ∈ Rn
∣∣∣∣
〈ai, h〉 ≤ 0 ∀ i = 1, . . . ,m,

〈−ai, h〉 ≤ 0 ∀ i = 1, . . . ,m,

〈a′j, h〉 ≤ 0 ∀ j = 1, . . . , p

 .

Lemma 3 implies that u ∈ C◦ iff there exist α1 ≥ 0, β1 ≥ 0, . . . , αm ≥ 0, βm ≥ 0

and µ1 ≥ 0, . . . , µp ≥ 0 such that

u =
∑m

i=1 αiai +
∑m

i=1 βi(−ai) +
∑p

j=1 µja
′
j

=
∑m

i=1(αi − βi)ai +
∑p

j=1 µja
′
j.

The result follows by setting λi = αi − βi for all i = 1, . . . ,m.

� [Application to convex problems with affine equality and inequality constraints] Let

ai ∈ Rn, bi ∈ R (i = 1, . . . ,m), a′j ∈ Rn and b′j ∈ R (j = 1, . . . , p). Suppose
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that the constraint set K is given by

K =

{
x ∈ Rn

∣∣∣∣ 〈ai, x〉+ bi = 0 ∀ i = 1, . . . ,m,

〈a′j, x〉+ b′j ≤ 0 ∀ j = 1, . . . , p

}
. (22)

The main result in this section is the following.

Proposition 5. Suppose that f : Rn → R is convex and C1. Moreover, assume that

the constraint set K is nonempty and given by (22). Then, x̄ is a global solution to

(P ) iff x̄ ∈ K and there exist λ ∈ Rm, µ ∈ Rp such that

∇f(x̄) +
∑m

i=1 λiai +
∑p

j=1 µja
′
j = 0,

and ∀ j ∈ {1, . . . , p} we have µj ≥ 0, and µj(〈a′j, x̄〉+ b′j) = 0
(23)

Proof. Suppose that x̄ solves (P ). Then, by Theorem 11(ii), we have

〈∇f(x̄), x− x̄〉 ≥ 0 ∀ x ∈ K. (24)
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Now, let us define the set of active inequality constraints

I(x̄) =
{
j ∈ {1, . . . , p} | 〈a′j, x̄〉+ b

′
j = 0

}
,

and consider the set

C :=

{
h ∈ Rn

∣∣∣∣ 〈ai, h〉 = 0 ∀ i = 1, . . . ,m

〈a′j, h〉 ≤ 0 ∀ j ∈ I(x̄)

}
.

Let τ > 0 and h ∈ C. Then, we claim that x̄ + τh ∈ K if τ is small enough.

Indeed,

〈ai, x̄+ τh〉+ bi = 〈ai, x̄〉+ bi = 0 ∀ i = 1, . . . ,m,

〈a′j, x̄+ τh〉+ b′j ≤ 〈a
′
j, x̄〉+ b′j ≤ 0 ∀ j ∈ I(x̄),

〈a′j, x̄+ τh〉+ b′j = 〈a′j, x̄〉+ b′j + τ〈a′j, h〉 < 0 ∀ j ∈ {1, . . . , p} \ I(x̄),

where the last inequality holds because 〈a′j, x̄〉+b
′
j < 0 for all j ∈ {1, . . . , p}\I(x̄)

and we can pick τ small enough in order to ensure that 〈a′j, x̄〉+ b′j + τ〈a′j, h〉 < 0
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for all j ∈ {1, . . . , p} \ I(x̄). Indeed, it suffices to take τ > 0 such that

τ max
j∈{1,...,m}\I(x̄)

|〈a′j, h〉| < min
j∈{1,...,m}\I(x̄)

−〈a′j, x̄〉 − b
′
j.

Thus, by (24) we deduce that

〈∇f(x̄), h〉 ≥ 0 ∀ h ∈ C,

which means that

−∇f(x̄) ∈ C◦.
Thus, from Lemma 4 we get the existence of λ ∈ Rm, µ ∈ Rp, such that µj ≥ 0 for

all j ∈ {1, . . . , p}, µj = 0 for all j ∈ {1, . . . , p} \ I(x̄), and

−∇f(x̄) =
m∑
i=1

λiai +

p∑
j=1

µja
′
j.

Condition (23) follows directly from the previous relation. Conversely, assume that
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(x̄, λ, µ) satisfies (23) and define the function L(·, λ, µ) as

L(x, λ, µ) = f(x) +

m∑
i=1

λi(〈ai, x〉+ bi) +

p∑
j=1

µj(〈a′j, x〉+ b
′
j).

Then, L(·, λ, µ) is convex, C1, and satisfies

L(x, λ, µ) = f(x̄), and ∇xL(x̄, λ, µ) = 0.

Thus, using that for all x ∈ K we have L(x, λ, µ) ≤ f(x), we get

f(x̄) = L(x̄, λ, µ) + 〈∇xL(x̄, λ, µ), x− x̄〉 ≤ L(x, λ, µ) ≤ f(x),

for all x ∈ K, which implies that x̄ is a global solution to (P ).
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Example: Let us consider the projection problem

inf
x∈K

1
2‖x− y‖

2
,

where

K = {x ∈ Rn | x1 ≤ x2 ≤ . . . ≤ xn} .

Clearly K is nonempty, closed and convex. Therefore, the projection x̄ of y onto K
exists and it is unique. Let us define

a
′
j := (0, . . . , 1︷︸︸︷

j

, −1︷ ︸︸ ︷
j + 1

, . . . , 0), and b
′
j = 0.

