Lectures on optimization Basic camp

Francisco J. Silva
Université de Limoges
francisco.silva@unilim.fr
http://www.unilim.fr/pages_perso/francisco.silva/

August 2019

Contents of the course

1.- Some mathematical preliminaries.
2.- Unconstrained optimization.
3.- Optimization with constraints
3.1.- Convex problems.
3.2.- Optimization problems with equality and inequality constraints.

Definition of an optimization problem

\diamond An optimization problem has the form

$$
\begin{equation*}
\text { Find } \bar{x} \in \mathbb{R}^{n} \text { such that } \quad f(\bar{x})=\min \{f(x) \mid x \in \mathcal{K}\} \tag{P}
\end{equation*}
$$

where $\mathcal{K} \subseteq \mathbb{R}^{n}$ is a given set. By definition, this mean to find $\bar{x} \in \mathcal{K}$ such that

$$
f(\bar{x}) \leq f(x) \forall x \in \mathcal{K}
$$

\diamond In the above, f is called an objective function, \mathcal{K} is called a feasible set (or constraint set) and any \bar{x} solving (P) is called a global solution to problem (P).
\diamond Usually one also considers the weaker notion, but easier to characterize, of local solution to problem (P). Namely, $\bar{x} \in \mathcal{K}$ is a local solution to (P) if there exists $\delta>0$ such that $f(\bar{x}) \leq f(x)$ for all $x \in \mathcal{K} \cap B(\bar{x}, \delta)$, where

$$
B(\bar{x}, \delta):=\left\{x \in \mathbb{R}^{n} \mid\|x-\bar{x}\| \leq \delta\right\}
$$

\diamond In optimization theory one usually studies the following features of problem (P) :
1.- Does there exist a solution \bar{x} (global or local)?
2.- Optimality conditions, i.e. properties satisfied by the solutions (or local solutions).
3.- Computation algorithms for finding approximate solutions.
\diamond In this course we will mainly focus on points 1 and 2 of the previous program.
\diamond We will also consider mainly two cases for the feasible set \mathcal{K} :
$\diamond \mathcal{K}=\mathbb{R}^{n}$ (unconstrained case).
\diamond Equality and inequality constraints:

$$
\begin{equation*}
\mathcal{K}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)=0, i=1, \ldots, m, h_{j}(x) \leq 0, j=1, \ldots, \ell\right\} . \tag{1}
\end{equation*}
$$

\diamond In order to tackle point 2 we will assume that f is a smooth function. If the feasible set (1) is considered, we will also assume that g_{i} and h_{j} are smooth functions.

Some mathematical tools

\diamond [Infimum] Let $A \subseteq \mathbb{R}$. We say that $m \in \mathbb{R}$ is a lower bound of A if $m \leq a$ for all $a \in A$. If m_{*} is a lower bound of A such that $m_{*} \geq m$ for every lower bound m of A, then m_{*} is called the infimum of A and it is denoted by $m_{*}=\inf A$. If $m_{*} \in A$, then we say that m_{*} is the mimimum of A, which is denoted $m_{*}=\min A$. If no lower bound for A exists, then we set $\inf A:=-\infty$. Another convention is that if $A=\emptyset$ then $\inf A=+\infty$.
Example: Suppose that $A=\{1 / n \mid n \geq 1\}$. Then, any $m \in]-\infty, 0]$ is a lower bound of $A, \inf A=0$ and no minima exist.

Lemma 1. If $\inf A$ is finite or $\inf A=-\infty$, then there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of elements in A such that $a_{n} \rightarrow \inf A$ as $n \rightarrow \infty$.

Proof. Exercise.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and \mathcal{K} be given. Then, we define

$$
\inf _{x \in \mathcal{K}} f(x):=\inf \underbrace{\{f(x) \mid x \in \mathcal{K}\}}_{A}
$$

\diamond [Supremum] Let $A \subseteq \mathbb{R}$. We say that $M \in \mathbb{R}$ is an upper bound of A if $M \geq a$ for all $a \in A$. If M^{*} is an upper bound of A such that $M^{*} \leq M$ for every upper bound M of A, then M^{*} is called the supremum of A and it is denoted by $M^{*}=\sup A$. If $M^{*} \in A$, then we say that M^{*} is the maximum of A, which is denoted $M^{*}=\max A$. If no upper bound for A exists, then we set $\sup A:=+\infty$. Another convention is that if $A=\emptyset$ then $\sup A=-\infty$.

Example: Suppose that $A=\{-1 / n \mid n \geq 1\}$. Then, any $M \in[0,+\infty[$ is an upper bound of A, $\sup A=0$ and no maxima exist.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and \mathcal{K} be given. Then, we define

$$
\sup _{x \in \mathcal{K}} f(x):=\sup \underbrace{\{f(x) \mid x \in \mathcal{K}\}}_{A}
$$

\diamond [Graph of a function] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The graph $\operatorname{Gr}(f) \subseteq \mathbb{R}^{n+1}$ is defined by

$$
\operatorname{Gr}(f):=\left\{(x, f(x)) \mid x \in \mathbb{R}^{n}\right\}
$$

\diamond [Level sets] Let $c \in \mathbb{R}$. The level set of value c is defined by

$$
\operatorname{Lev}_{f}(c):=\left\{x \in \mathbb{R}^{n} \mid f(x)=c\right\}
$$

- When $n=2$, the sets $\operatorname{Lev}_{f}(c)$ are useful in order to draw the graph of a function.
- These sets will also be useful in order to solve graphically two dimensional linear programming problems, i.e. $n=2$, and the function f and the set \mathcal{K} are defined by means of affine functions.

Example 1: We consider the function

$$
\mathbb{R}^{2} \ni(x, y) \mapsto f(x, y):=x+y+2 \in \mathbb{R}
$$

whose level set is given, for all $c \in \mathbb{R}$, by

$$
\operatorname{Lev}_{f}(c):=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y+2=c\right\}
$$

Note that the optimization problem with this f and $\mathcal{K}=\mathbb{R}^{2}$ does not have a solution.

Example 2: Consider the function

$$
\mathbb{R}^{2} \ni(x, y) \mapsto f(x, y):=x^{2}+y^{2} \in \mathbb{R}
$$

Then $\operatorname{Lev}_{f}(c)=\emptyset$ if $c<0$ and, if $c \geq 0$,

$$
\operatorname{Lev}_{f}(c)=\left\{(x, y) \mid x^{2}+y^{2}=c\right\}
$$

i.e. the circle centered at 0 and of radius \sqrt{c}.

Example 3: Consider the function

$$
\mathbb{R}^{2} \ni(x, y) \mapsto f(x, y):=x^{2}-y^{2} \in \mathbb{R}
$$

In this case the level sets are given, for all $c \in \mathbb{R}$, by

$$
\operatorname{Lev}_{f}(c)=\left\{(x, y) \mid y^{2}=x^{2}-c\right\}
$$

\diamond [Differentiability] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We say that f is differentiable at $\bar{x} \in \mathbb{R}^{n}$ if for all $i=1, \ldots, n$ the partial derivatives

$$
\frac{\partial f}{\partial x_{i}}(\bar{x}):=\lim _{\tau \rightarrow 0} \frac{f\left(\bar{x}+\tau \mathbf{e}_{i}\right)-f(\bar{x})}{\tau}(\text { where } \mathbf{e}_{i}:=(0, \ldots, \overbrace{i}^{1}, \ldots, 0)),
$$

exist and, defining the gradient of f at \bar{x} by

$$
\nabla f(\bar{x}):=\left(\frac{\partial f}{\partial x_{1}}(\bar{x}), \ldots, \frac{\partial f}{\partial x_{n}}(\bar{x})\right) \in \mathbb{R}^{n}
$$

we have that

$$
\lim _{h \rightarrow 0} \frac{f(\bar{x}+h)-f(\bar{x})-\nabla f(\bar{x}) \cdot h}{\|h\|}=0
$$

If f is differentiable at every x belonging to a set $A \subseteq \mathbb{R}^{n}$, we say that f is differentiable in A.

Remark 1. Notice that f is differentiable at \bar{x} iff there exists $\varepsilon_{\bar{x}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $\lim _{h \rightarrow 0} \varepsilon_{\bar{x}}(h)=0$ and

$$
\begin{equation*}
f(\bar{x}+h)=f(\bar{x})+\nabla f(\bar{x}) \cdot h+\|h\| \varepsilon_{\bar{x}}(h) . \tag{2}
\end{equation*}
$$

In particular, f is continuous at \bar{x}.

Lemma 2. Assume that f is differentiable at \bar{x} and let $h \in \mathbb{R}^{n}$. Then,

$$
\lim _{\tau \rightarrow 0, \tau>0} \frac{f(\bar{x}+\tau h)-f(\bar{x})}{\tau}=\nabla f(\bar{x}) \cdot h .
$$

Proof. By (2), for every $\tau>0$, we have

$$
f(\bar{x}+\tau h)-f(\bar{x})=\tau \nabla f(\bar{x}) \cdot h+\tau\|h\| \varepsilon_{\bar{x}}(\tau h) .
$$

Dividing by τ and letting $\tau \rightarrow 0$ gives the result.

