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Contents of the course

1.- Some mathematical preliminaries.

2.- Unconstrained optimization.

3.- Optimization with constraints

3.1.- Convex problems.

3.2.- Optimization problems with equality and inequality constraints.
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Definition of an optimization problem

� An optimization problem has the form

Find x̄ ∈ Rn such that f(x̄) = min {f(x) | x ∈ K} , (P )

where K ⊆ Rn is a given set. By definition, this mean to find x̄ ∈ K such that

f(x̄) ≤ f(x) ∀ x ∈ K.

� In the above, f is called an objective function, K is called a feasible set (or constraint

set) and any x̄ solving (P ) is called a global solution to problem (P ).

� Usually one also considers the weaker notion, but easier to characterize, of local solution

to problem (P ). Namely, x̄ ∈ K is a local solution to (P ) if there exists δ > 0 such

that f(x̄) ≤ f(x) for all x ∈ K ∩ B(x̄, δ), where

B(x̄, δ) := {x ∈ Rn | ‖x− x̄‖ ≤ δ} .
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� In optimization theory one usually studies the following features of problem (P ):

1.- Does there exist a solution x̄ (global or local)?

2.- Optimality conditions, i.e. properties satisfied by the solutions (or local solutions).

3.- Computation algorithms for finding approximate solutions.

� In this course we will mainly focus on points 1 and 2 of the previous program.

� We will also consider mainly two cases for the feasible set K:

� K = Rn (unconstrained case).

� Equality and inequality constraints:

K = {x ∈ Rn | gi(x) = 0, i = 1, . . . ,m, hj(x) ≤ 0, j = 1, . . . , `} . (1)

� In order to tackle point 2 we will assume that f is a smooth function. If the feasible

set (1) is considered, we will also assume that gi and hj are smooth functions.
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Some mathematical tools

� [Infimum] Let A ⊆ R. We say that m ∈ R is a lower bound of A if m ≤ a for all

a ∈ A. If m∗ is a lower bound of A such that m∗ ≥ m for every lower bound m of

A, then m∗ is called the infimum of A and it is denoted by m∗ = inf A. If m∗ ∈ A,

then we say that m∗ is the mimimum of A, which is denoted m∗ = minA. If no

lower bound for A exists, then we set inf A := −∞. Another convention is that if

A = ∅ then inf A = +∞.

Example: Suppose that A = {1/n | n ≥ 1}. Then, any m ∈] −∞, 0] is a lower

bound of A, inf A = 0 and no minima exist.

Lemma 1. If inf A is finite or inf A = −∞, then there exists a sequence (an)n∈N
of elements in A such that an → inf A as n→∞.

Proof. Exercise.
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Let f : Rn → R and K be given. Then, we define

inf
x∈K

f(x) := inf {f(x) |x ∈ K}︸ ︷︷ ︸
A

� [Supremum] Let A ⊆ R. We say that M ∈ R is an upper bound of A if M ≥ a

for all a ∈ A. If M∗ is an upper bound of A such that M∗ ≤ M for every

upper bound M of A, then M∗ is called the supremum of A and it is denoted by

M∗ = supA. If M∗ ∈ A, then we say that M∗ is the maximum of A, which is

denoted M∗ = maxA. If no upper bound for A exists, then we set supA := +∞.

Another convention is that if A = ∅ then supA = −∞.

Example: Suppose that A = {−1/n | n ≥ 1}. Then, any M ∈ [0,+∞[ is an

upper bound of A, supA = 0 and no maxima exist.

Let f : Rn → R and K be given. Then, we define

sup
x∈K

f(x) := sup {f(x) |x ∈ K}︸ ︷︷ ︸
A
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� [Graph of a function] Let f : Rn → R. The graph Gr(f) ⊆ Rn+1 is defined by

Gr(f) := {(x, f(x)) | x ∈ Rn} .

� [Level sets] Let c ∈ R. The level set of value c is defined by

Levf(c) := {x ∈ Rn | f(x) = c} .

• When n = 2, the sets Levf(c) are useful in order to draw the graph of a function.

• These sets will also be useful in order to solve graphically two dimensional linear

programming problems, i.e. n = 2, and the function f and the set K are defined

by means of affine functions.
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Example 1: We consider the function

R2 3 (x, y) 7→ f(x, y) := x+ y + 2 ∈ R,

whose level set is given, for all c ∈ R, by

Levf(c) :=
{

(x, y) ∈ R2 | x+ y + 2 = c
}
.

Note that the optimization problem with this f and K = R2 does not have a solution.

Example 2: Consider the function

R2 3 (x, y) 7→ f(x, y) := x
2

+ y
2 ∈ R.

Then Levf(c) = ∅ if c < 0 and, if c ≥ 0,

Levf(c) = {(x, y) | x2
+ y

2
= c},

i.e. the circle centered at 0 and of radius
√
c.
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Example 3: Consider the function

R2 3 (x, y) 7→ f(x, y) := x
2 − y2 ∈ R.

In this case the level sets are given, for all c ∈ R, by

Levf(c) = {(x, y) | y2
= x

2 − c}.

9



� [Differentiability] Let f : Rn → R. We say that f is differentiable at x̄ ∈ Rn if for all

i = 1, . . . , n the partial derivatives

∂f

∂xi
(x̄) := lim

τ→0

f(x̄+ τei)− f(x̄)

τ
(where ei := (0, . . . , 1︷︸︸︷

i

, . . . , 0)),

exist and, defining the gradient of f at x̄ by

∇f(x̄) :=

(
∂f

∂x1

(x̄), . . . ,
∂f

∂xn
(x̄)

)
∈ Rn,

we have that

lim
h→0

f(x̄+ h)− f(x̄)−∇f(x̄) · h
‖h‖

= 0.

If f is differentiable at every x belonging to a set A ⊆ Rn, we say that f is

differentiable in A.
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Remark 1. Notice that f is differentiable at x̄ iff there exists εx̄ : Rn → R, with

limh→0 εx̄(h) = 0 and

f(x̄+ h) = f(x̄) +∇f(x̄) · h+ ‖h‖εx̄(h). (2)

In particular, f is continuous at x̄.

Lemma 2. Assume that f is differentiable at x̄ and let h ∈ Rn. Then,

lim
τ→0, τ>0

f(x̄+ τh)− f(x̄)

τ
= ∇f(x̄) · h.

Proof. By (2), for every τ > 0, we have

f(x̄+ τh)− f(x̄) = τ∇f(x̄) · h+ τ‖h‖εx̄(τh).

Dividing by τ and letting τ → 0 gives the result.