Then,

K =
{
x ∈ Rn | 〈a′j, x〉+ b

′
j ≤ 0 ∀ j = 1, . . . , n− 1

}
.

By the previous proposition, x̄ solves (P ) iff x̄ ∈ K and there exists µ ∈ Rn−1 such
that (23) holds. Namely,
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x̄1 − y1 + µ1 = 0

x̄2 − y2 + µ2 − µ1 = 0

...

x̄n−1 − yn−1 + µn−1 − µn−2 = 0

x̄n − yn − µn−1 = 0

µi ≥ 0 µihi(x̄) = 0 ∀ i = 1, . . . , n− 1,

which is equivalent to

x̄1 − y1 ≤ 0

x̄2 + x̄1 − (y2 + y1) ≤ 0

...∑n−1
k=1

x̄k −
∑n−1
k=1

yk ≤ 0∑n
k=1 x̄k −

∑n
k=1 yk = 0,(∑i

k=1 x̄k −
∑i
k=1 yk

)
hi(x̄) = 0 ∀ i = 1, . . . , n− 1.
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Let us compute x̄ when n = 4 and y = (2, 1, 5, 4). In this case, we have

x̄1 − 2 ≤ 0

x̄2 + x̄1 − 3 ≤ 0

x̄3 + x̄2 + x̄1 − 8 ≤ 0

x̄4 + x̄3 + x̄2 + x̄1 − 12 = 0

(x̄1 − 2)(x̄1 − x̄2) = 0

(x̄2 + x̄1 − 3)(x̄2 − x̄3) = 0

(x̄3 + x̄3 + x̄1 − 8)(x̄3 − x̄4) = 0

The first two equations and the constraint x̄1 ≤ x̄2 imply that x̄1 = x̄2 < 2. Then,

taking x̄1 = x̄2 = 3/2, the second equation is satisfied, but the third inequality cannot

be satisfied with an equality and, hence, we take x̄3 = x̄4 and the fourth relation

yields x̄3 = x̄4 = 9/2. Thus, the point (x̄1, x̄2, x̄3, x̄4) = (3/2, 3/2, 9/2, 9/2)

satisfies the previous system and, hence, solves the projection problem.
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Optimization problems with equality and inequality
constraints

� [Abstract optimality condition] In this section we establish an abstract optimality

condition for the general problem (P ) with K being a nonempty closed set and

f : Rn → R being differentiable. We need first the following definition.

Definition 4. Let x̄ ∈ K. We say that h ∈ Rn is a tangent vector to K at x̄ if

there exist (τn)n∈N ⊆ R and (εn)n∈N ⊆ Rn such that

τn > 0 ∀ n ∈ N, τn
n→+∞−→ 0, εn

n→+∞−→ 0,

x̄+ τnh+ τnεn ∈ K ∀n ∈ N.
(25)

The set of tangent vectors to K at x̄ is called the tangent cone to K at x̄ and it is

denoted by TK(x̄).

67



Remark 5. (i) By definition h ∈ TK(x̄) iff there exists (τn)n∈N ⊆ R and

(hn)n∈N ⊆ Rn such that τn ≥ 0, τn
n→+∞−→ 0, hn

n→+∞−→ h, and x̄+ τnhn ∈ K for

all n ∈ N.

(ii) It is easy to see that TK(x̄) is indeed a closed cone.

Using this notion, we can prove the following result.

Theorem 12. [Abstract optimality condition] Suppose that x̄ ∈ K a local solution

to (P ) and that f is differentiable at x̄. Then,

〈∇f(x̄), h〉 ≥ 0 ∀ h ∈ TK(x̄).

Proof. Let h ∈ TK(x̄) and let (τn)n∈N and (hn)n∈N be as in Remark 5(i). Then, for

n large enough we have

f(x̄) ≤ f(x̄+ τnhn) = f(x̄) + τn〈∇f(x̄), hn〉+ τn‖hn‖εx̄(τnhn),

which yields

〈∇f(x̄), hn〉+ ‖hn‖εx̄(τnhn) ≥ 0.
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Therefore, letting n→∞, we get

〈∇f(x̄), h〉 ≥ 0,

from which the result follows.

Now, we need the following definition

Definition 5. The normal cone NK(x̄) to K at x̄ ∈ K is defined by

NK(x̄) := (TK)
◦
.

Corollary 1. Suppose that x̄ ∈ K a local solution to (P ) and that f is differentiable

at x̄. Then,

−∇f(x̄) ∈ NK(x̄).

� [Optimization problems with equality and inequality constraints] We suppose now that

the constraint system is given by

K := {x ∈ Rn | gi(x) = 0, ∀ i = 1, . . . ,m, hj(x) ≤ 0 ∀ j = 1, . . . , p} ,
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where gi : Rn → R (i = 1, . . . ,m), and hj : Rn → R (j = 1, . . . , p) are

differentiable functions. In this case, Problem (P ) is usually written as

min f(x)

s.t. gi(x) = 0, ∀ i = 1, . . . ,m,

hj(x) ≤ 0, ∀ j = 1, . . . , p.

Let x̄ ∈ K and set

I(x̄) := {j ∈ {1, . . . , p} | hj(x̄) = 0} ,

for the set of indexes of active inequality constraints at x̄.