Remark 2. (i) [Simple criterion to check differentiability] Suppose that $A \subseteq \mathbb{R}^{n}$ is an open set containing \bar{x} and that

$$
A \ni x \mapsto \nabla f(x) \in \mathbb{R}^{n},
$$

is well-defined and continuous at \bar{x}. Then, f is differentiable at \bar{x}.
As a consequence, if ∇f is continuous in A, then f is differentiable in A. In this case, we say that f is \mathcal{C}^{1} in A (i.e. differentiability and continuity of ∇f in A). When f is \mathcal{C}^{1} in \mathbb{R}^{n} we simply say that f is \mathcal{C}^{1}.
(ii) The notion of differentiability can be extended to a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. In this case, f is differentiable at \bar{x} if there exists $L \in \mathcal{M}_{m \times n}(\mathbb{R})$ such that

$$
\lim _{\|h\| \rightarrow 0} \frac{\|f(\bar{x}+h)-f(\bar{x})-L h\|}{\|h\|} \rightarrow 0
$$

If f is differentiable at \bar{x}, then $L=D f(\bar{x})$, called the Jacobian matrix of f at \bar{x},
which is given by

$$
D f(\bar{x})=\left(\begin{array}{lll}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{x}) \\
\cdots & \ldots & \cdots \\
\frac{\partial f_{i}}{\partial x_{1}}(\bar{x}) & \ldots & \frac{\partial f_{i}}{\partial x_{n}}(\bar{x}) \\
\ldots & \ldots & \ldots \\
\frac{\partial f_{m}}{\partial x_{1}}(\bar{x}) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{x})
\end{array}\right)
$$

Note that when $m=1$ we have that $\operatorname{Df}(\bar{x})=\nabla f(\bar{x})^{\top}$.
The chain rule says that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at \bar{x} and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is differentiable at $f(\bar{x})$, then $g \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is differentiable at \bar{x} and the following identity holds

$$
D(g \circ f)(\bar{x})=D g(f(\bar{x})) D f(\bar{x})
$$

(iii) In the previous definitions the fact that the domain of definition of f is \mathbb{R}^{n} is
not important. The definition can be extended naturally for functions defined on open subsets of \mathbb{R}^{n}.

Basic examples:

(i) Let $c \in \mathbb{R}^{n}$ and consider the function $f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f_{1}(x)=c \cdot x$. Then, for every $x \in \mathbb{R}^{n}$, we have $\nabla f_{1}(x)=c$ and, hence, f is differentiable.
(ii) Let $Q \in M_{n \times n}(\mathbb{R})$ and consider the function $f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
f_{2}(x)=\frac{1}{2}\langle Q x, x\rangle \quad \forall x \in \mathbb{R}^{n}
$$

Then, for all $x \in \mathbb{R}^{n}$ and $h \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
f_{2}(x+h) & =\frac{1}{2}\langle Q(x+h), x+h\rangle \\
& =\frac{1}{2}\langle Q x, x\rangle+\frac{1}{2}[\langle Q x, h\rangle+\langle Q h, x\rangle]+\frac{1}{2}\langle Q h, h\rangle \\
& =\frac{1}{2}\langle Q x, x\rangle+\left\langle\frac{1}{2}\left(Q+Q^{\top}\right) x, h\right\rangle+\frac{1}{2}\langle Q h, h\rangle \\
& =f_{2}(\bar{x})+\left\langle\frac{1}{2}\left(Q+Q^{\top}\right) x, h\right\rangle+\|h\| \varepsilon_{x}(h)
\end{aligned}
$$

where $\lim _{h \rightarrow 0} \varepsilon_{x}(h)=0$. Therefore, f_{2} is differentiable and

$$
\nabla f_{2}(x)=\frac{1}{2}\left(Q+Q^{\top}\right) x \quad \forall x \in \mathbb{R}^{n}
$$

In particular, if Q is symmetric, then $\nabla f_{2}(x)=Q x$.
(iii) Consider the function $f_{3}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f_{3}(x)=\|x\|$. Then, since $f_{3}(x)=\sqrt{\|x\|^{2}}$, if $x \neq 0$, the chain rule shows that

$$
D f(x)=D(\sqrt{\cdot})\left(\|x\|^{2}\right) D\left(\|\cdot\|^{2}\right)(x)=\frac{1}{2} \frac{1}{\sqrt{\|x\|^{2}}}(2 x)^{\top}=\frac{x^{\top}}{\|x\|},
$$

which implies that $\nabla f_{3}(x)=\frac{x}{\|x\|}$, and, since this function is continuous at every $x \neq 0$, we have that f_{3} is \mathcal{C}^{1} in the set $\mathbb{R}^{n} \backslash\{0\}$. Let us show that f_{3} is not differentiable at $x=0$. Indeed, if this is not the case, then all the partial derivatives $\frac{\partial f_{3}}{\partial x_{i}}(0)$ should exists for all $i=1, \ldots, n$. Taking, for instance, $i=1$, we have

$$
\lim _{\tau \rightarrow 0} \frac{\left\|0+\tau \mathbf{e}_{1}\right\|-\|0\|}{\tau}=\lim _{\tau \rightarrow 0} \frac{|\tau|}{\tau}
$$

which does not exist, because

$$
\lim _{\tau \rightarrow 0^{-}} \frac{|\tau|}{\tau}=\lim _{\tau \rightarrow 0^{-}} \frac{-\tau}{\tau}=-1 \neq 1=\lim _{\tau \rightarrow 0^{+}} \frac{\tau}{\tau}=\lim _{\tau \rightarrow 0^{+}} \frac{|\tau|}{\tau}
$$

\diamond [Second order derivative and Taylor expansion] Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is \mathcal{C}^{1}. In particular, the function $\mathbb{R}^{n} \ni x \mapsto \nabla f(x) \in \mathbb{R}^{n}$ is well defined. If this function is differentiable at \bar{x}, then we say that f is twice differentiable at \bar{x}. If f is twice differentiable at every x belonging to a set $A \subseteq \mathbb{R}^{n}$, then we say that f is twice differentiable in A.
If this is the case, then, by definition,

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\bar{x}):=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)(\bar{x})
$$

exists for all $i, j=1, \ldots, n$. The following result, due to Clairaut and also known as Schwarz's theorem, says that, under appropriate conditions we can change the derivation order.

Theorem 1. Suppose that the function f is twice differentiable in an open set $A \subseteq \mathbb{R}^{n}$ containing \bar{x} and that for all $i, j=1, \ldots, n$ the function $A \ni x \mapsto$ $\frac{\partial^{2}{ }_{f}}{\partial x_{i} \partial x_{j}}(x) \in \mathbb{R}$ is continuous at \bar{x}. Then,

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\bar{x})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\bar{x})
$$

Under the assumptions of the previous theorem, the Jacobian of $\nabla f(\bar{x})$ takes the form

$$
D^{2} f(\bar{x})=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(\bar{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\bar{x}) \\
\vdots & \cdots & \vdots \\
\frac{\partial^{2} f}{\partial x_{i} \partial x_{1}}(\bar{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{i}}(\bar{x}) \\
\vdots & \cdots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\bar{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\bar{x})
\end{array}\right) .
$$

This matrix, called the Hessian matrix of f at \bar{x} belongs to $\mathcal{M}_{n \times n}(\mathbb{R})$ and it is a
symmetric matrix by the previous result.
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable in an open set $A \subseteq \mathbb{R}^{n}$ and for all i, $j=1, \ldots, n$ the function

$$
A \ni x \mapsto \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \in \mathbb{R}
$$

is continuous, we say that f is \mathcal{C}^{2} in A.
\diamond [Taylor's theorem] We admit the following important result:

Theorem 2. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is \mathcal{C}^{2} in an open set $A \subseteq \mathbb{R}^{n}$. Then, for all $x \in A$ and h such that $x+h \in A$, we have the following expansion

$$
f(x+h)=f(x)+\nabla f(x) \cdot h+\frac{1}{2}\left\langle D^{2} f(x) h, h\right\rangle+\|h\|^{2} R_{x}(h)
$$

where $R_{x}(h) \rightarrow 0$ as $h \rightarrow 0$.
Example: Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=e^{x} \cos (y)-x-1$.

Then,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\left.e^{x} \cos (y)\right|_{(x, y)=(0,0)}-1=0 \\
& \frac{\partial f}{\partial y}(0,0)=-\left.e^{x} \sin (y)\right|_{(x, y)=(0,0)}=0 \\
& \frac{\partial^{2} f}{\partial x^{2}}(0,0)=\left.e^{x} \cos (y)\right|_{(x, y)=(0,0)}=1 \\
& \frac{\partial^{2} f}{\partial y^{2}}(0,0)=-\left.e^{x} \cos (y)\right|_{(x, y)=(0,0)}=-1 \\
& \frac{\partial^{2} f}{\partial x \partial y}(0,0)=-\left.e^{x} \sin (y)\right|_{(x, y)=(0,0)}=0
\end{aligned}
$$

Note that all the first and second order partial derivatives are continuous in \mathbb{R}^{n}. Therefore, we can apply the previous result and obtain that the Taylor's expansion of f at $(0,0)$ is given by

$$
\begin{aligned}
f((0,0)+h) & =f(0,0)+\nabla f(0,0) \cdot h+\frac{1}{2}\left\langle D^{2} f(0,0) h, h\right\rangle+\|h\|^{2} R_{\bar{x}}(h) \\
& =0+0+\frac{1}{2} h_{1}^{2}-\frac{1}{2} h_{2}^{2}+\|h\|^{2} R_{(0,0)}(h) \\
& =\frac{1}{2} h_{1}^{2}-\frac{1}{2} h_{2}^{2}+\|h\|^{2} R_{(0,0)}(h)
\end{aligned}
$$

This expansion shows that locally around $(0,0)$ the function f above is similar to the function in Example 3.