11



Remark 2. (i) [Simple criterion to check differentiability] Suppose that A ⊆ Rn is

an open set containing x̄ and that

A 3 x 7→ ∇f(x) ∈ Rn,

is well-defined and continuous at x̄. Then, f is differentiable at x̄.

As a consequence, if ∇f is continuous in A, then f is differentiable in A. In this case,

we say that f is C1 in A (i.e. differentiability and continuity of ∇f in A). When f is

C1 in Rn we simply say that f is C1.

(ii) The notion of differentiability can be extended to a function f : Rn → Rm. In

this case, f is differentiable at x̄ if there exists L ∈ Mm×n(R) such that

lim
‖h‖→0

‖f(x̄+ h)− f(x̄)− Lh‖
‖h‖

→ 0.

If f is differentiable at x̄, then L = Df(x̄), called the Jacobian matrix of f at x̄,
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which is given by

Df(x̄) =



∂f1
∂x1

(x̄) . . .
∂f1
∂xn

(x̄)

. . . . . . . . .
∂fi
∂x1

(x̄) . . .
∂fi
∂xn

(x̄)

. . . . . . . . .
∂fm
∂x1

(x̄) . . . ∂fm
∂xn

(x̄)



Note that when m = 1 we have that Df(x̄) = ∇f(x̄)>.

The chain rule says that if f : Rn → Rm is differentiable at x̄ and g : Rm → Rp is

differentiable at f(x̄), then g ◦ f : Rn → Rp is differentiable at x̄ and the following

identity holds

D(g ◦ f)(x̄) = Dg(f(x̄))Df(x̄).

(iii) In the previous definitions the fact that the domain of definition of f is Rn is
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not important. The definition can be extended naturally for functions defined on open

subsets of Rn.

Basic examples:

(i) Let c ∈ Rn and consider the function f1 : Rn → R defined by f1(x) = c · x.

Then, for every x ∈ Rn, we have ∇f1(x) = c and, hence, f is differentiable.

(ii) Let Q ∈Mn×n(R) and consider the function f2 : Rn → R defined by

f2(x) = 1
2〈Qx, x〉 ∀ x ∈ Rn.

Then, for all x ∈ Rn and h ∈ Rn, we have

f2(x+ h) = 1
2〈Q(x+ h), x+ h〉

= 1
2〈Qx, x〉+ 1

2 [〈Qx, h〉+ 〈Qh, x〉] + 1
2〈Qh, h〉

= 1
2〈Qx, x〉+ 〈12

(
Q+Q>

)
x, h〉+ 1

2〈Qh, h〉
= f2(x̄) + 〈12

(
Q+Q>

)
x, h〉+ ‖h‖εx(h),
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where limh→0 εx(h) = 0. Therefore, f2 is differentiable and

∇f2(x) = 1
2

(
Q+Q

>
)
x ∀ x ∈ Rn.

In particular, if Q is symmetric, then ∇f2(x) = Qx.

(iii) Consider the function f3 : Rn → R defined by f3(x) = ‖x‖. Then, since

f3(x) =
√
‖x‖2, if x 6= 0, the chain rule shows that

Df(x) = D(
√
·)(‖x‖2

)D(‖ · ‖2
)(x) = 1

2

1√
‖x‖2

(2x)
>

=
x>

‖x‖
,

which implies that ∇f3(x) = x
‖x‖, and, since this function is continuous at every

x 6= 0, we have that f3 is C1 in the set Rn \ {0}. Let us show that f3 is not

differentiable at x = 0. Indeed, if this is not the case, then all the partial derivatives
∂f3
∂xi

(0) should exists for all i = 1, . . . , n. Taking, for instance, i = 1, we have

lim
τ→0

‖0 + τe1‖ − ‖0‖
τ

= lim
τ→0

|τ |
τ
,
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which does not exist, because

lim
τ→0−

|τ |
τ

= lim
τ→0−

−τ
τ

= −1 6= 1 = lim
τ→0+

τ

τ
= lim

τ→0+

|τ |
τ
.

� [Second order derivative and Taylor expansion] Suppose that f : Rn → R is C1. In

particular, the function Rn 3 x 7→ ∇f(x) ∈ Rn is well defined. If this function

is differentiable at x̄, then we say that f is twice differentiable at x̄. If f is twice

differentiable at every x belonging to a set A ⊆ Rn, then we say that f is twice

differentiable in A.

If this is the case, then, by definition,

∂2f

∂xi∂xj
(x̄) :=

∂

∂xj

(
∂f

∂xi

)
(x̄),

exists for all i, j = 1, . . . , n. The following result, due to Clairaut and also known

as Schwarz’s theorem, says that, under appropriate conditions we can change the

derivation order.
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Theorem 1. Suppose that the function f is twice differentiable in an open set

A ⊆ Rn containing x̄ and that for all i, j = 1, . . . , n the function A 3 x 7→
∂2f

∂xi∂xj
(x) ∈ R is continuous at x̄. Then,

∂2f

∂xi∂xj
(x̄) =

∂2f

∂xj∂xi
(x̄).

Under the assumptions of the previous theorem, the Jacobian of ∇f(x̄) takes the form

D
2
f(x̄) =



∂2f

∂x2
1
(x̄) . . . ∂2f

∂xn∂x1
(x̄)

... . . . ...

∂2f
∂xi∂x1

(x̄) . . . ∂2f
∂xn∂xi

(x̄)
... . . . ...

∂2f
∂xn∂x1

(x̄) . . . ∂2f

∂x2
n
(x̄)


.

This matrix, called the Hessian matrix of f at x̄ belongs to Mn×n(R) and it is a
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symmetric matrix by the previous result.

If f : Rn → R is twice differentiable in an open set A ⊆ Rn and for all i,

j = 1, . . . , n the function

A 3 x 7→
∂2f

∂xi∂xj
(x) ∈ R

is continuous, we say that f is C2 in A.

� [Taylor’s theorem] We admit the following important result:

Theorem 2. Suppose that f : Rn → R is C2 in an open set A ⊆ Rn. Then, for all

x ∈ A and h such that x+ h ∈ A, we have the following expansion

f(x+ h) = f(x) +∇f(x) · h+ 1
2〈D

2
f(x)h, h〉+ ‖h‖2

Rx(h),

where Rx(h)→ 0 as h→ 0.