Let us study the tangent cone TK(x̄).
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Lemma 5. The following inclusion holds

TK(x̄) ⊆
{
h ∈ Rn

∣∣∣∣ 〈∇gi(x̄), h〉 = 0 ∀ i = 1, . . . ,m,

〈∇hj(x̄), h〉 ≤ 0 ∀ j ∈ I(x̄)

}
. (26)

Proof. Let h ∈ TK(x̄) and let (τn)n∈N and (hn)n∈N be as in Remark 5(i). Then,

for every i = 1, . . . ,m, we have

0 = gi(x̄+ τnhn) = gi(x̄) + τn〈∇gi(x̄), hn〉+ τn‖hn‖εgi,x̄(τnhn)

= τn〈∇gi(x̄), hn〉+ τn‖hn‖εgi,x̄(τnhn).

Then, dividing by τn and letting n→∞, we get

〈∇gi(x̄), h〉 = 0.

Similarly, for every j ∈ I(x̄),

0 ≥ hj(x̄+ τnhn) = hj(x̄) + τn〈∇hj(x̄), hn〉+ τn‖hn‖εhj,x̄(τnhn)

= τn〈∇hj(x̄), hn〉+ τn‖hn‖εhj,x̄(τnhn).
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Then, dividing by τn and letting n→∞, we get

〈∇hj(x̄), h〉 ≤ 0.

The result follows.

Unfortunately, the converse inclusion does not always hold.

Example: Consider the set

K :=
{

(x, y) ∈ R2 | x2 − y3
= 0, −x ≤ 0

}
.

Then, it is easy to see that TK((0, 0)) = {(0, γ) | γ ≥ 0} and the right hand side

of (26) is given by {
(h1, h2) ∈ R2 | h1 ≥ 0

}
.

Definition 6. (i) We say that the constraint functions gi (i = 1, . . . ,m) and hj
(j = 1, . . . , p) are qualified at x̄ if

TK(x̄) =

{
h ∈ Rn

∣∣∣∣ 〈∇gi(x̄), h〉 = 0 ∀ i = 1, . . . ,m,

〈∇hj(x̄), h〉 ≤ 0 ∀ j ∈ I(x̄)

}
. (27)
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(ii) Any condition ensuring that the constraint functions are qualfied is called a

constraint qualification condition.

Remark 6. In general, the qualified character of the constraints is not a geometrical

property of the set K. Indeed, consider the set

K =
{

(x, y) ∈ R2 ∣∣ y − x2
= 0
}
,

which can also be written as

K =
{

(x, y) ∈ R2 ∣∣ y2 − x4
= 0, −y ≤ 0

}
.

Then, it is easy to check that the constraint functions are qualified at (0, 0) in the

first formulation but they are not qualified at (0, 0) in the second one.

� [The Karush-Kuhn-Tucker theorem] The main result here is the following first order

optimality condition.
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Theorem 13. [Karush-Kuhn-Tucker] Let x̄ ∈ K be a local solution to (P ).

Assume that f , gi (i = 1, . . . ,m), hj (j = 1, . . . , p) are C1 and that the

constraint functions are qualified at x̄. Then, there exist (λ1, . . . , λm) ∈ Rm

and (µ1, . . . , µp) ∈ Rp such that

∇f(x̄) +
∑m

i=1 λi∇gi(x̄) +
∑p

j=1 µj∇hj(x̄) = 0,

and ∀ j ∈ {1, . . . , p} we have µj ≥ 0, and µjhj(x̄) = 0.
(28)

Equivalently, setting g(x) = (g1(x), . . . , gm(x)) and h = (h1(x), . . . , hp(x))

for all x ∈ Rn, there exists λ ∈ Rm and µ ∈ Rp such that

∇f(x̄) +Dg(x̄)>λ+Dh(x̄)>µ = 0,

and ∀ j ∈ {1, . . . , p} we have µj ≥ 0, and µjhj(x̄) = 0.
(29)

Proof. Since the constraint functions are qualified at x̄, by Lemma 4 we have that

NK(x̄) =


m∑
i=1

λi∇gi(x̄) +
∑
j∈I(x̄)

µj∇hj(x̄)

∣∣∣∣ λi ∈ R ∀ i = 1, . . . ,m,

µj ≥ 0 ∀ j ∈ I(x̄)

 .
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Then, by Corollary 1, there exist λi ∈ R (i = 1, . . . ,m) and µj ≥ 0 (j ∈ I(x̄))

such that

−∇f(x̄) =

m∑
i=1

λi∇gi(x̄) +
∑
j∈I(x̄)

µj∇hj(x̄).

Relation (28) follows by setting µj = 0 for all j ∈ {1, . . . , p} \ I(x̄).

Let g(x) = (g1(x), . . . , gm(x)) and h(x) = (h1(x), . . . , hp(x)). The Lagrangian

L : Rn × Rm × Rp → R is defined by

L(x, λ, µ) = f(x) + 〈λ, g(x)〉+ 〈µ, h(x)),

and, at a local solution x̄, the optimality system (29) reads: there exists (λ, µ) ∈ Rm+p

such that

∇xL(x̄, λ, µ) = 0,

and ∀ j ∈ {1, . . . , p} we have µj ≥ 0, and µjhj(x̄) = 0.
(30)

System (30) is usually called KKT system and (λ, µ) are called Lagrange multipliers.
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[The KKT system as a sufficient condition for convex problems] The KKT condition is

also sufficient for convex problems.

Proposition 6. Suppose that f is convex and C1, gi(x) = 〈ai, x〉+bi, for ai ∈ Rn,

bi ∈ R (i = 1, . . . ,m), and hj (j = 1, . . . , p) is convex and C1. Moreover,

assume that there exists (x̄, λ, µ) ∈ Rn+m+p such that x̄ ∈ K and the KKT

system (30) holds at (x̄, λ, µ). Then x̄ is a global solution to (P ).