Some good reading for the previous part

\diamond Chapters 2 and 3 in "Vector calculus", sixth edition, by J. E. Marsden and A. Tromba.
\diamond Chapter 14 in "Calculus: Early transcendentals", eight edition, by J. Stewart.

Some basic existence results for problem (P)

\diamond [Compactness] Recall that $A \subseteq \mathbb{R}^{n}$ is called compact if A is closed and bounded (i.e. A is closed and there exists $R>0$ such that $\|x\| \leq R$ for all $x \in A$).
Let us recall an important result concerning the compactness of a set A.
Theorem 3. [Bolzano-Weierstrass theorem] A set $A \subseteq \mathbb{R}^{n}$ is compact if and only if every sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ of elements of A has a convergence subsequence. This means that there exists $\bar{x} \in A$ and a subsequence $\left(x_{k_{\ell}}\right)_{\ell \in \mathbb{N}}$ of $\left(x_{k}\right)_{k \in \mathbb{N}}$ such that

$$
\bar{x}=\lim _{\ell \rightarrow \infty} x_{k_{\ell}} .
$$

\diamond [The basic existence results] Note that by definition, if $\inf _{x \in \mathcal{K}} f(x)=-\infty$, then f has no lower bounds in \mathcal{K} and, hence, there are no solutions to (P). On the other hand, if $\inf _{x \in \mathcal{L}} f(x)$ is finite, then the existence of a solution can also fail to hold as the following example shows.

Example: Consider the function $\mathbb{R} \ni x \mapsto f(x):=e^{-x}$ and take $\mathcal{K}:=[0,+\infty[$. Then, $\inf _{x \in \mathcal{K}} f(x)=0$ and there is no $x \in \mathcal{K}$ such that $f(x)=0$.

Definition 1. We say that $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq \mathcal{K}$ is a minimizing sequence for (P) if

$$
\inf _{x \in \mathcal{K}} f(x)=\lim _{k \rightarrow \infty} f\left(x_{k}\right) .
$$

By definition, a minimizing sequence always exists if \mathcal{K} is non-empty.
Theorem 4. [Weierstrass theorem, \mathcal{K} compact] Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and that \mathcal{K} is non-empty and compact. Then, problem (P) admits at least one global solution.

Proof. Let $\left(x_{k}\right)_{k \in \mathbb{N}} \in \mathcal{K}$ be a minimizing sequence. By compactness, there exists $\bar{x} \in \mathcal{K}$ and a subsequence $\left(x_{k_{\ell}}\right)_{\ell \in \mathbb{N}}$ of $\left(x_{k}\right)_{k \in \mathbb{N}}$ such that $\bar{x}=\lim _{\ell \rightarrow \infty} x_{k_{\ell}}$. Then, by continuity

$$
f(\bar{x})=\lim _{\ell \rightarrow \infty} f\left(x_{k_{\ell}}\right)=\inf _{x \in \mathcal{K}} f(x) .
$$

Example: Suppose that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is given by $f(x, y, z)=x^{2}-y^{3}+\sin z$ and $\mathcal{K}=\left\{(x, y, z) \mid x^{4}+y^{4}+z^{4} \leq 1\right\}$. Then f is continuous and \mathcal{K} is compact. As a consequence, problem (P) admits at least one solution.

Theorem 5. [\mathcal{K} closed but not bounded] Suppose that \mathcal{K} is non-empty, closed, and that f is continuous and "coercive" or "infinity at the infinity" in \mathcal{K}, i.e.

$$
\begin{equation*}
\lim _{x \in \mathcal{K},\|x\| \rightarrow \infty} f(x)=+\infty . \tag{3}
\end{equation*}
$$

Then, problem (P) admits at least one global solution.
Proof. Let $\left(x_{k}\right)_{k \in \mathbb{N}} \in \mathcal{K}$ be a minimizing sequence. Since $\inf _{x \in \mathcal{K}} f(x)=-\infty$ or $\inf _{x \in \mathcal{K}} f(x) \in \mathbb{R}$ and $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\inf _{x \in \mathcal{K}} f(x)$, there exists $R>0$ such that $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq \mathcal{K}_{R}:=\left\{x^{\prime} \in \mathcal{K} \mid f\left(x^{\prime}\right) \leq R\right\} \subseteq \mathcal{K}$. By continuity of f, this set is closed and bounded because f is coercive. Arguing as in the previous proof, the compactness of \mathcal{K}_{R} implies the existence of $\bar{x} \in \mathcal{K}_{R}$ such that a subsequence of $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges to \bar{x}, which, by continuity of f, implies that \bar{x} solves (P).

Example: Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
f(x)=\langle Q x, x\rangle+c^{\top} x \quad \forall x \in \mathbb{R}^{n},
$$

where $Q \in \mathcal{M}_{n, n}(\mathbb{R})$ is symmetric and positive definite, and $c \in \mathbb{R}^{n}$. Since

$$
\langle Q x, x\rangle \geq \lambda_{\min }(Q)\|x\|^{2} \quad \forall x \in \mathbb{R}^{n}
$$

(where $\lambda_{\min }(Q)>0$ is the smallest eigenvalue of Q), we have that

$$
f(x) \geq \lambda_{\min }(Q)\|x\|^{2}-\|c\|\|x\| \quad \forall x \in \mathbb{R}^{n} .
$$

This implies that $f(x) \rightarrow \infty$ as $\|x\| \rightarrow \infty$. Therefore,

$$
\begin{equation*}
\lim _{x \in \mathcal{K},\|x\| \rightarrow \infty} f(x)=\infty \tag{4}
\end{equation*}
$$

holds for every closed set \mathcal{K}. Since f is also continuous, problem (P) admits at least one global solution for any given non-empty closed set \mathcal{K}.

Example: Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by

$$
f(x, y)=x^{2}+y^{3} \quad \forall(x, y) \in \mathbb{R}^{2},
$$

and

$$
\mathcal{K}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq-1\right\}
$$

Then,

$$
\begin{equation*}
\lim _{x \in \mathcal{K},\|x\| \rightarrow \infty} f(x)=+\infty \tag{5}
\end{equation*}
$$

holds (exercise) and, hence, (P) admits at least one global solution.

Optimality conditions for unconstrained problems

\diamond Notice that, by the second existence theorem, if f is continuous and satisfies that

$$
\lim _{\|x\| \rightarrow \infty} f(x)=+\infty
$$

then, if $\mathcal{K}=\mathbb{R}^{n}$, problem (P) admits at least one global solution.
\diamond [First order optimality conditions for unconstrained problems]
We have the following result
Theorem 6. [Fermat's rule] Suppose that $\mathcal{K}=\mathbb{R}^{n}$ and that \bar{x} is a local solution to problem (P). If f is differentiable at \bar{x}, then $\nabla f(\bar{x})=0$.

Proof. For every $h \in \mathbb{R}^{n}$ and $\tau>0$, the local optimality of \bar{x} yields

$$
f(\bar{x}) \leq f(\bar{x}+\tau h)=f(\bar{x})+\tau \nabla f(\bar{x}) \cdot h+\tau\|h\| \varepsilon_{\bar{x}}(\tau h)
$$

where $\lim _{z \rightarrow 0} \varepsilon_{\bar{x}}(z)=0$. Therefore,

$$
0 \leq \tau \nabla f(\bar{x}) \cdot h+\tau\|h\| \varepsilon_{\bar{x}}(\tau h)
$$

Dividing by τ and letting $\tau \rightarrow 0$, we get

$$
\nabla f(\bar{x}) \cdot h \geq 0
$$

Since h is arbitrary, we get that $\nabla f(\bar{x})=0$ (take for instance $h=-\nabla f(\bar{x})$ in the previous inequality).
\diamond [Second order optimality conditions for unconstrained problems]
We have the following second order necessary condition for local optimality:
Theorem 7. Suppose that $\mathcal{K}=\mathbb{R}^{n}$ and that \bar{x} is a local solution to problem (P). If f is \mathcal{C}^{2} in an open set A containing \bar{x}, then $D^{2} f(\bar{x})$ is positive semidefinite. In other words,

$$
\left\langle D^{2} f(\bar{x}) h, h\right\rangle \geq 0 \quad \forall h \in \mathbb{R}^{n}
$$

Proof. Let us fix $h \in \mathbb{R}^{n}$. By Taylor's theorem, for all $\tau>0$ small enough, we have

$$
f(\bar{x}+\tau h)=f(\bar{x})+\nabla f(\bar{x}) \cdot(\tau h)+\frac{1}{2}\left\langle D^{2} f(\bar{x}) \tau h, \tau h\right\rangle+\|\tau h\|^{2} R_{\bar{x}}(\tau h),
$$

where $R_{\bar{x}}(\tau h) \rightarrow 0$ as $\tau \rightarrow 0$. Using the local optimality of \bar{x}, the previous result implies that $\nabla f(\bar{x})=0$ and, hence,

$$
0 \leq f(\bar{x}+\tau h)-f(\bar{x})=\frac{\tau^{2}}{2}\left\langle D^{2} f(\bar{x}) h, h\right\rangle+\tau^{2}\|h\|^{2} R_{\bar{x}}(\tau h)
$$

Dividing by τ^{2} and passing to the limit with $\tau \rightarrow 0$, we get the result.