Example: Consider the function f : R2 → R defined by f(x, y) = ex cos(y)−x−1.
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Then,
∂f
∂x(0, 0) = ex cos(y)

∣∣
(x,y)=(0,0)

− 1 = 0,
∂f
∂y(0, 0) = −ex sin(y)

∣∣
(x,y)=(0,0)

= 0,

∂2f

∂x2(0, 0) = ex cos(y)
∣∣
(x,y)=(0,0)

= 1,

∂2f

∂y2(0, 0) = −ex cos(y)
∣∣
(x,y)=(0,0)

= −1,

∂2f
∂x∂y(0, 0) = −ex sin(y)

∣∣
(x,y)=(0,0)

= 0.

Note that all the first and second order partial derivatives are continuous in Rn.

Therefore, we can apply the previous result and obtain that the Taylor’s expansion of

f at (0, 0) is given by

f((0, 0) + h) = f(0, 0) +∇f(0, 0) · h+ 1
2〈D

2f(0, 0)h, h〉+ ‖h‖2Rx̄(h),

= 0 + 0 + 1
2h

2
1 − 1

2h
2
2 + ‖h‖2R(0,0)(h),

= 1
2h

2
1 − 1

2h
2
2 + ‖h‖2R(0,0)(h).

This expansion shows that locally around (0, 0) the function f above is similar to the

function in Example 3.
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Some good reading for the previous part

� Chapters 2 and 3 in “Vector calculus”, sixth edition, by J. E. Marsden and A. Tromba.

� Chapter 14 in “Calculus: Early transcendentals”, eight edition, by J. Stewart.
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Some basic existence results for problem (P )

� [Compactness] Recall that A ⊆ Rn is called compact if A is closed and bounded (i.e.

A is closed and there exists R > 0 such that ‖x‖ ≤ R for all x ∈ A).

Let us recall an important result concerning the compactness of a set A.

Theorem 3. [Bolzano-Weierstrass theorem] A set A ⊆ Rn is compact if and only

if every sequence (xk)k∈N of elements of A has a convergence subsequence. This

means that there exists x̄ ∈ A and a subsequence (xk`)`∈N of (xk)k∈N such that

x̄ = lim
`→∞

xk`.

� [The basic existence results] Note that by definition, if infx∈Kf(x) = −∞, then f

has no lower bounds in K and, hence, there are no solutions to (P ). On the other

hand, if infx∈Lf(x) is finite, then the existence of a solution can also fail to hold as

the following example shows.
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Example: Consider the function R 3 x 7→ f(x) := e−x and take K := [0,+∞[.

Then, infx∈K f(x) = 0 and there is no x ∈ K such that f(x) = 0.

Definition 1. We say that (xk)k∈N ⊆ K is a minimizing sequence for (P ) if

inf
x∈K

f(x) = lim
k→∞

f(xk).

By definition, a minimizing sequence always exists if K is non-empty.

Theorem 4. [Weierstrass theorem, K compact] Suppose that f : Rn → R is

continuous and that K is non-empty and compact. Then, problem (P ) admits at

least one global solution.

Proof. Let (xk)k∈N ∈ K be a minimizing sequence. By compactness, there exists

x̄ ∈ K and a subsequence (xk`)`∈N of (xk)k∈N such that x̄ = lim`→∞ xk`. Then,

by continuity

f(x̄) = lim
`→∞

f(xk`) = inf
x∈K

f(x).
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Example: Suppose that f : R3 → R is given by f(x, y, z) = x2 − y3 + sin z and

K = {(x, y, z) | x4 + y4 + z4 ≤ 1}. Then f is continuous and K is compact. As

a consequence, problem (P ) admits at least one solution.

Theorem 5. [K closed but not bounded] Suppose that K is non-empty, closed, and

that f is continuous and “coercive” or “infinity at the infinity” in K, i.e.

lim
x∈K, ‖x‖→∞

f(x) = +∞. (3)

Then, problem (P ) admits at least one global solution.

Proof. Let (xk)k∈N ∈ K be a minimizing sequence. Since infx∈K f(x) = −∞ or

infx∈K f(x) ∈ R and limk→∞ f(xk) = infx∈K f(x), there exists R > 0 such

that (xk)k∈N ⊆ KR := {x′ ∈ K |f(x′) ≤ R} ⊆ K. By continuity of f , this

set is closed and bounded because f is coercive. Arguing as in the previous proof,

the compactness of KR implies the existence of x̄ ∈ KR such that a subsequence of

(xk)k∈N converges to x̄, which, by continuity of f , implies that x̄ solves (P ).
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Example: Suppose that f : Rn → R is given by

f(x) = 〈Qx, x〉+ c
>
x ∀ x ∈ Rn,

where Q ∈ Mn,n(R) is symmetric and positive definite, and c ∈ Rn. Since

〈Qx, x〉 ≥ λmin(Q)‖x‖2 ∀ x ∈ Rn

(where λmin(Q) > 0 is the smallest eigenvalue of Q), we have that

f(x) ≥ λmin(Q)‖x‖2 − ‖c‖‖x‖ ∀ x ∈ Rn.

This implies that f(x)→∞ as ‖x‖ → ∞. Therefore,

lim
x∈K,‖x‖→∞

f(x) =∞, (4)

holds for every closed set K. Since f is also continuous, problem (P ) admits at least

one global solution for any given non-empty closed set K.
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Example: Suppose that f : R2 → R is given by

f(x, y) = x
2

+ y
3 ∀ (x, y) ∈ R2

,

and

K = {(x, y) ∈ R2 | y ≥ −1}.
Then,

lim
x∈K,‖x‖→∞

f(x) = +∞ (5)

holds (exercise) and, hence, (P ) admits at least one global solution.
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Optimality conditions for unconstrained problems

� Notice that, by the second existence theorem, if f is continuous and satisfies that

lim
‖x‖→∞

f(x) = +∞,

then, if K = Rn, problem (P ) admits at least one global solution.

� [First order optimality conditions for unconstrained problems]

We have the following result

Theorem 6. [Fermat’s rule] Suppose that K = Rn and that x̄ is a local solution to

problem (P ). If f is differentiable at x̄, then ∇f(x̄) = 0.

Proof. For every h ∈ Rn and τ > 0, the local optimality of x̄ yields

f(x̄) ≤ f(x̄+ τh) = f(x̄) + τ∇f(x̄) · h+ τ‖h‖εx̄(τh),
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where limz→0 εx̄(z) = 0. Therefore,

0 ≤ τ∇f(x̄) · h+ τ‖h‖εx̄(τh).

Dividing by τ and letting τ → 0, we get

∇f(x̄) · h ≥ 0.

Since h is arbitrary, we get that ∇f(x̄) = 0 (take for instance h = −∇f(x̄) in the

previous inequality).