Proof. Note that L(x̄, λ, µ) = f(x̄) and that L(·, λ, µ) is convex. Then, for any

x ∈ K,

f(x̄) = L(x̄, λ, µ) + 〈∇xL(x̄, λ, µ), x− µ〉 ≤ L(x̄, λ, µ)

= f(x) +
∑m

i=1 λigi(x)

+
∑p

j=1 µjhj(x)

≤ f(x),

which implies that x̄ is a global solution to (P ).

Note that no qualification condition is needed in Proposition 6.
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Remark 7. (i) [Equality constraints only] Suppose that we only have equality

constraints. Then, if x̄ ∈ K solves (P ) and the constraint functions are qualified at

x̄, then there exists λ ∈ Rm such that

∇f(x̄) +

m∑
i=1

λi∇gi(x̄) = 0.

In this case the Lagrangian is given by L(x, λ) = f(x)+ 〈λ, g(x)〉, and the previous

relation can be written as

∇xL(x̄, λ) = 0. (31)

(ii) [Inequality constraints only] Suppose that we only have inequality constraints.

Then, if x̄ ∈ K solves (P ) and the constraint functions are qualified at x̄, then there

exists µ ∈ Rp such that

∇f(x̄) +
∑p

j=1 µj∇hj(x̄) = 0,

µj ≥ 0 and µjhj(x̄) = 0 ∀ j = 1, . . . , p.
(32)

In this case the Lagrangian is given by L(x, µ) = f(x)+ 〈µ, h(x)〉, and the previous
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relation can be written as

∇xL(x̄, µ) = 0,

µj ≥ 0 and µjhj(x̄) = 0 ∀ j = 1, . . . , p.

(iii) [Maximization problems] Consider the maximization problem

max f(x)

s.t. gi(x) = 0, ∀ i = 1, . . . ,m,

hj(x) ≤ 0, ∀ j = 1, . . . , p.

In this case, if x̄ is a local solution and the constraint functions are qualified at x̄, then

there exists λ ∈ Rm and µ ∈ Rp such that

−∇f(x̄) +Dg(x̄)>λ+Dh(x̄)>µ = 0,

and ∀ j ∈ {1, . . . , p} we have µj ≥ 0, and µjhj(x̄) = 0.
(33)

It is important to notice that, differently from the case where only equality constraints

were present, when inequality constraints are present the optimality system for local
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solutions of the minimization and maximization problems differ. The coincidence of

both optimality systems is generally false and it is a specific feature of the problem

with equality constraints and of the unconstrained problem.

(iv) The following example shows that the assumption on the qualification of the

constraints plays an important role in the necessary condition. Consider the problem

min y

s.t. x2 − y3 = 0,

−x ≤ 0.

In this case, (x̄, ȳ) = (0, 0) is a global solution and (29) reads(
0

1

)
+ λ

(
2x

−3y2

) ∣∣∣∣
(x,y)=(0,0)

+ µ

(
−1

0

)
=

(
0

0

)
,

which is impossible. Note that ∇g1(0, 0) = (0, 0) and ∇h1(0, 0) = (−1, 0).

Therefore,

{h ∈ R2 |〈∇g1(0, 0), h〉 = 0, 〈∇h1(0, 0), h〉 ≤ 0} = {h ∈ R2 | h1 ≥ 0},
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and TK(0, 0) = {h ∈ R2 |h1 = 0, h2 ≥ 0}. Thus, g1 and h1 are not qualified at

(0, 0).

� [On constraint qualifications] Let us now comment on some well-known constraint

qualifications. The first two conditions are easy to check but they can be applied only

when K is convex.

• [Affine constraints] If gi(x) = 〈ai, x〉 + bi for all i = 1, . . . ,m, and hj(x) =

〈a′j, x〉 + b′j for all j = 1, . . . ,m, where ai ∈ Rn, a′j ∈ Rn, bi ∈ R and b′j ∈ R,

then the constraint functions are qualified at every x ∈ K.

• [Slater condition] If gi(x) = 〈ai, x〉 + bi for all i = 1, . . . ,m, with ai ∈ Rn and

bi ∈ R, and, for all j = 1, . . . , p, the function hj is convex, then the constraint

functions are qualified at every x ∈ K if the following condition holds:

There exists x0 ∈ Rn such that gi(x0) = 0 ∀i = 1, . . . ,m,

and hj(x0) < 0 ∀j = 1, . . . , p.
(SLC)

The following two conditions are more general but, at the same time, they are more
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difficult to check.

• [Mangasarian-Fromovitz] The constraint functions are qualified at x̄ ∈ K if the

following conditions hold:

(i) the set of vectors {∇g1(x̄), . . . ,∇gm(x̄)} are linearly independent.

(ii) there exists d̄ ∈ Ker(Dg(x̄)) such that

∇hj(x̄) · d̄ < 0 ∀ j ∈ I(x̄).

(MF )

• [Linear independence constraint qualification] The constraint functions are qualified at

x̄ ∈ K if the following condition holds: the vectors{
(∇gi(x̄))

m
i=1, (∇hj(x̄))j∈I(x̄)

}
are linearly independent. (LICQ)

Remark 8. [On (LICQ) and the uniqueness of Lagrange multipliers] It is easy to

check that (LICQ) implies (MF ), but the converse is false. Moreover, it is easy to

check that (LICQ) implies that there exist at most one (λ, µ) ∈ Rm+p such that
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(28) holds. In general, (MF ) only implies that the set of (λ, µ) ∈ Rm+p such that

(28) is a compact set.

� [Some examples] In the first example, we consider a problem where K is defined by

equality constraints only.