We have the following second order sufficient condition for local optimality.
Theorem 8. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is \mathcal{C}^{2} in an open set A containing \bar{x} and that
(i) $\nabla f(\bar{x})=0$.
(ii) The matrix $D^{2} f(\bar{x})$ is positive definite. In other words,

$$
\left\langle D^{2} f(\bar{x}) h, h\right\rangle>0 \quad \forall h \in \mathbb{R}^{n}, h \neq 0 .
$$

Then, \bar{x} is a local solution to (P).

Proof. Let $\lambda>0$ be the smallest eigenvalue of $D^{2} f(\bar{x})$, then

$$
\forall h \in \mathbb{R}^{n}, \quad\left\langle D^{2} f(\bar{x}) h, h\right\rangle \geq \lambda\|h\|^{2}
$$

Using this inequality, the hypothesis $\nabla f(\bar{x})=0$, and the Taylor's expansion, for all
$h \in \mathbb{R}^{n}$ such that $\bar{x}+h \in A$ we have that

$$
\begin{aligned}
f(\bar{x}+h)-f(\bar{x}) & =\nabla f(\bar{x}) \cdot h+\frac{1}{2}\left\langle D^{2} f(\bar{x}) h, h\right\rangle+\|h\|^{2} R_{\bar{x}}(h) \\
& \geq \frac{\lambda}{2}\|h\|^{2}+\|h\|^{2} R_{\bar{x}}(h) \\
& =\left(\frac{\lambda}{2}+R_{\bar{x}}(h)\right)\|h\|^{2} .
\end{aligned}
$$

Since $R_{\bar{x}}(h) \rightarrow 0$ as $h \rightarrow 0$, we can choose $\delta>0$ such that $\|h\| \leq \delta, \bar{x}+h \in A$ and $\left|R_{\bar{x}}(h)\right| \leq \frac{\lambda}{4}$. As a consequence,

$$
f(\bar{x}+h)-f(\bar{x}) \geq \frac{\lambda}{4}\|h\|^{2} \quad \forall h \in \mathbb{R}^{n} \text { with }\|h\| \leq \delta
$$

which proves the local optimality of \bar{x}.

Example: Let us study problem (P) with $\mathcal{K}=\mathbb{R}^{2}$ and

$$
\mathbb{R}^{2} \ni(x, y) \mapsto f(x, y)=2 x^{3}+3 y^{2}+3 x^{2} y-24 y
$$

First, consider the sequence $\left(x_{k}, y_{k}\right)=(-k, 0)$ for $k \in \mathbb{N}$. Then,

$$
f\left(x_{k}, y_{k}\right)=-2 k^{3} \rightarrow-\infty \text { as } k \rightarrow \infty
$$

Therefore, $\inf _{(x, y) \in \mathbb{R}^{2}} f(x, y)=-\infty$ and problem (P) does not admit global solutions. Let us look for local solutions. We know that if (x, y) is a local solution, then it should satisfy $\nabla f(x, y)=(0,0)$. This equation gives

$$
\begin{aligned}
6 x^{2}+6 x y & =0 \\
6 y+3 x^{2} & =24
\end{aligned}
$$

From the first equation, we get that $x=0$ or $x=-y$. In the first case, the second equation yields $y=4$, while in the second case we obtain that $x^{2}-2 x-8=0$ which yields the two solutions $(4,-4)$ and $(-2,2)$. Therefore, we have the three candidates $(0,4),(4,-4)$ and $(-2,2)$. Let us check what can be obtained from the Hessian at
these three points. We have that

$$
D^{2} f(x, y)=\left(\begin{array}{cc}
12 x+6 y & 6 x \\
6 x & 6
\end{array}\right) .
$$

For the first candidate, we have

$$
D^{2} f(0,4)=\left(\begin{array}{cc}
24 & 0 \\
0 & 6
\end{array}\right)
$$

which is positive definite. This implies that $(0,4)$ is a local solution of (P). For the second candidate, we have

$$
D^{2} f(4,-4)=\left(\begin{array}{cc}
24 & 24 \\
24 & 6
\end{array}\right)=6\left(\begin{array}{ll}
4 & 4 \\
4 & 1
\end{array}\right)
$$

whose determinant is given by $36(-12)<0$, which implies that $D^{2} f(4,-4)$ is
indefinite (the sign of the eigenvalues is not constant). Finally,

$$
D^{2} f(-2,2)=\left(\begin{array}{cc}
-12 & -12 \\
-12 & 6
\end{array}\right)
$$

which is also indefinite because the sign of the diagonal terms are not constant. Therefore, $(0,4)$ is the unique local solution to (P).
\diamond [Maximization problems] If instead of problem (P) we consider the problem

$$
\text { Find } \bar{x} \in \mathbb{R}^{n} \text { such that } \quad f(\bar{x})=\max \{f(x) \mid x \in \mathcal{K}\}
$$

then \bar{x} is a local (resp. global) solution to $\left(P^{\prime}\right)$ iff \bar{x} is a local (resp. global) solution to (P) with f replaced by $-f$. In particular, if \bar{x} is a local solution to $\left(P^{\prime}\right)$ and f is regular enough, then we have the following first order necessary condition

$$
\nabla f(\bar{x})=0
$$

as well as the following second order necessary condition

$$
\left\langle D^{2} f(\bar{x}) h, h\right\rangle \leq 0 \quad \forall h \in \mathbb{R}^{n}
$$

In other words, $D^{2} f(\bar{x})$ is negative semidefinite.
Conversely, if $\bar{x} \in \mathbb{R}^{n}$ is such that $\nabla f(\bar{x})=0$ and

$$
\left\langle D^{2} f(\bar{x}) h, h\right\rangle<0 \quad \forall h \in \mathbb{R}^{n}, h \neq 0 .
$$

Then, \bar{x} is a local solution to $\left(P^{\prime}\right)$.

Convexity

\diamond [Convexity of a set] A non-empty set $C \subseteq \mathbb{R}^{n}$ is called convex if for any $\lambda \in[0,1]$ and $x, y \in C$, we have that

$$
\lambda x+(1-\lambda) y \in C
$$

Let us fix a convex set $C \subseteq \mathbb{R}^{n}$.
\diamond [Convexity of a function] A function $f: C \rightarrow \mathbb{R}$ is said to be convex if for any $\lambda \in[0,1]$ and $x, y \in C$, we have that

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

\diamond [Relation between convex functions and convex sets] Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, let us define its epigraph epi (f) by

$$
\operatorname{epi}(f):=\left\{(x, y) \in \mathbb{R}^{n+1} \mid y \geq f(x)\right\}
$$

Proposition 1. The function f is convex iff the set epi(f) is convex.
Proof. Indeed, suppose that f is convex and let $\left(x_{1}, z_{1}\right),\left(x_{2}, z_{2}\right) \in \operatorname{epi}(f)$. Then, given $\lambda \in[0,1]$ set

$$
P_{\lambda}:=\lambda\left(x_{1}, z_{1}\right)+(1-\lambda)\left(x_{2}, z_{2}\right)=\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda z_{1}+(1-\lambda) z_{2}\right)
$$

Since, by convexity,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \leq \lambda z_{1}+(1-\lambda) z_{2}
$$

we have that $P_{\lambda} \in \operatorname{epi}(f)$. Conversely, assume that $\operatorname{epi}(f)$ is convex and let x_{1}, $x_{2} \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$. Since $\left(x_{1}, f\left(x_{1}\right)\right)$, $\left(x_{2}, f\left(x_{2}\right)\right) \in \operatorname{epi}(f)$, we deduce that

$$
\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)\right) \in \operatorname{epi}(f)
$$

and, hence,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

which proves the convexity of f.
\diamond [Strict convexity of a function] A function $f: C \rightarrow \mathbb{R}$ is said to be strictly convex if for any $\lambda \in(0,1)$ and $x, y \in C$, with $x \neq y$, we have that

$$
f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

\diamond [Concavity and strict concavity of a function] A function $f: C \rightarrow \mathbb{R}$ is said to be concave if $-f$ is convex. Similarly, the function f is strictly concave if $-f$ is strictly convex.