� [Second order optimality conditions for unconstrained problems]

We have the following second order necessary condition for local optimality:

Theorem 7. Suppose that K = Rn and that x̄ is a local solution to problem (P ). If

f is C2 in an open set A containing x̄, then D2f(x̄) is positive semidefinite.

In other words,

〈D2
f(x̄)h, h〉 ≥ 0 ∀ h ∈ Rn.
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Proof. Let us fix h ∈ Rn. By Taylor’s theorem, for all τ > 0 small enough, we have

f(x̄+ τh) = f(x̄) +∇f(x̄) · (τh) + 1
2〈D

2f(x̄)τh, τh〉+ ‖τh‖2Rx̄(τh),

where Rx̄(τh) → 0 as τ → 0. Using the local optimality of x̄, the previous result

implies that ∇f(x̄) = 0 and, hence,

0 ≤ f(x̄+ τh)− f(x̄) =
τ2

2
〈D2

f(x̄)h, h〉+ τ
2‖h‖2

Rx̄(τh).

Dividing by τ2 and passing to the limit with τ → 0, we get the result.
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We have the following second order sufficient condition for local optimality.

Theorem 8. Suppose that f : Rn → R is C2 in an open set A containing x̄ and

that

(i) ∇f(x̄) = 0.

(ii) The matrix D2f(x̄) is positive definite. In other words,

〈D2
f(x̄)h, h〉 > 0 ∀ h ∈ Rn, h 6= 0.

Then, x̄ is a local solution to (P ).

Proof. Let λ > 0 be the smallest eigenvalue of D2f(x̄), then

∀h ∈ Rn, 〈D2
f(x̄)h, h〉 ≥ λ‖h‖2

.

Using this inequality, the hypothesis ∇f(x̄) = 0, and the Taylor’s expansion, for all
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h ∈ Rn such that x̄+ h ∈ A we have that

f(x̄+ h)− f(x̄) = ∇f(x̄) · h+
1

2
〈D2

f(x̄)h, h〉+ ‖h‖2
Rx̄(h)

≥
λ

2
‖h‖2

+ ‖h‖2
Rx̄(h)

=

(
λ

2
+ Rx̄(h)

)
‖h‖2

.

Since Rx̄(h)→ 0 as h→ 0, we can choose δ > 0 such that ‖h‖ ≤ δ, x̄+ h ∈ A
and |Rx̄(h)| ≤ λ

4 . As a consequence,

f(x̄+ h)− f(x̄) ≥
λ

4
‖h‖2 ∀ h ∈ Rn with ‖h‖ ≤ δ,

which proves the local optimality of x̄.
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Example: Let us study problem (P ) with K = R2 and

R2 3 (x, y) 7→ f(x, y) = 2x
3

+ 3y
2

+ 3x
2
y − 24y.

First, consider the sequence (xk, yk) = (−k, 0) for k ∈ N. Then,

f(xk, yk) = −2k
3 → −∞ as k →∞.

Therefore, inf(x,y)∈R2 f(x, y) = −∞ and problem (P ) does not admit global

solutions. Let us look for local solutions. We know that if (x, y) is a local solution,

then it should satisfy ∇f(x, y) = (0, 0). This equation gives

6x2 + 6xy = 0,

6y + 3x2 = 24.

From the first equation, we get that x = 0 or x = −y. In the first case, the second

equation yields y = 4, while in the second case we obtain that x2−2x−8 = 0 which

yields the two solutions (4,−4) and (−2, 2). Therefore, we have the three candidates

(0, 4), (4,−4) and (−2, 2). Let us check what can be obtained from the Hessian at
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these three points. We have that

D
2
f(x, y) =

(
12x+ 6y 6x

6x 6

)
.

For the first candidate, we have

D
2
f(0, 4) =

(
24 0

0 6

)
.

which is positive definite. This implies that (0, 4) is a local solution of (P ). For the

second candidate, we have

D
2
f(4,−4) =

(
24 24

24 6

)
= 6

(
4 4

4 1

)
,

whose determinant is given by 36(−12) < 0, which implies that D2f(4,−4) is
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indefinite (the sign of the eigenvalues is not constant). Finally,

D
2
f(−2, 2) =

(
−12 −12

−12 6

)
which is also indefinite because the sign of the diagonal terms are not constant.

Therefore, (0, 4) is the unique local solution to (P ).

� [Maximization problems] If instead of problem (P ) we consider the problem

Find x̄ ∈ Rn such that f(x̄) = max {f(x) | x ∈ K} , (P ′)

then x̄ is a local (resp. global) solution to (P ′) iff x̄ is a local (resp. global) solution

to (P ) with f replaced by −f . In particular, if x̄ is a local solution to (P ′) and f is

regular enough, then we have the following first order necessary condition

∇f(x̄) = 0,

as well as the following second order necessary condition

〈D2
f(x̄)h, h〉 ≤ 0 ∀ h ∈ Rn.
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In other words, D2f(x̄) is negative semidefinite.

Conversely, if x̄ ∈ Rn is such that ∇f(x̄) = 0 and

〈D2
f(x̄)h, h〉 < 0 ∀ h ∈ Rn, h 6= 0.

Then, x̄ is a local solution to (P ′).
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Convexity

� [Convexity of a set] A non-empty set C ⊆ Rn is called convex if for any λ ∈ [0, 1]

and x, y ∈ C, we have that

λx+ (1− λ)y ∈ C.

Let us fix a convex set C ⊆ Rn.

� [Convexity of a function] A function f : C → R is said to be convex if for any

λ ∈ [0, 1] and x, y ∈ C, we have that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

� [Relation between convex functions and convex sets] Given f : Rn → R, let us define

its epigraph epi(f) by

epi(f) :=
{

(x, y) ∈ Rn+1 | y ≥ f(x)
}
.

35



Proposition 1. The function f is convex iff the set epi(f) is convex.

Proof. Indeed, suppose that f is convex and let (x1, z1), (x2, z2) ∈ epi(f). Then,

given λ ∈ [0, 1] set

Pλ := λ(x1, z1) + (1− λ)(x2, z2) = (λx1 + (1− λ)x2, λz1 + (1− λ)z2)

Since, by convexity,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λz1 + (1− λ)z2,

we have that Pλ ∈ epi(f). Conversely, assume that epi(f) is convex and let x1,

x2 ∈ Rn and λ ∈ [0, 1]. Since (x1, f(x1)), (x2, f(x2)) ∈ epi(f), we deduce that

(λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)) ∈ epi(f),

and, hence,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2),

which proves the convexity of f .
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� [Strict convexity of a function] A function f : C → R is said to be strictly convex if

for any λ ∈ (0, 1) and x, y ∈ C, with x 6= y, we have that

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

� [Concavity and strict concavity of a function] A function f : C → R is said to be

concave if −f is convex. Similarly, the function f is strictly concave if −f is strictly

convex.