Example: Let us consider the problem

min xy

s.t. x2 + (y + 1)2 = 1.

In this case f : R2 → R, is given by f(x, y) = xy, and K = {(x, y) ∈
R2 | g(x, y) = 0}, with g : R2 → R being given by g(x, y) = x2 + (y+ 1)2− 1.

Note that K is given by the cercle centered at (0,−1) with radius 1. Hence, K is

a compact subset of R2. The function f being continuous, the Weierstrass theorem

implies that the optimization problem has at least one solution (x̄, ȳ) ∈ K.

Let us study the qualification condition (MF ) (when only equality constraints are

present). We have ∇g(x, y) = (2x, 2(y + 1)) and, hence, ∇g(x, y) = 0 iff
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x = 0, y = −1. Thus, every (x, y) ∈ R2 \ {(0,−1)} satisfies (MF ). Since

(0,−1) /∈ K we deduce that (MF ) holds for every (x, y) ∈ K.

The Lagrangian L : R2 × R→ R of this problem is given by

L(x, y, λ) = xy + λ(x
2

+ (y + 1)
2 − 1).

By Theorem 13, we have the existence of λ ∈ R such that (31) holds at (x̄, ȳ, λ).

Now,

∇(x,y)L(x̄, ȳ, λ) = 0 ⇔ ȳ + 2λx̄ = 0,

x̄+ 2λ(ȳ + 1) = 0,

⇔ ȳ = −2λx̄,

(1− 4λ2)x̄ = −2λ.

(34)

Now, 1 − 4λ2 = 0 iff λ = 1/2 or λ = −1/2, and both cases contradict the last

equality above. Therefore, 1− 4λ2 6= 0 and, hence,

x̄ =
2λ

4λ2 − 1
and ȳ =

−4λ2

4λ2 − 1
.
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Since ∇λL(x̄, ȳ, λ) = g(x̄, ȳ) = 0, we get(
2λ

4λ2−1

)2

+
(

1− 4λ2

4λ2−1

)2

= 1,

⇔ 4λ2 + 1 = (4λ2 − 1)2

⇔ (4λ2 − 1)2 − (4λ2 − 1)− 2 = 0,

which yields

4λ2 − 1 = 1+
√

9
2 or 4λ2 − 1 = 1−

√
9

2

i.e. λ2 = 3/4 or λ2 = 0.

If λ = 0, then (34) yields x̄ = ȳ = 0. If λ =
√

3/2 we get x̄ =
√

3/2 and

ȳ = −3/2. If λ = −
√

3/2 we get x̄ = −
√

3/2 and ȳ = −3/2. Thus, the

candidates to solve the problem are

(x̄1, ȳ1) = (0, 0), (x̄2, ȳ2) = (
√

3/2,−3/2) and (x̄3, ȳ3) = (−
√

3/2,−3/2).

We have f(x̄1, ȳ1) = 0, f(x̄2, ȳ2) = −3
√

3/4 and f(x̄3, ȳ3) = 3
√

3/4.

Therefore, the global solution is (x̄2, ȳ2). �
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In the second example, we consider a problem where K is defined by inequality

constraints only.

Example: Consider the problem

min 4x2 + y2 − x− 2y

s.t. 2x+ y ≤ 1,

x2 ≤ 1.

Note that, setting Q =

(
8 0

0 2

)
and c =

(
−1

−2

)
, in the notation for (P ) we

have
f(x) = 1

2〈Q(x, y), (x, y)〉+ c>(x, y)

h1(x, y) = 2x+ y − 1

h2(x, y) = x2 − 1.

Note that the feasible set is nonempty, convex, closed and the Slater condition is

satisfied (for instance h1(0, 0) < 0, h2(0, 0) < 0). Moreover, f is continuous,

strictly convex, differentiable and infinity at the infinity (Q is positive definite). We
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deduce that there exists a unique solution (x̄, ȳ) ∈ R2 to problem (P ) and (x̄, ȳ) is

characterized by the KKT system (32). A point (x̄, ȳ, µ1, µ2) satisfies (32) iff

Q

(
x̄

ȳ

)
+ c+ µ1

(
2

1

)
+ µ2

(
2x̄

0

)
=

(
0

0

)
,

µ1 ≥ 0, µ2 ≥ 0, µ1h1(x̄, ȳ) = 0, µ2h2(x̄, ȳ) = 0,

iff
8x̄+ 2µ1 + 2µ2x̄ = 1

2ȳ + µ1 = 2,

µ1 ≥ 0, µ2 ≥ 0, µ1h1(x̄, ȳ) = 0, µ2h2(x̄, ȳ) = 0,

Case 1: µ1 = µ2 = 0. We obtain (x̄, ȳ) = (1/8, 1) /∈ K.

Case 2: µ1 > 0, µ2 > 0. In this case, we obtain 2x̄ + ȳ = 1, x̄2 = 1, which gives

(x̄, ȳ) = (1,−1) or (x̄, ȳ) = (−1, 3). In the first case, we should have

2µ1 + 2µ2 = −7,
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which is impossible, because µ1 > 0 and µ2 > 0. In the second case, we should have

6 + µ1 = 2, which is also impossible.

Case 3: µ1 = 0, µ2 > 0. We obtain x̄2 = 1 and ȳ = 1, which gives (x̄, ȳ) = (1, 1)

or (x̄, ȳ) = (−1, 1). If (x̄, ȳ) = (1, 1) we should have 8 + 2µ2 = 1, which is

impossible. If (x̄, ȳ) = (−1, 1), we should have −8 − 2µ2 = 1, which is also

impossible.