Example: Let us show that the function $\mathbb{R}^{n} \ni x \mapsto\|x\| \in \mathbb{R}$ is convex but not strictly convex. Indeed, the convexity follows from the triangle inequality

$$
\|\lambda x+(1-\lambda) y\| \leq\|\lambda x\|+\|(1-\lambda) y\|=\lambda\|x\|+(1-\lambda)\|y\|
$$

Now, if we have that for some $\lambda \in(0,1)$

$$
\|\lambda x+(1-\lambda) y\|=\lambda\|x\|+(1-\lambda)\|y\|
$$

the equality case in the triangle inequality $(\|a+b\|=\|a\|+\|b\|$ iff $a=0$ and $b=0$ or $a=\alpha b$ with $\alpha>0$) shows that the previous inequality holds iff that $x=y=0$
or $x=\gamma y$ for some $\gamma>0$. By taking $x \neq 0$ and $y=\gamma x$ with $\gamma \in(0, \infty) \backslash\{1\}$ we conclude that $\|\cdot\|$ is not strictly convex.

Example: Let $\beta \in(1,+\infty)$. Let us show that the function $\mathbb{R}^{n} \ni x \mapsto\|x\|^{\beta} \in \mathbb{R}$ is strictly convex. Indeed, the real function $[0,+\infty) \ni t \mapsto \alpha(t):=t^{\beta} \in \mathbb{R}$ is increasing and strictly convex because

$$
\alpha^{\prime}(t)=\beta t^{\beta-1}>0 \text { and } \alpha^{\prime \prime}(t)=\beta(\beta-1) t^{\beta-2}>0 \forall t \in(0,+\infty) .
$$

As a consequence, for any $\lambda \in[0,1]$, using that

$$
\|\lambda x+(1-\lambda) y\| \leq \lambda\|x\|+(1-\lambda)\|y\|
$$

we get that

$$
\begin{align*}
\|\lambda x+(1-\lambda) y\|^{\beta} & \leq(\lambda\|x\|+(1-\lambda)\|y\|)^{\beta} \tag{6}\\
& \leq \lambda\|x\|^{\beta}+(1-\lambda)\|y\|^{\beta},
\end{align*}
$$

which implies the convexity of $\|\cdot\|^{\beta}$. Now, in order to prove the strict convexity,
assume that for some $\lambda \in(0,1)$ we have

$$
\|\lambda x+(1-\lambda) y\|^{\beta}=\lambda\|x\|^{\beta}+(1-\lambda)\|y\|^{\beta},
$$

and let us prove that $x=y$. Then, all the inequalities in (6) are equalities and, hence,

$$
\begin{aligned}
& \|\lambda x+(1-\lambda) y\|=\lambda\|x\|+(1-\lambda)\|y\| \text {, } \\
& \text { and }(\lambda\|x\|+(1-\lambda)\|y\|)^{\beta}=\lambda\|x\|^{\beta}+(1-\lambda)\|y\|^{\beta} .
\end{aligned}
$$

The equality case in the triangle inequality and the first relation above imply that $x=y=0$ or $x=\gamma y$ for some $\gamma>0$. The strict convexity of α and the second inequality above imply that $\|x\|=\|y\|$. Therefore, either $x=y=0$ or both x and y are not zero and $x=\gamma y$ for some $\gamma>0$ and $\|x\|=\|y\|$. In the latter case, we get that $\alpha=1$ and, hence, $x=y$ from which the strict convexity follows.
\diamond [Convexity and differentiability] We have the following result:
Theorem 9. Let $f: C \rightarrow \mathbb{R}$ be a differentiable function. Then,
(i) f is convex in \mathbb{R}^{n} if and only if for every $x \in C$ we have

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x) \cdot(y-x), \quad \forall y \in C \tag{7}
\end{equation*}
$$

(ii) f is strictly convex in \mathbb{R}^{n} if and only if for every $x \in C$ we have

$$
\begin{equation*}
f(y)>f(x)+\nabla f(x) \cdot(y-x), \quad \forall y \in C, y \neq x \tag{8}
\end{equation*}
$$

Proof. (i) By definition of convex function, for any $x, y \in C$ and $\lambda \in(0,1)$, we have

$$
f(\lambda y+(1-\lambda) x)-f(x) \leq \lambda(f(y)-f(x))
$$

Since, $\lambda y+(1-\lambda) x=x+\lambda(y-x)$, we get

$$
\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \leq f(y)-f(x) .
$$

Letting $\lambda \rightarrow 0$, Lemma 22 yields

$$
\nabla f(x) \cdot(y-x) \leq f(y)-f(x)
$$

Conversely, take x_{1} and x_{2} in $\left.C, \lambda \in\right] 0,1\left[\right.$ and define $x_{\lambda}:=\lambda x_{1}+(1-\lambda) x_{2}$. By assumption,

$$
\forall i \in\{1,2\}, \quad f\left(x_{i}\right) \geq f\left(x_{\lambda}\right)+\nabla f\left(x_{\lambda}\right) \cdot\left(x_{i}-x_{\lambda}\right),
$$

and we obtain, by taking the convex combination, that
$\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(x_{\lambda}\right)+\nabla f\left(x_{\lambda}\right) \cdot\left(\lambda x_{1}+(1-\lambda) x_{2}-x_{\lambda}\right)=f\left(x_{\lambda}\right)$,
which shows that f is convex.
(ii) Since f is convex, by (i) we have that

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x) \cdot(y-x), \quad \forall y \in C \tag{9}
\end{equation*}
$$

Suppose that there exists $y \in C$ such that $y \neq x$ and

$$
f(y)=f(x)+\nabla f(x) \cdot(y-x) .
$$

Let $z=\frac{1}{2} x+\frac{1}{2} y$. Then, by (9), with $y=z$, and strict convexity, we get
$f(x)+\nabla f(x) \cdot\left(\frac{1}{2} y-\frac{1}{2} x\right) \leq f(z)<\frac{1}{2} f(x)+\frac{1}{2} f(y)=f(x)+\nabla f(x) \cdot\left(\frac{1}{2} y-\frac{1}{2} x\right)$,
which is impossible. The proof that (8) implies that f is strictly convex is completely analogous to the proof that (7) implies convexity. The result follows.

Theorem 10. Let $f: C \rightarrow \mathbb{R}$ be \mathcal{C}^{2} in C and suppose that C is open (besides being convex). Then
(i) f is convex if and only if $D^{2} f(x)$ is positive semidefinite for all $x \in C$.
(ii) f is strictly convex if $D^{2} f(x)$ is positive definite for all $x \in C$

Proof. (i) Suppose that f is convex. Then, by Taylor's theorem for every $x \in C$,
$h \in \mathbb{R}^{n}$ and $\tau>0$ small enough such that $x+\tau h \in C$ we have

$$
f(x+\tau h)=f(x)+\tau \nabla f(x) \cdot h+\frac{\tau^{2}}{2}\left\langle D^{2} f(x) h, h\right\rangle+\tau^{2}\|h\|^{2} R_{x}(\tau h),
$$

which implies, by the first order characterization of convexity, that

$$
0 \leq \frac{1}{2}\left\langle D^{2} f(x) h, h\right\rangle+\|h\|^{2} R_{x}(\tau h) .
$$

Using that $\lim _{\tau \rightarrow 0} R_{x}(\tau h)=0$, and the fact that h is arbitrary, we get that

$$
\left\langle D^{2} f(x) h, h\right\rangle \geq 0 \quad \forall h \in \mathbb{R}^{n} .
$$

Suppose that $D^{2} f(x)$ is positive semidefinite for all $x \in C$ and assume, for the time being, that for every $x, y \in C$ there exists $c_{x y} \in\{\lambda x+(1-\lambda) y \mid \lambda \in(0,1)\}$ such that

$$
\begin{equation*}
f(y)=f(x)+\nabla f(x) \cdot(y-x)+\frac{1}{2}\left\langle D^{2} f\left(c_{x y}\right)(y-x), y-x\right\rangle . \tag{10}
\end{equation*}
$$

Then, have that

$$
f(y) \geq f(x)+\nabla f(x) \cdot(y-x) \quad \forall x, y \in C
$$

and, hence, f is convex. It remains to prove (10). Defining $g(\tau):=f(x+\tau(y-x))$ for all $\tau \in[0,1]$, formula (10) follows from the equality

$$
g(1)=g(0)+g^{\prime}(0)+\frac{1}{2} g^{\prime \prime}(\hat{\tau})
$$

for some $\hat{\tau} \in(0,1)$.
(ii) The assertion follows directly from (10), with $y \neq y$, and Theorem 9 (ii).

Remark 3. Note that the positive definiteness of $D^{2} f(x)$, for all $x \in C$, is only a sufficient condition for strict convexity but not necessary. Indeed, the function $\mathbb{R} \ni x \mapsto f(x)=x^{4} \in \mathbb{R}$ is strictly convex but $f^{\prime \prime}(0)=0$.