Example: Let us show that the function Rn 3 x 7→ ‖x‖ ∈ R is convex but not

strictly convex. Indeed, the convexity follows from the triangle inequality

‖λx+ (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖.

Now, if we have that for some λ ∈ (0, 1)

‖λx+ (1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖

the equality case in the triangle inequality (‖a+b‖ = ‖a‖+‖b‖ iff a = 0 and b = 0

or a = αb with α > 0) shows that the previous inequality holds iff that x = y = 0
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or x = γy for some γ > 0. By taking x 6= 0 and y = γx with γ ∈ (0,∞) \ {1}
we conclude that ‖ · ‖ is not strictly convex.

Example: Let β ∈ (1,+∞). Let us show that the function Rn 3 x 7→ ‖x‖β ∈ R
is strictly convex. Indeed, the real function [0,+∞) 3 t 7→ α(t) := tβ ∈ R is

increasing and strictly convex because

α
′
(t) = βt

β−1
> 0 and α

′′
(t) = β(β − 1)t

β−2
> 0 ∀ t ∈ (0,+∞).

As a consequence, for any λ ∈ [0, 1], using that

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖,

we get that

‖λx+ (1− λ)y‖β ≤ (λ‖x‖+ (1− λ)‖y‖)β

≤ λ‖x‖β + (1− λ)‖y‖β,
(6)

which implies the convexity of ‖ · ‖β. Now, in order to prove the strict convexity,
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assume that for some λ ∈ (0, 1) we have

‖λx+ (1− λ)y‖β = λ‖x‖β + (1− λ)‖y‖β,

and let us prove that x = y. Then, all the inequalities in (6) are equalities and, hence,

‖λx+ (1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖,

and (λ‖x‖+ (1− λ)‖y‖)β = λ‖x‖β + (1− λ)‖y‖β.

The equality case in the triangle inequality and the first relation above imply that

x = y = 0 or x = γy for some γ > 0. The strict convexity of α and the second

inequality above imply that ‖x‖ = ‖y‖. Therefore, either x = y = 0 or both x and

y are not zero and x = γy for some γ > 0 and ‖x‖ = ‖y‖. In the latter case, we

get that α = 1 and, hence, x = y from which the strict convexity follows.
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� [Convexity and differentiability] We have the following result:

Theorem 9. Let f : C → R be a differentiable function. Then,

(i) f is convex in Rn if and only if for every x ∈ C we have

f(y) ≥ f(x) +∇f(x) · (y − x), ∀ y ∈ C. (7)

(ii) f is strictly convex in Rn if and only if for every x ∈ C we have

f(y) > f(x) +∇f(x) · (y − x), ∀ y ∈ C, y 6= x. (8)

Proof. (i) By definition of convex function, for any x, y ∈ C and λ ∈ (0, 1), we have

f(λy + (1− λ)x)− f(x) ≤ λ (f(y)− f(x))

Since, λy + (1− λ)x = x+ λ(y − x), we get

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x).
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Letting λ→ 0, Lemma 2 yields

∇f(x) · (y − x) ≤ f(y)− f(x).

Conversely, take x1 and x2 in C, λ ∈]0, 1[ and define xλ := λx1 + (1− λ)x2. By

assumption,

∀i ∈ {1, 2} , f(xi) ≥ f(xλ) +∇f(xλ) · (xi − xλ),

and we obtain, by taking the convex combination, that

λf(x1) + (1− λ)f(x2) ≥ f(xλ) +∇f(xλ) · (λx1 + (1− λ)x2 − xλ) = f(xλ),

which shows that f is convex.

(ii) Since f is convex, by (i) we have that

f(y) ≥ f(x) +∇f(x) · (y − x), ∀ y ∈ C. (9)
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Suppose that there exists y ∈ C such that y 6= x and

f(y) = f(x) +∇f(x) · (y − x).

Let z = 1
2x+ 1

2y. Then, by (9), with y = z, and strict convexity, we get

f(x)+∇f(x)·(1
2y−

1
2x) ≤ f(z) < 1

2f(x)+ 1
2f(y) = f(x)+∇f(x)·(1

2y−
1
2x),

which is impossible. The proof that (8) implies that f is strictly convex is completely

analogous to the proof that (7) implies convexity. The result follows.

Theorem 10. Let f : C → R be C2 in C and suppose that C is open (besides being

convex). Then

(i) f is convex if and only if D2f(x) is positive semidefinite for all x ∈ C.

(ii) f is strictly convex if D2f(x) is positive definite for all x ∈ C

Proof. (i) Suppose that f is convex. Then, by Taylor’s theorem for every x ∈ C,
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h ∈ Rn and τ > 0 small enough such that x+ τh ∈ C we have

f(x+ τh) = f(x) + τ∇f(x) · h+
τ2

2
〈D2

f(x)h, h〉+ τ
2‖h‖2

Rx(τh),

which implies, by the first order characterization of convexity, that

0 ≤ 1
2〈D

2
f(x)h, h〉+ ‖h‖2

Rx(τh).

Using that limτ→0Rx(τh) = 0, and the fact that h is arbitrary, we get that

〈D2
f(x)h, h〉 ≥ 0 ∀ h ∈ Rn.

Suppose that D2f(x) is positive semidefinite for all x ∈ C and assume, for the time

being, that for every x, y ∈ C there exists cxy ∈ {λx + (1 − λ)y | λ ∈ (0, 1)}
such that

f(y) = f(x) +∇f(x) · (y − x) + 1
2〈D

2
f(cxy)(y − x), y − x〉. (10)
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Then, have that

f(y) ≥ f(x) +∇f(x) · (y − x) ∀ x, y ∈ C,

and, hence, f is convex. It remains to prove (10). Defining g(τ) := f(x+ τ(y−x))

for all τ ∈ [0, 1], formula (10) follows from the equality

g(1) = g(0) + g
′
(0) + 1

2g
′′
(τ̂)

for some τ̂ ∈ (0, 1).

(ii) The assertion follows directly from (10), with y 6= y, and Theorem 9(ii).

Remark 3. Note that the positive definiteness of D2f(x), for all x ∈ C, is only

a sufficient condition for strict convexity but not necessary. Indeed, the function

R 3 x 7→ f(x) = x4 ∈ R is strictly convex but f ′′(0) = 0.