Case 4: µ1 > 0, µ2 = 0. We obtain

2x̄+ ȳ = 1,

8x̄+ 2µ1 = 1

2ȳ + µ1 = 2

which implies
2x̄+ ȳ = 1,

8x̄− 4ȳ = −3,

which gives (x̄, ȳ) = (1/16, 7/8) and µ1 = 1/4. This point (x̄, ȳ) belongs to

K. Therefore, we conclude that (x̄, ȳ, µ1, µ2) = (1/16, 7/8, 1/4, 0) is the unique

solution to the KKT system, and, hence, (x̄, ȳ) = (1/16, 7/8) is the unique global
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solution to (P ).
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Dynamic programming in discrete time: the finite
horizon case

� [Introduction: Shortest path between two vertices A and E on a graph] Consider a

salesman who has to go from city A to city E according to the following graph

The data in the graph G are

• For every vertex x we denote by Γ(x) the set of successors. For instance,

Γ(B) = {C,C ′}.
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• The “travel time” (in hours) F (x, x′) of each V ′ ∈ Γ(x). For instance,

F (C ′, D) = 2.

• In order to compute the shortest path one could enumerate all the paths and choose

the one with the smaller travel time.

• However, it is more convenient to notice that if a path is optimal between A and E,

and this path passes through a vertex x, then the “sub-path” between x and E will be

optimal for the shortest path problem between x and E.

• This suggest to parametrize the optimal travel time by the departure point. Let us set
V (x) as the smallest time needed to go from x to E. Then,

V (E) = 0,

V (D) = 5, V (D′) = 2,

V (C) = 6, V (C′) = min{2 + V (D), 1 + V (D′)} = 3, V (C′′) = 3,

V (B) = min{2 + V (C), 1 + V (C′)} = 4, V (B′) = min{2 + V (C′), 4 + V (C′′)} = 5,

V (A) = min{1 + V (B), 1 + V (B′)} = 5.

• We deduce that the shortest travel time is V (A) = 5 and the shortest path is

ABC ′D′E.
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� [The general framework] We are interested in the problem

sup
(xt)

{
T−1∑
t=0

Ft(xt, xt+1) + FT (xT )

}
, (Pfh)

where

• xt ∈ X for all t = 0, . . . , T . The set X is called the state space.

• xt+1 ∈ Γt(xt) for all t = 0, . . . , T − 1. For all x ∈ X, and t = 0, . . . , T − 1,

Γt(x) is a nonempty subset of X.

• Ft(xt, xt+1) denotes the profit at time t for the pair (xt, xt+1), and FT (xT ) denotes

the final profit for the final state xT . Notice that redefining FT−1(xT−1, xT ) as

F̃T−1(xT−1, xT ) = FT−1(xT−1, xT ) + FT (xT ),

we can assume, without loss of generality, that FT ≡ 0.

� [Dynamic Programming relation] As in the shortest path problem, it is a good idea

to parametrize problem (Pfh). Given, (k, x) ∈ {1, . . . , T − 1} × X, the value
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function at (k, x) is defined as

V (k, x) = sup

{
T−1∑
t=k

Ft(xt, xt+1) | xk = x, xt+1 ∈ Γt(xt) ∀ t = k, . . . , T − 1

}
.

(35)

For k = T and x ∈ X, we set V (T, x) = 0 (recall that we have a zero final cost).

The main result here is the following

Theorem 14. [Dynamic Programming] The following relations holds:

V (k, x) = sup {Fk(x, xk+1) + V (k + 1, xk+1) | xk+1 ∈ Γk(x)} ,

∀ k = 0, . . . , T − 1, x ∈ X.

V (T, x) = 0 ∀ x ∈ X.

(36)

Proof. Let (xk, xk+1, . . . , xT ) be a feasible sequence for the problem defining
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V (k, x), i.e. xk = x and xt+1 ∈ Γt(xt), for all t = k, . . . , T − 1. Then,

V (k, x) ≥
T−1∑
t=k

Ft(xt, xt+1) = Ft(x, xk+1) +

T−1∑
t=k+1

Ft(xt, xt+1).

Using that the previous inequality holds for any (xk+1, . . . , xT ) such that xt+1 ∈
Γt(xt), for all t = k+ 1, . . . , T − 1, by taking the supremum of the right hand side

with respect to those (xk+1, xk+2, . . . , xT ), we get

V (k, x) ≥ Ft(x, xk+1) + V (k + 1, xk+1)

Therefore, by taking the supremum with respect to xk+1 ∈ F (xk), we get

V (k, x) ≥ sup {Fk(x, xk+1) + V (k + 1, xk+1) | xk+1 ∈ Γk(x)} .

Conversely, for any (x′k, x
′
k+1, . . . , x

′
T ) such that x′k = x and x′t+1 ∈ Γt(x

′
t), for all
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t = k, . . . , T − 1, we have∑T−1
t=k Ft(x

′
t, x
′
t+1) = Ft(x

′, x′k+1) +
∑T−1

t=k+1 Ft(x
′
t, x
′
t+1)

≤ Ft(x, x
′
k+1) + V (k + 1, x′k+1)

≤ sup
{
Fk(x, xk+1) + V (k + 1, xk+1)

∣∣ xk+1 ∈ Γk(x)
}
.

Using that (x′k, x
′
k+1, . . . , x

′
T ) is an arbitrary admissible sequence, by taking the

supremum on the left hand side, we get

V (k, x) ≤ sup {Fk(x, xk+1) + V (k + 1, xk+1) | xk+1 ∈ Γk(x)} .

The result follows.