Example: Let $Q \in \mathcal{M}_{n, n}(\mathbb{R})$ be symmetric and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{1}{2} x^{\top} Q x+c^{\top} x
$$

Then, $D^{2} f(x)=Q$ and hence f is convex if Q is semidefinite positive and strictly convex if Q is definite positive.
In this case, the fact that Q is definite positive is also a necessary condition for strict convexity. Indeed, for simplicity suppose that $c=0$ and write $Q=P D P^{\top}$, where the set of columns of P is an orthonormal basis of eigenvectors of Q (which exists because Q is symmetric), and D is the diagonal matrix containing the corresponding eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{N}$ in the diagonal. Set $y(x)=P^{\top} x$. Then,

$$
f(x)=\sum \lambda_{i=1}^{n} y_{i}(x)^{2} .
$$

If Q is not positive definite, then there exists $j \in\{1, \ldots, N\}$ such that $\lambda_{j} \leq 0$. Then, it is easy to see that f is not strictly convex on the set $\left\{x \in \mathbb{R}^{n} \mid y_{i}(x)=0\right.$, for all $\left.i \in\{1, \ldots, n\} \backslash\{j\}\right\}$.

Optimization with constraints

\diamond [Optimality conditions for convex problems] Let us begin with a definition.
Definition 2. Problem (P) is called convex if f is convex and \mathcal{K} is a non-empty closed and convex set.

We have the following result.
Theorem 11. [Characterization of solutions for convex problems] Suppose that problem (P) is convex and that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable in \mathcal{K}. Then, the following statements are equivalent:
(i) \bar{x} is a local solution to (P).
(ii) The following inequality holds:

$$
\begin{equation*}
\langle\nabla f(\bar{x}), x-\bar{x}\rangle \geq 0 \quad \forall x \in \mathcal{K} . \tag{11}
\end{equation*}
$$

(iii) \bar{x} is a global solution to (P).

Proof. Let us prove that (i) implies (ii). Indeed, by convexity of \mathcal{K} we have that given $y \in \mathcal{K}$ for any $\tau \in[0,1]$ the point $\tau y+(1-\tau) \bar{x}=\bar{x}+\tau(y-\bar{x}) \in \mathcal{K}$. Therefore, by the differentiability of f, if τ is small enough, we have

$$
0 \leq f(\bar{x}+\tau(y-\bar{x}))-f(\bar{x})=\tau \nabla f(\bar{x}) \cdot(y-\bar{x})+\tau\|y-\bar{x}\| \varepsilon_{\bar{x}}(\tau\|y-\bar{x}\|)
$$

where $\lim _{h \rightarrow 0} \varepsilon_{\bar{x}}(h)=0$. Dividing by τ and letting $\tau \rightarrow 0$, we get (ii).
The proof that (ii) implies (iii) follows directly from the inequalities

$$
f(y) \geq f(\bar{x})+\nabla f(\bar{x}) \cdot(y-\bar{x}) \geq f(\bar{x}) \quad \forall y \in \mathcal{K} .
$$

Finally, (iii) implies (i) is trivial. The result follows.
Remark 4. In particular, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and differentiable and $\mathcal{K}=\mathbb{R}^{n}$, the relation

$$
\nabla f(\bar{x})=0
$$

is a necessary and sufficient condition for \bar{x} to be a global solution to (P).

Proposition 2. Suppose that \mathcal{K} is convex and that f is strictly convex in \mathcal{K}. Then, there exists at most one solution to problem (P).

Proof. Assume, by contradiction, that $x_{1} \neq x_{2}$ are both solutions to (P). Then, $\frac{1}{2} x_{1}+\frac{1}{2} x_{2} \in \mathcal{K}$ and

$$
f\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)<\frac{1}{2} f\left(x_{1}\right)+\frac{1}{2} f\left(x_{2}\right)=\min _{x \in \mathcal{K}} f(x)
$$

\diamond [Least squares] Let $A \in \mathcal{M}_{m, n}(\mathbb{R}), b \in \mathbb{R}^{m}$ and consider the system $A x=b$. Suppose that $m>n$. This type of systems appear, for instance, in data fitting problem and it is often ill-posed, in the sense that there is no x satisfying the equation. In this case, one usually considers the optimization problem

$$
\begin{equation*}
\min _{x \in \mathcal{K}:=\mathbb{R}^{n}} f(x):=\|A x-b\|^{2} \tag{12}
\end{equation*}
$$

Note that

$$
f(x)=\left\langle A^{\top} A x, x\right\rangle-2\left\langle A^{\top} b, x\right\rangle+\|b\|^{2}
$$

and, hence, $D^{2} f(x)=2 A^{\top} A$, which is symmetric positive semidefinite, and, hence, f is convex. Let us assume that the columns of A are linearly independent. Then, for any $h \in \mathbb{R}^{n}$,

$$
\left\langle A^{\top} A h, h\right\rangle=0 \Leftrightarrow A h=0 \Leftrightarrow h=0,
$$

i.e. for all $x \in \mathbb{R}^{n}$, the matrix $D^{2} f(x)$ is symmetric positive definite and, hence, f is strictly convex. Moreover, denoting by $\lambda_{\min }>0$ the smallest eigenvalue of $2 A^{\top} A$, we have

$$
f(x) \geq \lambda_{\min }\|x\|^{2}-2\left\langle A^{\top} b, x\right\rangle+\|b\|^{2} .
$$

and, hence, f is infinity at the infinity. Therefore, problem (12) admits only one solution \bar{x}. By Remark 4, the solution \bar{x} is characterized by

$$
A^{\top} A \bar{x}=A^{\top} b, \quad \text { i.e. } \quad \bar{x}=\left(A^{\top} A\right)^{-1} A^{\top} b .
$$

\diamond [Projection on a closed and convex set] Suppose that \mathcal{K} is a nonempty closed and convex set and let $y \in \mathbb{R}^{n}$. Consider the problem the projection problem

$$
\begin{equation*}
\inf \{\|x-y\| \mid x \in \mathcal{K}\} \tag{K}
\end{equation*}
$$

Note that \mathcal{K} being closed and the cost functional being coercive, we have the existence of at least one solution \bar{x}. In order, to characterize \bar{x} notice that the set of solutions to $\left(\operatorname{Proj}_{\mathcal{K}}\right)$ is the same as the set of solutions to the problem

$$
\inf \left\{\left.\frac{1}{2}\|x-y\|^{2} \right\rvert\, x \in \mathcal{K}\right\}
$$

Then, since the cost functional of the problem above is strictly convex, Proposition 2 implies that \bar{x} is its unique solution and, hence, is also the unique solution to ($\operatorname{Proj} \mathcal{K}$). Moreover, by Theorem 11(ii), we have that \bar{x} is characterized by the inequality

$$
\begin{equation*}
(y-\bar{x}) \cdot(x-\bar{x}) \leq 0 \quad \forall x \in \mathcal{K} \tag{13}
\end{equation*}
$$

Example: Let $b \in \mathbb{R}^{m}$ and $A \in \mathcal{M}_{m \times n}$ be such that

$$
b \in \operatorname{Im}(A):=\left\{A x \mid x \in \mathbb{R}^{m}\right\}
$$

Suppose that

$$
\begin{equation*}
\mathcal{K}=\left\{x \in \mathbb{R}^{n} \mid A x=b\right\} \tag{14}
\end{equation*}
$$

Then, \mathcal{K} is closed, convex and nonempty. Moreover, for any $h \in \operatorname{Ker}(A)$ we have that $\bar{x}+h \in \mathcal{K}$. As a consequence, (13) implies that

$$
(y-\bar{x}) \cdot h \leq 0 \quad \forall h \in \operatorname{Ker}(A),
$$

and, using that $h \in \operatorname{Ker}(A)$ iff $-h \in \operatorname{Ker}(A)$, we get that

$$
\begin{equation*}
(y-\bar{x}) \cdot h=0 \quad \forall h \in \operatorname{Ker}(A) . \tag{15}
\end{equation*}
$$

Conversely, since for every $x \in \mathcal{K}$ we have $x-\bar{x} \in \operatorname{Ker}(A)$, relation (15) implies (13), and, hence, (15) characterizes \bar{x}. Note that (15) can be written as ${ }^{1]}$

$$
y-\bar{x} \in \operatorname{Ker}(A)^{\perp}=\left\{v \in \mathbb{R}^{n} \mid v^{\top} h=0 \quad \forall h \in \operatorname{Ker}(A)\right\},
$$

${ }^{1}$ Recall that given a subspace V of \mathbb{R}^{n}, the orthogonal space V^{\perp} is defined by

$$
V^{\perp}:=\left\{z \in \mathbb{R}^{n} \mid z^{\top} v=0 \forall v \in V\right\} .
$$

Two important properties of the orthogonal space are $V \oplus V^{\perp}=\mathbb{R}^{n}$, and $\left(V^{\perp}\right)^{\perp}=V$.
or, equivalently,

$$
\begin{equation*}
y=\bar{x}+z \text { for some } z \in \operatorname{Ker}(A)^{\perp} \tag{16}
\end{equation*}
$$

\diamond [Convex problems with equality constraints] Now, we consider the same set \mathcal{K} as in (14) but we consider a general differentiable convex objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We will need the following result from Linear Algebra.
Lemma 3. Let $A \in \mathcal{M}_{m, n}(\mathbb{R})$. Then, $\operatorname{Ker}(A)^{\perp}=\operatorname{Im}\left(A^{\top}\right)$.
Proof. By the previous footnote, the desired relation is equivalent to $\operatorname{Im}\left(A^{\top}\right)^{\perp}=$ $\operatorname{Ker}(A)$. Now, $x \in \operatorname{Im}\left(A^{\top}\right)^{\perp}$ iff $\left\langle x, A^{\top} y\right\rangle=0$ for all $y \in \mathbb{R}^{m}$, and this holds iff $\langle A x, y\rangle=0$ for all $y \in \mathbb{R}^{m}$, i.e. $x \in \operatorname{Ker}(A)$.