Example: Let Q ∈ Mn,n(R) be symmetric and let f : Rn → R be defined by

f(x) = 1
2x
>
Qx+ c

>
x.
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Then, D2f(x) = Q and hence f is convex if Q is semidefinite positive and strictly

convex if Q is definite positive.

In this case, the fact that Q is definite positive is also a necessary condition for strict

convexity. Indeed, for simplicity suppose that c = 0 and write Q = PDP>, where

the set of columns of P is an orthonormal basis of eigenvectors of Q (which exists

because Q is symmetric), and D is the diagonal matrix containing the corresponding

eigenvalues {λi}Ni=1 in the diagonal. Set y(x) = P>x. Then,

f(x) =
∑

λ
n
i=1yi(x)

2
.

If Q is not positive definite, then there exists j ∈ {1, . . . , N} such that

λj ≤ 0. Then, it is easy to see that f is not strictly convex on the set

{x ∈ Rn | yi(x) = 0, for all i ∈ {1, . . . , n} \ {j}}.
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Optimization with constraints

� [Optimality conditions for convex problems] Let us begin with a definition.

Definition 2. Problem (P ) is called convex if f is convex and K is a non-empty

closed and convex set.

We have the following result.

Theorem 11. [Characterization of solutions for convex problems] Suppose that

problem (P ) is convex and that f : Rn → R is differentiable in K. Then, the

following statements are equivalent:

(i) x̄ is a local solution to (P ).

(ii) The following inequality holds:

〈∇f(x̄), x− x̄〉 ≥ 0 ∀ x ∈ K. (11)

(iii) x̄ is a global solution to (P ).
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Proof. Let us prove that (i) implies (ii). Indeed, by convexity of K we have that

given y ∈ K for any τ ∈ [0, 1] the point τy + (1 − τ)x̄ = x̄ + τ(y − x̄) ∈ K.

Therefore, by the differentiability of f , if τ is small enough, we have

0 ≤ f(x̄+ τ(y − x̄))− f(x̄) = τ∇f(x̄) · (y − x̄) + τ‖y − x̄‖εx̄(τ‖y − x̄‖),

where limh→0 εx̄(h) = 0. Dividing by τ and letting τ → 0, we get (ii).

The proof that (ii) implies (iii) follows directly from the inequalities

f(y) ≥ f(x̄) +∇f(x̄) · (y − x̄) ≥ f(x̄) ∀ y ∈ K.

Finally, (iii) implies (i) is trivial. The result follows.

Remark 4. In particular, if f : Rn → R is convex and differentiable and K = Rn, the

relation

∇f(x̄) = 0,

is a necessary and sufficient condition for x̄ to be a global solution to (P ).
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Proposition 2. Suppose that K is convex and that f is strictly convex in K. Then,

there exists at most one solution to problem (P ).

Proof. Assume, by contradiction, that x1 6= x2 are both solutions to (P ). Then,
1
2x1 + 1

2x2 ∈ K and

f(1
2x1 + 1

2x2) <
1
2f(x1) + 1

2f(x2) = min
x∈K

f(x).

� [Least squares] Let A ∈ Mm,n(R), b ∈ Rm and consider the system Ax = b.

Suppose that m > n. This type of systems appear, for instance, in data fitting

problem and it is often ill-posed, in the sense that there is no x satisfying the equation.

In this case, one usually considers the optimization problem

min
x∈K:=Rn

f(x) := ‖Ax− b‖2
. (12)

Note that

f(x) = 〈A>Ax, x〉 − 2〈A>b, x〉+ ‖b‖2
.
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and, hence, D2f(x) = 2A>A, which is symmetric positive semidefinite, and, hence,

f is convex. Let us assume that the columns of A are linearly independent. Then, for

any h ∈ Rn,

〈A>Ah, h〉 = 0⇔ Ah = 0⇔ h = 0,

i.e. for all x ∈ Rn, the matrix D2f(x) is symmetric positive definite and, hence, f is

strictly convex. Moreover, denoting by λmin > 0 the smallest eigenvalue of 2A>A,

we have

f(x) ≥ λmin‖x‖2 − 2〈A>b, x〉+ ‖b‖2
.

and, hence, f is infinity at the infinity. Therefore, problem (12) admits only one solution

x̄. By Remark 4, the solution x̄ is characterized by

A
>
Ax̄ = A

>
b, i.e. x̄ = (A

>
A)
−1
A
>
b.

� [Projection on a closed and convex set] Suppose that K is a nonempty closed and

convex set and let y ∈ Rn. Consider the problem the projection problem

inf {‖x− y‖ | x ∈ K} . (ProjK)
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Note that K being closed and the cost functional being coercive, we have the existence

of at least one solution x̄. In order, to characterize x̄ notice that the set of solutions to

(ProjK) is the same as the set of solutions to the problem

inf
{

1
2‖x− y‖

2 | x ∈ K
}
.

Then, since the cost functional of the problem above is strictly convex, Proposition 2

implies that x̄ is its unique solution and, hence, is also the unique solution to (ProjK).

Moreover, by Theorem 11(ii), we have that x̄ is characterized by the inequality

(y − x̄) · (x− x̄) ≤ 0 ∀ x ∈ K. (13)

Example: Let b ∈ Rm and A ∈ Mm×n be such that

b ∈ Im(A) := {Ax | x ∈ Rm}.

Suppose that

K = {x ∈ Rn | Ax = b}. (14)
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Then, K is closed, convex and nonempty. Moreover, for any h ∈ Ker(A) we have

that x̄+ h ∈ K. As a consequence, (13) implies that

(y − x̄) · h ≤ 0 ∀ h ∈ Ker(A),

and, using that h ∈ Ker(A) iff −h ∈ Ker(A), we get that

(y − x̄) · h = 0 ∀ h ∈ Ker(A). (15)

Conversely, since for every x ∈ K we have x − x̄ ∈ Ker(A), relation (15) implies

(13), and, hence, (15) characterizes x̄. Note that (15) can be written as1

y − x̄ ∈ Ker(A)
⊥

=
{
v ∈ Rn | v>h = 0 ∀ h ∈ Ker(A)

}
,

1Recall that given a subspace V of Rn, the orthogonal space V ⊥ is defined by

V
⊥

:= {z ∈ Rn | z>v = 0 ∀ v ∈ V }.

Two important properties of the orthogonal space are V ⊕ V ⊥ = Rn, and (V ⊥)⊥ = V .
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or, equivalently,

y = x̄+ z for some z ∈ Ker(A)
⊥
. (16)

� [Convex problems with equality constraints] Now, we consider the same set K as in

(14) but we consider a general differentiable convex objective function f : Rn → R.