� [Backward solution] By Theorem 14, we can solve backward for V using relations (36).

In particular, (36) characterizes the value function V . Now, et us assume that for all

(k, x) ∈ {0, . . . , T − 1} ×X there exists s(k, x) ∈ Γk(x) such that

V (k, x) = Fk(x, s(k, x)) + V (k + 1, s(k, x)).
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Then, by the very definition we have that (xk, xk+1, . . . , xT ), with

xk = x and xt+1 := s(t, xt) ∀ t = k, . . . , T − 1,

solves the problem in the right hand side of (35). In particular, this problem admits a

solution if

• X ⊆ Rn.

• For all (k, x) ∈ {0, . . . , T − 1} ×X the set Γt(x) is nonempty and compact,

• and Ft and V (t, ·) are continuous for all t = k, . . . , T − 1.

Remark 9. Under the previous assumptions, V (t, ·) (t = 0, . . . , T −1) is continuous

if Fk and Γk are continuous for all k = t . . . , T −1. Concerning the latter continuity,

we recall that the correspondence Γk is called continuous at x ∈ X if the following

conditions hold:

(i) [Lower semicontinuity] For every y ∈ Γ(x) and every sequence (xn)n∈N such that

xn → x, as n→∞, there exists a sequence (yn)n∈N such that yn ∈ Γk(xn), for all
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n ∈ N, and yn → y as n→∞.

(ii) [Upper semicontinuity] If (xn)n∈N and (yn)n∈N are two sequences such that xn → x,

as n→∞, and yn ∈ Γk(xn), for all n ∈ N, then (yn)n∈N has a subsequence which

converges to a point y ∈ Γk(x).

Example: Let y ≥ 0 and consider the problem

inf

{
N∑
i=1

x
2
i |

N∑
i=1

xi = y, xi ≥ 0 ∀ i = 1, . . . , N

}
. (37)

• Let us solve (37) by using nonlinear programming tools. Note first that the cost

function is continuous, strictly convex and the feasible set is nonempty, convex and

compact. Therefore, there exists a unique solution x̄ to (37). Since the set K is defined

by affine-constraints, x̄ is characterized by the KKT system. Consider the Lagrangian

L : RN × R× RN → R defined by

L(x, λ, µ) =
N∑
i=1

x
2
i + λ

(
N∑
i=1

xi − y
)
−

N∑
i=1

µixi.
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Then, (x̄1, . . . , x̄N) is characterized by the existence of λ ∈ R and µ ∈ RN such

that
∂xiL(x, λ, µ) = 2x̄i + λ− µi = 0 ∀ i = 1, . . . , N.∑N

i=1 x̄i = y

µi ≥ 0 and µixi = 0 ∀ i = 1, . . . , N.

(38)

If y = 0, the only feasible point is xi = 0 for all i = 0, . . . , N and, hence,

x̄ = (0, . . . , 0) is the solution. If y > 0 and there exists î ∈ {1, . . . , N} such

that x̄î = 0, then, the first equation in (38) yields λ = µî ≥ 0. On the other hand,

there must exist i′ ∈ {1, . . . , N} such that x̄i′ > 0 (otherwise
∑

i x̄i = y, x̄i ≥ 0

for all i ∈ {1, . . . , N} would not hold). The first and third equation in (38) imply

that λ = −2x̄i′ < 0, which is a contradiction. As a consequence, x̄i > 0 for all

i ∈ {1, . . . , N}. Then, the first and the second conditions in (38) yield x̄i = y/N

for all i ∈ {1, . . . , N}. Thus,

x̄ = (y/N, . . . , y/N) is the solution to the problem and the optimal cost is y
2
/N.

• Let us find the same conclusion by using dynamic programming techniques. Let us
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define

V (k, y) := inf

{
N∑
i=k

x
2
i

∣∣∣∣ N∑
i=k

xi = y, xi ≥ 0 ∀ i = k, . . . , N

}
.

Note that we are interested in V (1, y). Notice that the problem defining V (1, y) has

not the form discussed in the previous subsection. However, arguing as in the proof of

Theorem 14, we can prove that (exercise)

V (k, y) = inf
{
x2
k + V (k + 1, y − xk) | 0 ≤ xk ≤ y

}
∀ y ≥ 0,

V (N, y) = y2 ∀ y ≥ 0.
(39)

Solving backwards, we get

V (N − 1, y) = inf
{
x2
N−1 + V (N, y − xN−1) | 0 ≤ xN−1 ≤ y

}
= inf

{
x2
N−1 + (y − xN−1)

2 | 0 ≤ xN−1 ≤ y
}
.

From the last expression we get s(N − 1, y) = y/2 and V (N − 1, y) = y2/2.
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Similarly,

V (N − 2, y) = inf
{
x2
N−2 + V (N − 1, y − xN−2) | 0 ≤ xN−2 ≤ y

}
= inf

{
x2
N−2 +

(y−xN−2)2

2

∣∣ 0 ≤ xN−2 ≤ y
}
,

from which we get s(N − 2, y) = y/3, and V (N − 2, y) = y2/3. Recursively, for

all k = 1, . . . , N we get

s(k, y) = y/(N − k + 1) and V (k, y) = y
2
/(N − k + 1).

Thus, we recover V (1, y) = y2/N for the optimal cost and, adapting the definition of
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successor according to the dynamic programming principle (39), for the solution we get

x1 = s(1, y) = y/N,

x2 = s(2, y − x1) = (y − y/N)/(N − 1) = y/N,

x3 = s(3, y − x1 − x2) = y(1− 2/N)/(N − 2) = y/N,
...

xN = s
(
N, y −

∑N−1
i=1 xi

)
= y/N.

recovering our previous result.