Proposition 3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable and suppose that the set \mathcal{K} in (14) is nonempty. Then \bar{x} is a global solution to (P) iff $\bar{x} \in \mathcal{K}$ and there exists $\lambda \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\nabla f(\bar{x})+A^{\top} \lambda=0 \tag{17}
\end{equation*}
$$

Proof. We are going to show that (17) is equivalent to (11) from which the result
follows. Indeed, exactly as in the previous example, we have that (11) is equivalent to

$$
\nabla f(\bar{x}) \cdot h=0 \quad \forall h \in \operatorname{Ker}(A),
$$

i.e.

$$
\nabla f(\bar{x}) \in \operatorname{Ker}(A)^{\perp}
$$

Lemma 3 implies the existence of $\mu \in \mathbb{R}^{m}$ such that $\nabla f(\bar{x})=A^{\top} \mu$. Setting $\lambda=-\mu$ we get (17).

Example: Let $Q \in \mathcal{M}_{n, n}(\mathbb{R})$ be symmetric and positive definite, and $c \in \mathbb{R}^{n}$. In the framework of the previous proposition, suppose that f is given by

$$
f(x)=\frac{1}{2}\langle Q x, x\rangle+c^{\top} x \quad \forall x \in \mathbb{R}^{n},
$$

and that A has m linearly independent columns. A classical linear algebra result states that this is equivalent to the fact that the m lines of A are linearly independent. In this case, we say that A has full rank.
Under the previous assumptions on Q, we have seen that f is strictly convex. Moreover, the condition on the columns of A implies that $\operatorname{Im}(A)=\mathbb{R}^{m}$ and, hence,
$\mathcal{K} \neq \emptyset$. Now, by Proposition 3 the point \bar{x} solves (P) iff $\bar{x} \in \mathcal{K}$ and there exists $\lambda \in \mathbb{R}^{m}$ such that (17) holds. In other words, there exists $\lambda \in \mathbb{R}^{m}$ such that

$$
A \bar{x}=b, \quad \text { and } \quad Q \bar{x}+c+A^{\top} \lambda=0
$$

The second equation above yields $\bar{x}=-Q^{-1}\left(c+A^{\top} \lambda\right)$ and, hence, by the first equation, we get

$$
\begin{equation*}
A Q^{-1} c+A Q^{-1} A^{\top} \lambda+b=0 \tag{18}
\end{equation*}
$$

Let us show that $M:=A Q^{-1} A^{\top}$ is invertible. Indeed, since $M \in \mathcal{M}_{m, m}(\mathbb{R})$ it suffices to show that $M y=0$ implies that $y=0$. Now, let $y \in \mathbb{R}^{m}$ such that $M y=0$. Then, $\langle M y, y\rangle=0$ and, hence, $\left\langle Q^{-1} A^{\top} y, A^{\top} y\right\rangle=0$, which implies, since Q^{-1} is also positive definite, that $A^{\top} y=0$. Now, since the columns of A^{\top} are also linearly independent, we deduce that $y=0$, i.e. M is invertible. Using this fact, we can solve for λ in (18), obtaining

$$
\lambda=-M^{-1}\left(A Q^{-1} c+b\right)
$$

We deduce that

$$
\begin{equation*}
\bar{x}=-Q^{-1}\left(c-A^{\top} M^{-1}\left(A Q^{-1} c+b\right)\right), \tag{19}
\end{equation*}
$$

is the unique solution to this problem.
Example: Let us now consider the projection problem

$$
\begin{array}{ll}
\min & \frac{1}{2}\|x-y\|^{2} \\
\text { s.t. } & A x=b .
\end{array}
$$

Noting that $\frac{1}{2}\|x-y\|^{2}=\frac{1}{2}\|x\|^{2}-y^{\top} x+\frac{1}{2}\|y\|^{2}$, the previous problem has the same solution than

$$
\begin{array}{ll}
\min & \frac{1}{2}\|x\|^{2}-y^{\top} x \\
\text { s.t. } & A x=b,
\end{array}
$$

which corresponds to $Q=I_{n \times n}$ (the $n \times n$ identity matrix) and $c=-y$. Then, (19) implies that the solution of this problem is given by

$$
\bar{x}=\left(I-A^{\top}\left(A A^{\top}\right)^{-1} A\right) y+A^{\top}\left(A A^{\top}\right)^{-1} b
$$

Note that if $h \in \operatorname{Ker}(A)$

$$
\begin{aligned}
\langle y-\bar{x}, h\rangle & =\left\langle A^{\top}\left(A A^{\top}\right)^{-1} A y-A^{\top}\left(A A^{\top}\right)^{-1} b, h\right\rangle \\
& \left.=\left\langle A A^{\top}\right)^{-1} A y-\left(A A^{\top}\right)^{-1} b, A h\right\rangle \\
& =0
\end{aligned}
$$

confirming (16).

Optimality conditions for problems with equality and inequality constraints

\diamond [An introductory example: linear programming] A firm produces two kind of products. Let x_{1}, x_{2} be, respectively, the quantity of product 1 and 2 (in tons) made in one month. Assume that there are some constraints on the quantity of x_{1} and x_{2} :

- the factory cannot produce more than 3 units of x_{1}.
- fabrication process implies the following linear constraints on x_{1} and x_{2}

$$
-2 x_{1}+x_{2} \leq 2, \quad-x_{1}+x_{2} \leq 3 .
$$

The optimization problem is to chose the quantities x_{1} and x_{2} in order to maximize the benefits of the firm if the monthly revenue is $x_{1}+2 x_{2}$.

The problem can be written as

$$
\begin{align*}
& \sup x_{1}+2 x_{2} \\
& -2 x_{1}+x_{2} \leq 2 \tag{LP}\\
& -x_{1}+x_{2} \leq 3 \\
& 0 \leq x_{1} \leq 3, \quad 0 \leq x_{2}
\end{align*}
$$

This two dimensional example can be solved graphically. See the figure below.

- For $f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$, we consider the level sets $\operatorname{Lev}_{f}(c)$ with $c \in \mathbb{R}$.
- $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ solves the $(L P)$ iff $\bar{c}:=f\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is the maximum $c \in \mathbb{R}$ such that $\operatorname{Lev}_{f}(c) \cap P \neq \emptyset$, where P is the polygon defined by

$$
P:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid-2 x_{1}+x_{2} \leq 2, \quad-x_{1}+x_{2} \leq 3, \quad 0 \leq x_{1} \leq 3, \quad 0 \leq x_{2}\right\}
$$

- In order to find such \bar{c}, we start with any $c \in \mathbb{R}$ such that $\operatorname{Lev}_{f}(c) \cap P \neq \emptyset$ and then we vary c by moving the line $x_{1}+2 x_{2}=c$ in the normal direction given by $(1,2)$ until we find \bar{c}.
- In larger dimensions ($n>2$), in practice this procedure cannot be applied. The most popular method to solve linear programming problems being the simplex method.

\diamond [Nonlinear optimization problems with equality constraints] Consider problem (P) with

$$
\mathcal{K}:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x)=0, \ldots, g_{m}(x)=0\right\}
$$

where, for all $i=1, \ldots, m, g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a given function. In this case, Problem (P) is usually written as

$$
\left.\begin{array}{lc}
\min & f(x) \tag{P}\\
\text { s.t. } & g_{1}(x)=0 \\
& \vdots \\
& g_{m}(x)=0
\end{array}\right\}
$$

In what follows we will assume that $n>m$. Indeed, if $n \leq m$, then, unless some of the constraints are redundant, the set \mathcal{K} will eventually be empty or a singleton, and then (P) becomes trivial.

The main result in this section is the following first order necessary condition for optimality.