We will need the following result from Linear Algebra.

Lemma 3. Let A ∈ Mm,n(R). Then, Ker(A)⊥ = Im(A>).

Proof. By the previous footnote, the desired relation is equivalent to Im(A>)⊥ =

Ker(A). Now, x ∈ Im(A>)⊥ iff 〈x,A>y〉 = 0 for all y ∈ Rm, and this holds iff

〈Ax, y〉 = 0 for all y ∈ Rm, i.e. x ∈ Ker(A).

Proposition 3. Let f : Rn → R be differentiable and suppose that the set K in (14)

is nonempty. Then x̄ is a global solution to (P ) iff x̄ ∈ K and there exists λ ∈ Rm

such that

∇f(x̄) + A
>
λ = 0. (17)

Proof. We are going to show that (17) is equivalent to (11) from which the result
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follows. Indeed, exactly as in the previous example, we have that (11) is equivalent to

∇f(x̄) · h = 0 ∀ h ∈ Ker(A),

i.e.

∇f(x̄) ∈ Ker(A)
⊥
.

Lemma 3 implies the existence of µ ∈ Rm such that ∇f(x̄) = A>µ. Setting

λ = −µ we get (17).

Example: Let Q ∈ Mn,n(R) be symmetric and positive definite, and c ∈ Rn. In the

framework of the previous proposition, suppose that f is given by

f(x) = 1
2〈Qx, x〉+ c

>
x ∀ x ∈ Rn,

and that A has m linearly independent columns. A classical linear algebra result states

that this is equivalent to the fact that the m lines of A are linearly independent. In

this case, we say that A has full rank.

Under the previous assumptions on Q, we have seen that f is strictly convex.

Moreover, the condition on the columns of A implies that Im(A) = Rm and, hence,
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K 6= ∅. Now, by Proposition 3 the point x̄ solves (P ) iff x̄ ∈ K and there exists

λ ∈ Rm such that (17) holds. In other words, there exists λ ∈ Rm such that

Ax̄ = b, and Qx̄+ c+ A
>
λ = 0.

The second equation above yields x̄ = −Q−1(c + A>λ) and, hence, by the first

equation, we get

AQ
−1
c+ AQ

−1
A
>
λ+ b = 0. (18)

Let us show that M := AQ−1A> is invertible. Indeed, since M ∈ Mm,m(R) it

suffices to show that My = 0 implies that y = 0. Now, let y ∈ Rm such that

My = 0. Then, 〈My, y〉 = 0 and, hence, 〈Q−1A>y,A>y〉 = 0, which implies,

since Q−1 is also positive definite, that A>y = 0. Now, since the columns of A> are

also linearly independent, we deduce that y = 0, i.e. M is invertible. Using this fact,

we can solve for λ in (18), obtaining

λ = −M−1
(
AQ

−1
c+ b

)
.

54



We deduce that

x̄ = −Q−1
(
c− A>M−1

(
AQ

−1
c+ b

))
, (19)

is the unique solution to this problem.

Example: Let us now consider the projection problem

min 1
2‖x− y‖

2

s.t. Ax = b.

Noting that 1
2‖x− y‖

2 = 1
2‖x‖

2− y>x+ 1
2‖y‖

2, the previous problem has the same

solution than
min 1

2‖x‖
2 − y>x

s.t. Ax = b,

which corresponds to Q = In×n (the n × n identity matrix) and c = −y. Then,

(19) implies that the solution of this problem is given by

x̄ = (I − A>(AA
>

)
−1
A)y + A

>
(AA

>
)
−1
b.
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Note that if h ∈ Ker(A)

〈y − x̄, h〉 = 〈A>(AA>)−1Ay − A>(AA>)−1b, h〉

= 〈AA>)−1Ay − (AA>)−1b, Ah〉

= 0,

confirming (16).
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Optimality conditions for problems with equality and
inequality constraints

� [An introductory example: linear programming] A firm produces two kind of products.

Let x1, x2 be, respectively, the quantity of product 1 and 2 (in tons) made in one

month. Assume that there are some constraints on the quantity of x1 and x2:

• the factory cannot produce more than 3 units of x1.

• fabrication process implies the following linear constraints on x1 and x2

−2x1 + x2 ≤ 2, −x1 + x2 ≤ 3.

The optimization problem is to chose the quantities x1 and x2 in order to maximize

the benefits of the firm if the monthly revenue is x1 + 2x2.
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The problem can be written as

sup x1 + 2x2

−2x1 + x2 ≤ 2,

−x1 + x2 ≤ 3

0 ≤ x1 ≤ 3, 0 ≤ x2.

(LP )

This two dimensional example can be solved graphically. See the figure below.

• For f(x1, x2) = x1 + 2x2, we consider the level sets Levf(c) with c ∈ R.

• (x̄1, x̄2) solves the (LP ) iff c̄ := f(x̄1, x̄2) is the maximum c ∈ R such that

Levf(c) ∩ P 6= ∅, where P is the polygon defined by

P :=
{

(x1, x2) ∈ R2 | − 2x1 + x2 ≤ 2, −x1 + x2 ≤ 3, 0 ≤ x1 ≤ 3, 0 ≤ x2

}
.

• In order to find such c̄, we start with any c ∈ R such that Levf(c) ∩ P 6= ∅ and then

we vary c by moving the line x1 + 2x2 = c in the normal direction given by (1, 2)

until we find c̄.
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• In larger dimensions (n > 2), in practice this procedure cannot be applied. The most

popular method to solve linear programming problems being the simplex method.
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� [Nonlinear optimization problems with equality constraints] Consider problem (P ) with

K := {x ∈ Rn | g1(x) = 0, . . . , gm(x) = 0} ,

where, for all i = 1, . . . ,m, gi : Rn → R is a given function. In this case, Problem

(P ) is usually written as
min f(x)

s.t. g1(x) = 0,
...

gm(x) = 0.

 (P )

In what follows we will assume that n > m. Indeed, if n ≤ m, then, unless some of

the constraints are redundant, the set K will eventually be empty or a singleton, and

then (P ) becomes trivial.

The main result in this section is the following first order necessary condition for

optimality.
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Theorem 12. [Lagrange] Let x̄ ∈ K be a local solution to (P ). Assume that f and

gi (i = 1, . . . ,m) are C1, and that

the set of vectors {∇g1(x̄), . . . ,∇gm(x)} are linearly independent. (CQ)

Then, there exists (λ1, . . . , λm) ∈ Rm such that

∇f(x̄) +

m∑
i=1

λi∇g(x̄) = 0. (20)

[Sketch of the proof] The technical point is the use of Assumption (CQ). Indeed, let

us set g(x) = (g1(x), . . . , gm(x)) and let h ∈ Rn be such that h ∈ Ker(Dg(x̄)).