Another way to tackle the problem is to perform a change of variable in order to be in

the framework of the previous subsection.

Let us define

zi :=

N−i∑
j=1

xj ∀ i = 0, . . . , N − 1.

Then, z0 = y, zN−1 = x1 and zi − zi+1 = xN−i for all i = 0, . . . , N − 2. Then,
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problem (37) can be written as

inf

{
N−2∑
i=0

(zi+1 − zi)2
+ z

2
N−1 | z0 = y, 0 ≤ zi+1 ≤ zi ∀ i = 0, . . . , N − 2

}
.

By applying Theorem 14 to the problem above, we can also recover the desired solution

(exercise).
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Dynamic programming in discrete time: the infinite
horizon case

� [Introduction: A model of optimal growth] We consider an economy where at each

period t a single good is produced. This good can be used for consumption or for

investment. At period t we denote by ct the consumption, by it the investment, by

kt the capital and by yt the production of the good. By assuming that yt = F (kt),

for some production function F , and that the capital depreciates at constant rate

δ ∈ (0, 1), we get the following relations

ct + it = yt = F (kt) and kt+1 = (1− δ)kt + it.

Thus, setting f(kt) = F (kt) + (1− δ)kt, we obtain

ct = F (kt) + (1− δ)kt − kt+1 = f(kt)− kt+1.

Naturally, we impose ct ≥ 0 and kt ≥ 0, conditions which imply 0 ≤ kt+1 ≤ f(kt).
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Finally, the preference over consumption is supposed to have the form

∞∑
t=0

β
t
U(ci) for some discount factor β ∈ (0, 1),

and some utility function U . For a given initial capital k0 > 0, the utility maximization

problem is
sup

∑∞
t=0 β

tU(f(kt)− kt+1)

s.t. 0 ≤ kt+1 ≤ f(kt).

� [The mathematical framework] For β ∈ (0, 1), we consider the problem

sup
(xt)

∞∑
t=0

β
t
F (xt, xt+1), (Pih)

where

• xt ∈ X for all t ≥ 0, with X being a given set and x0 ∈ X being prescribed.
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• xt+1 ∈ Γ(xt), where, for all x ∈ X, Γ(x) is a nonempty subset of X.

• F (xt, xt+1) denotes the profit for the pair (xt, xt+1). In this section F is assumed to

be bounded.

� [Dynamic Programming equation] Given x ∈ X, we define the value function

V (x) := sup

{ ∞∑
t=0

β
t
F (xt, xt+1)

∣∣∣∣ x0 = x, xt+1 ∈ Γ(xt) ∀ t ≥ 0

}
.

A first important consequence of our assumptions is that V : X → R is well-defined.

The main result here is the following

Theorem 15. [Dynamic Programming] For all x ∈ X we have

V (x) = sup {F (x, x1) + βV (x1) | x1 ∈ Γ(x)} . (40)

Proof. The proof is similar to the proof of Theorem 15. Indeed, for any admissible
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sequence (xt)t≥0 we have

V (x) ≥
∑∞

t=0 β
tF (xt, xt+1)

= F (x, x1) + β
∑∞

t=1 β
t−1F (xt, xt+1),

= F (x, x1) + β
∑∞

t=0 β
tF (xt+1, xt+2).

(41)

Now, let us fix x1 ∈ Γ(x). Note that if (x′t)t≥1 is an admissible sequence for

the problem defining V (x1), then x, x′1, x
′
2, x

′
3, ... is an admissible sequence for the

problem defining V (x). This remark and (41) imply

V (x) ≥ F (x, x1) + βV (x1),

and, hence, since x1 ∈ Γ(x) is arbitrary, we get

V (x) ≥ sup
{
F (x, x1) + βV (x1)

∣∣ x1 ∈ Γ(x)
}
.

Conversely, for any admissible sequence (x′t)t≥0 for the problem defining V (x), we
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have∑∞
t=0 β

tF (x′t, x
′
t+1) = F (x, x′1) + β

∑∞
t=0 β

tF (x′t+1, x
′
t+2),

≤ F (x, x′1) + βV (x′1)

≤ sup
{
F (x, x1) + βV (xt+1)

∣∣ x1 ∈ Γ(x)
}
.

We conclude that

V (x) ≤ sup
{
F (x, x1) + βV (x1)

∣∣ x1 ∈ Γ(x)
}
.

Relation (40) follows.

Remark 10. (i) Differently from the finite horizon case, in which the dynamic

programming relations characterize the value function, in general equation (40) can

have more than one solution. However, under our boundedness assumption on F ,

which in practice are rather restrictive, it is possible to show that the functional

equation (40) admits a unique solution. As a consequence (40) characterizes the value

function V .
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Moreover, this solution can be computed as the limit of the following sequence of

functions

V
`+1

(x) = sup
{
F (x, xt+1) + βV

`
(xt+1)

∣∣ xt+1 ∈ Γ(x)
}
, ∀ x ∈ X,

with V 0 : X → R being arbitrary.

(ii) If in addition we assume that X is a compact subset of Rn, Γ(x) closed for all

x ∈ X, and that F and the correspondence Γ are continuous, then the value function

V can also be shown to be continuous. In particular, for every x ∈ X, there exists

s(x) ∈ Γ(x) such that

V (x) = F (x, s(x)) + βV (s(x)).

As a consequence, the sequence defined recursively by x̄0 = x, x̄t+1 = s(x̄t) for all

t ≥ 0 solves the problem defining V (x).
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