Theorem 12. [Lagrange] Let $\bar{x} \in \mathcal{K}$ be a local solution to (P). Assume that f and $g_{i}(i=1, \ldots, m)$ are \mathcal{C}^{1}, and that

$$
\begin{equation*}
\text { the set of vectors }\left\{\nabla g_{1}(\bar{x}), \ldots, \nabla g_{m}(x)\right\} \text { are linearly independent. } \tag{CQ}
\end{equation*}
$$

Then, there exists $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\nabla f(\bar{x})+\sum_{i=1}^{m} \lambda_{i} \nabla g(\bar{x})=0 \tag{20}
\end{equation*}
$$

[Sketch of the proof] The technical point is the use of Assumption ($C Q$). Indeed, let us set $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ and let $h \in \mathbb{R}^{n}$ be such that $h \in \operatorname{Ker}(D g(\bar{x}))$. Under ($C Q$), the Implicit Function Theorem allows us to prove the existence of $\delta>0$ and \mathcal{C}^{1} function $\phi:(-\delta, \delta) \rightarrow \mathbb{R}^{m}$ such that $\phi(0)=\bar{x}, \phi(t) \in \mathcal{K}$ for all $t \in(-\delta, \delta)$ and $\phi^{\prime}(0)=h$. Then, by the optimality of \bar{x}, and diminishing δ, if necessary, we get

$$
f(\bar{x}) \leq f(\phi(t)) \forall t \in(-\delta, \delta),
$$

which gives, after a Taylor expansion,

$$
\nabla f(\bar{x})^{\top} h \geq 0 .
$$

Since $h \in \operatorname{Ker}(D g(\bar{x}))$ is arbitrary we get that $\nabla f(\bar{x})^{\top} h=0$, for all $h \in$ $\operatorname{Ker}(D g(\bar{x}))$, which implies that

$$
\operatorname{Ker}(D g(\bar{x})) \subseteq \operatorname{Ker}\left(\nabla f(\bar{x})^{\top}\right)
$$

and, hence, from Lemma 3 we get

$$
\begin{equation*}
\operatorname{Im}(\nabla f(\bar{x}))=\operatorname{Ker}\left(\nabla f(\bar{x})^{\top}\right)^{\perp} \subseteq \operatorname{Ker}(D g(\bar{x}))^{\perp}=\operatorname{Im}\left(D g(\bar{x})^{\top}\right) . \tag{21}
\end{equation*}
$$

Relation (20) follows directly from (21).

Remark 5. (i) If $m=1$, then (20) means that $\nabla f(\bar{x})$ and $\nabla g_{1}(\bar{x})$ are collinear.
(ii) The same optimality condition (20) holds if instead of considering minimization problem, we consider the maximization problem

$$
\left.\begin{array}{lc}
\max & f(x) \\
\text { s.t. } & g_{1}(x)=0 \\
\vdots \\
& g_{m}(x)=0
\end{array}\right\}
$$

(iii) Condition ($C Q$), called constraint qualification qualification condition, plays a important role. Indeed, let us consider the problem

$$
\left.\begin{array}{ll}
\min x \\
\text { s.t. } & x^{3}-y^{2}=0,
\end{array}\right\}
$$

whose unique solution is $(\bar{x}, \bar{y})=(0,0)$. Relation (20) reads: there exists $\lambda \in \mathbb{R}$ such that

$$
\binom{1}{0}+\left.\lambda\binom{3 x^{2}}{-2 y}\right|_{(\bar{x}, \bar{y})=(0,0)}=\binom{0}{0}
$$

which clearly does not holds. The reason for this is that $(C Q)$ does not holds. Indeed,

$$
\left.\binom{3 x^{2}}{-2 y}\right|_{(\bar{x}, \bar{y})=(0,0)}=\binom{0}{0}
$$

which is not linearly independent.
(iv) Under $(C Q)$ if (\bar{x}, λ) and (\bar{x}, μ) satisfy (20), then $\lambda=\mu$. Indeed, we have

$$
\sum_{i=1}^{m}\left(\lambda_{i}-\mu_{i}\right) \nabla g_{i}(\bar{x})=0
$$

and $(C Q)$ implies that $\lambda_{i}=\mu_{i}$ for all $i=1, \ldots, m$.
(v)[Affine constraints] We have seen that, in this case, (20) holds without having $(C Q)$. However, in this case, the uniqueness of λ may not hold.

Definition 3. (i) Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}$ satisfying (12) and $i \in$ $\{1, \ldots, m\}$, we say that λ_{i} is a Lagrange multiplier associated to the constraint $g_{i}(x)=0$.
(ii) The function $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ defined by

$$
L(x, \lambda)=f(x)+\langle\lambda, g(x)\rangle
$$

is called the Lagrangian of problem (P).
Theorem 12 says that if \bar{x} is a local solution to (P), then, there exists $\lambda \in \mathbb{R}^{m}$ such that

$$
\nabla_{x} L(\bar{x}, \lambda)=0 .
$$

Note that $\bar{x} \in \mathcal{K}$, which is equivalent to $g(x)=\left(g_{1}(\bar{x}), \ldots, g_{m}(\bar{x})\right)=0$ for all $i=1, \ldots, m$. Thus, $\nabla_{\lambda} L(\bar{x}, \lambda)=g(\bar{x})=0$, and, hence, (\bar{x}, λ) satisfies

$$
\begin{equation*}
\nabla_{x} L(\bar{x}, \lambda)=0, \quad \nabla_{\lambda} L(\bar{x}, \lambda)=0 \tag{22}
\end{equation*}
$$

which is a system of $n+m$ equations for $n+m$ unknowns.

Example: Let us consider the problem

$$
\left.\begin{array}{ll}
\min & x y \\
\text { s.t. } & x^{2}+(y+1)^{2}=1
\end{array}\right\}
$$

In this case $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, is given by $f(x, y)=x y$, and $\mathcal{K}=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid g(x, y)=0\right\}$, with $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ being given by $g(x, y)=x^{2}+(y+1)^{2}-1$.
Note that \mathcal{K} is given by the cercle centered at $(0,-1)$ with radius 1 . Hence, \mathcal{K} is a compact subset of \mathbb{R}^{2}. The function f being continuous, the Weierstrass theorem implies that the optimization problem has at least one solution $(\bar{x}, \bar{y}) \in \mathcal{K}$.
Let us check study $(C Q)$. We have $\nabla g(x, y)=(2 x, 2(y+1))$ and, hence, $\nabla g(x, y)=0$ iff $x=0, y=-1$. Thus, every $(x, y) \in \mathbb{R}^{2} \backslash\{(0,-1)\}$ satisfies $(C Q)$. Since $(0,-1) \notin \mathcal{K}$ we deduce that $(C Q)$ holds for every $(x, y) \in \mathcal{K}$.
The Lagrangian $L: \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ of this problem is given by

$$
L(x, y, \lambda)=x y+\lambda\left(x^{2}+(y+1)^{2}-1\right) .
$$

By Theorem 12, we have the existence of $\lambda \in \mathbb{R}$ such that (22) holds at $(\bar{x}, \bar{y}, \lambda)$.

Now,

$$
\begin{align*}
\nabla_{(x, y)} L(\bar{x}, \bar{y}, \lambda)=0 & \Leftrightarrow \tag{23}\\
& \left.\begin{array}{rl}
\bar{y}+2 \lambda \bar{x} & =0 \\
\bar{x}+2 \lambda(\bar{y}+1) & =0 \\
\bar{y} & =
\end{array}\right)-2 \lambda \bar{x}, \\
& \Leftrightarrow \quad\left(1-4 \lambda^{2}\right) \bar{x}
\end{align*}=-2 \lambda .
$$

Now, $1-4 \lambda^{2}=0$ iff $\lambda=1 / 2$ or $\lambda=-1 / 2$, and both cases contradict the last equality above. Therefore, $1-4 \lambda^{2} \neq 0$ and, hence,

$$
\bar{x}=\frac{2 \lambda}{4 \lambda^{2}-1} \quad \text { and } \quad \bar{y}=\frac{-4 \lambda^{2}}{4 \lambda^{2}-1} .
$$

Since $\nabla_{\lambda} L(\bar{x}, \bar{y}, \lambda)=g(\bar{x}, \bar{y})=0$, we get

$$
\begin{aligned}
& \left(\frac{2 \lambda}{4 \lambda^{2}-1}\right)^{2}+\left(1-\frac{4 \lambda^{2}}{4 \lambda^{2}-1}\right)^{2}=1 \\
& \Leftrightarrow 4 \lambda^{2}+1=\left(4 \lambda^{2}-1\right)^{2} \\
& \Leftrightarrow\left(4 \lambda^{2}-1\right)^{2}-\left(4 \lambda^{2}-1\right)-2=0
\end{aligned}
$$

which yields

$$
\begin{aligned}
& 4 \lambda^{2}-1=\frac{1+\sqrt{9}}{2} \text { or } 4 \lambda^{2}-1=\frac{1-\sqrt{9}}{2} \\
& \text { i.e. } \lambda^{2}=3 / 4 \text { or } \lambda^{2}=0
\end{aligned}
$$

If $\lambda=0$, then (23) yields $\bar{x}=\bar{y}=0$. If $\lambda=\sqrt{3} / 2$ we get $\bar{x}=\sqrt{3} / 2$ and $\bar{y}=-3 / 2$. If $\lambda=-\sqrt{3} / 2$ we get $\bar{x}=-\sqrt{3} / 2$ and $\bar{y}=-3 / 2$. Thus, the candidates to solve the problem are

$$
\left(\bar{x}_{1}, \bar{y}_{1}\right)=(0,0), \quad\left(\bar{x}_{2}, \bar{y}_{2}\right)=(\sqrt{3} / 2,-3 / 2) \text { and }\left(\bar{x}_{3}, \bar{y}_{3}\right)=(-\sqrt{3} / 2,-3 / 2)
$$

We have $f\left(\bar{x}_{1}, \bar{y}_{1}\right)=0, \quad f\left(\bar{x}_{2}, \bar{y}_{2}\right)=-3 \sqrt{3} / 4$ and $f\left(\bar{x}_{3}, \bar{y}_{3}\right)=3 \sqrt{3} / 4$. Therefore, the global solution is $\left(\bar{x}_{2}, \bar{y}_{2}\right)$.