Under (CQ), the Implicit Function Theorem allows us to prove the existence of

δ > 0 and C1 function φ : (−δ, δ) → Rm such that φ(0) = x̄, φ(t) ∈ K for all

t ∈ (−δ, δ) and φ′(0) = h. Then, by the optimality of x̄, and diminishing δ, if

necessary, we get

f(x̄) ≤ f(φ(t)) ∀ t ∈ (−δ, δ),
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which gives, after a Taylor expansion,

∇f(x̄)
>
h ≥ 0.

Since h ∈ Ker(Dg(x̄)) is arbitrary we get that ∇f(x̄)>h = 0, for all h ∈
Ker(Dg(x̄)), which implies that

Ker(Dg(x̄)) ⊆ Ker(∇f(x̄)
>

),

and, hence, from Lemma 3 we get

Im(∇f(x̄)) = Ker(∇f(x̄)
>

)
⊥ ⊆ Ker(Dg(x̄))

⊥
= Im(Dg(x̄)

>
). (21)

Relation (20) follows directly from (21).
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Remark 5. (i) If m = 1, then (20) means that ∇f(x̄) and ∇g1(x̄) are collinear.

(ii) The same optimality condition (20) holds if instead of considering minimization

problem, we consider the maximization problem

max f(x)

s.t. g1(x) = 0,
...

gm(x) = 0.


(iii) Condition (CQ), called constraint qualification qualification condition, plays a

important role. Indeed, let us consider the problem

min x

s.t. x3 − y2 = 0,

}

whose unique solution is (x̄, ȳ) = (0, 0). Relation (20) reads: there exists λ ∈ R
such that (

1

0

)
+ λ

(
3x2

−2y

) ∣∣∣∣
(x̄,ȳ)=(0,0)

=

(
0

0

)
,
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which clearly does not holds. The reason for this is that (CQ) does not holds. Indeed,(
3x2

−2y

) ∣∣∣∣
(x̄,ȳ)=(0,0)

=

(
0

0

)
,

which is not linearly independent.

(iv) Under (CQ) if (x̄, λ) and (x̄, µ) satisfy (20), then λ = µ. Indeed, we have

m∑
i=1

(λi − µi)∇gi(x̄) = 0,

and (CQ) implies that λi = µi for all i = 1, . . . ,m.

(v)[Affine constraints] We have seen that, in this case, (20) holds without having

(CQ). However, in this case, the uniqueness of λ may not hold.
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Definition 3. (i) Given λ = (λ1, . . . , λm) ∈ Rm satisfying (12) and i ∈
{1, . . . ,m}, we say that λi is a Lagrange multiplier associated to the constraint

gi(x) = 0.

(ii) The function L : Rn × Rm → R defined by

L(x, λ) = f(x) + 〈λ, g(x)〉,

is called the Lagrangian of problem (P ).

Theorem 12 says that if x̄ is a local solution to (P ), then, there exists λ ∈ Rm such

that

∇xL(x̄, λ) = 0.

Note that x̄ ∈ K, which is equivalent to g(x) = (g1(x̄), . . . , gm(x̄)) = 0 for all

i = 1, . . . ,m. Thus, ∇λL(x̄, λ) = g(x̄) = 0, and, hence, (x̄, λ) satisfies

∇xL(x̄, λ) = 0, ∇λL(x̄, λ) = 0, (22)

which is a system of n+m equations for n+m unknowns.
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Example: Let us consider the problem

min xy

s.t. x2 + (y + 1)2 = 1.

}

In this case f : R2 → R, is given by f(x, y) = xy, and K = {(x, y) ∈
R2 | g(x, y) = 0}, with g : R2 → R being given by g(x, y) = x2 + (y+ 1)2− 1.

Note that K is given by the cercle centered at (0,−1) with radius 1. Hence, K is

a compact subset of R2. The function f being continuous, the Weierstrass theorem

implies that the optimization problem has at least one solution (x̄, ȳ) ∈ K.

Let us check study (CQ). We have ∇g(x, y) = (2x, 2(y + 1)) and, hence,

∇g(x, y) = 0 iff x = 0, y = −1. Thus, every (x, y) ∈ R2 \ {(0,−1)} satisfies

(CQ). Since (0,−1) /∈ K we deduce that (CQ) holds for every (x, y) ∈ K.

The Lagrangian L : R2 × R→ R of this problem is given by

L(x, y, λ) = xy + λ(x
2

+ (y + 1)
2 − 1).

By Theorem 12, we have the existence of λ ∈ R such that (22) holds at (x̄, ȳ, λ).
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Now,

∇(x,y)L(x̄, ȳ, λ) = 0 ⇔ ȳ + 2λx̄ = 0,

x̄+ 2λ(ȳ + 1) = 0,

⇔ ȳ = −2λx̄,

(1− 4λ2)x̄ = −2λ.

(23)

Now, 1 − 4λ2 = 0 iff λ = 1/2 or λ = −1/2, and both cases contradict the last

equality above. Therefore, 1− 4λ2 6= 0 and, hence,

x̄ =
2λ

4λ2 − 1
and ȳ =

−4λ2

4λ2 − 1
.

Since ∇λL(x̄, ȳ, λ) = g(x̄, ȳ) = 0, we get

(
2λ

4λ2−1

)2

+
(

1− 4λ2

4λ2−1

)2

= 1,

⇔ 4λ2 + 1 = (4λ2 − 1)2

⇔ (4λ2 − 1)2 − (4λ2 − 1)− 2 = 0,
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which yields

4λ2 − 1 = 1+
√

9
2 or 4λ2 − 1 = 1−

√
9

2

i.e. λ2 = 3/4 or λ2 = 0.

If λ = 0, then (23) yields x̄ = ȳ = 0. If λ =
√

3/2 we get x̄ =
√

3/2 and

ȳ = −3/2. If λ = −
√

3/2 we get x̄ = −
√

3/2 and ȳ = −3/2. Thus, the

candidates to solve the problem are

(x̄1, ȳ1) = (0, 0), (x̄2, ȳ2) = (
√

3/2,−3/2) and (x̄3, ȳ3) = (−
√

3/2,−3/2)

We have f(x̄1, ȳ1) = 0, f(x̄2, ȳ2) = −3
√

3/4 and f(x̄3, ȳ3) = 3
√

3/4.

Therefore, the global solution is (x̄2, ȳ2). �
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