Lectures on optimization Basic camp

Francisco J. Silva

Université de Limoges

francisco.silva@unilim.fr

http://www.unilim.fr/pages_perso/francisco.silva/

August 2019

Contents of the course

- 1.- Some mathematical preliminaries.
- 2.- Unconstrained optimization.
- 3.- Optimization with constraints
- 3.1.- Convex problems.
- 3.2.- Optimization problems with equality and inequality constraints.

Definition of an optimization problem

♦ An optimization problem has the form

Find $\bar{x} \in \mathbb{R}^n$ such that $f(\bar{x}) = \min \{f(x) \mid x \in \mathcal{K}\},$ (P)

where $\mathcal{K} \subseteq \mathbb{R}^n$ is a given set. By definition, this mean to find $\bar{x} \in \mathcal{K}$ such that

$$f(\bar{x}) \le f(x) \ \forall \ x \in \mathcal{K}.$$

- ♦ In the above, f is called an objective function, \mathcal{K} is called a feasible set (or constraint set) and any \bar{x} solving (P) is called a global solution to problem (P).
- ♦ Usually one also considers the weaker notion, but easier to characterize, of local solution to problem (P). Namely, $\bar{x} \in \mathcal{K}$ is a local solution to (P) if there exists $\delta > 0$ such that $f(\bar{x}) \leq f(x)$ for all $x \in \mathcal{K} \cap B(\bar{x}, \delta)$, where

$$B(\bar{x},\delta) := \{x \in \mathbb{R}^n \mid ||x - \bar{x}|| \le \delta\}.$$

- \diamond In optimization theory one usually studies the following features of problem (P):
 - 1.- Does there exist a solution \bar{x} (global or local)?
 - 2.- Optimality conditions, i.e. properties satisfied by the solutions (or local solutions).
 - 3.- Computation algorithms for finding approximate solutions.
- \diamond In this course we will mainly focus on points 1 and 2 of the previous program.
- \diamond We will also consider mainly two cases for the feasible set \mathcal{K} :
 - $\diamond \ \mathcal{K} = \mathbb{R}^n \text{ (unconstrained case).}$
 - ♦ Equality and inequality constraints:

 $\mathcal{K} = \{ x \in \mathbb{R}^n \mid g_i(x) = 0, \ i = 1, \dots, m, \ h_j(x) \le 0, \ j = 1, \dots, \ell \} .$ (1)

 \diamond In order to tackle point 2 we will assume that f is a smooth function. If the feasible set (1) is considered, we will also assume that g_i and h_j are smooth functions.

Some mathematical tools

◊ [Infimum] Let A ⊆ R. We say that m ∈ R is a lower bound of A if m ≤ a for all a ∈ A. If m_{*} is a lower bound of A such that m_{*} ≥ m for every lower bound m of A, then m_{*} is called the infimum of A and it is denoted by m_{*} = inf A. If m_{*} ∈ A, then we say that m_{*} is the mimimum of A, which is denoted m_{*} = min A. If no lower bound for A exists, then we set inf A := -∞. Another convention is that if A = Ø then inf A = +∞.

Example: Suppose that $A = \{1/n \mid n \ge 1\}$. Then, any $m \in]-\infty, 0]$ is a lower bound of A, $\inf A = 0$ and no minima exist.

Lemma 1. If $\inf A$ is finite or $\inf A = -\infty$, then there exists a sequence $(a_n)_{n \in \mathbb{N}}$ of elements in A such that $a_n \to \inf A$ as $n \to \infty$.

Proof. Exercise.

4

Let $f : \mathbb{R}^n \to \mathbb{R}$ and \mathcal{K} be given. Then, we define

$$\inf_{x \in \mathcal{K}} f(x) := \inf \underbrace{\{f(x) \mid x \in \mathcal{K}\}}_{A}$$

♦ [Supremum] Let $A \subseteq \mathbb{R}$. We say that $M \in \mathbb{R}$ is an upper bound of A if $M \ge a$ for all $a \in A$. If M^* is an upper bound of A such that $M^* \le M$ for every upper bound M of A, then M^* is called the supremum of A and it is denoted by $M^* = \sup A$. If $M^* \in A$, then we say that M^* is the maximum of A, which is denoted $M^* = \max A$. If no upper bound for A exists, then we set $\sup A := +\infty$. Another convention is that if $A = \emptyset$ then $\sup A = -\infty$.

Example: Suppose that $A = \{-1/n \mid n \ge 1\}$. Then, any $M \in [0, +\infty[$ is an upper bound of A, $\sup A = 0$ and no maxima exist.

Let $f : \mathbb{R}^n \to \mathbb{R}$ and \mathcal{K} be given. Then, we define

$$\sup_{x \in \mathcal{K}} f(x) := \sup \underbrace{\{f(x) \mid x \in \mathcal{K}\}}_{A}$$

- ♦ [Graph of a function] Let $f : \mathbb{R}^n \to \mathbb{R}$. The graph $Gr(f) \subseteq \mathbb{R}^{n+1}$ is defined by $Gr(f) := \{(x, f(x)) \mid x \in \mathbb{R}^n\}.$
- ♦ [Level sets] Let $c \in \mathbb{R}$. The level set of value c is defined by

$$\operatorname{Lev}_f(c) := \left\{ x \in \mathbb{R}^n \mid f(x) = c \right\}.$$

- When n = 2, the sets $\text{Lev}_f(c)$ are useful in order to draw the graph of a function.
- These sets will also be useful in order to solve graphically two dimensional linear programming problems, i.e. n = 2, and the function f and the set \mathcal{K} are defined by means of affine functions.

Example 1: We consider the function

$$\mathbb{R}^2 \ni (x, y) \mapsto f(x, y) := x + y + 2 \in \mathbb{R},$$

whose level set is given, for all $c \in \mathbb{R}$, by

$$Lev_f(c) := \left\{ (x, y) \in \mathbb{R}^2 \mid x + y + 2 = c \right\}.$$

Note that the optimization problem with this f and $\mathcal{K} = \mathbb{R}^2$ does not have a solution.

Example 2: Consider the function

$$\mathbb{R}^2 \ni (x, y) \mapsto f(x, y) := x^2 + y^2 \in \mathbb{R}.$$

Then $\operatorname{Lev}_f(c) = \emptyset$ if c < 0 and, if $c \ge 0$,

$$Lev_f(c) = \{(x, y) \mid x^2 + y^2 = c\},\$$

i.e. the circle centered at 0 and of radius \sqrt{c} .

 $Example \ 3:$ Consider the function

$$\mathbb{R}^2 \ni (x, y) \mapsto f(x, y) := x^2 - y^2 \in \mathbb{R}.$$

In this case the level sets are given, for all $c\in\mathbb{R},$ by

$$Lev_f(c) = \{(x, y) \mid y^2 = x^2 - c\}$$

♦ [Differentiability] Let $f : \mathbb{R}^n \to \mathbb{R}$. We say that f is differentiable at $\bar{x} \in \mathbb{R}^n$ if for all i = 1, ..., n the partial derivatives

$$\frac{\partial f}{\partial x_i}(\bar{x}) := \lim_{\tau \to 0} \frac{f(\bar{x} + \tau \mathbf{e}_i) - f(\bar{x})}{\tau} \quad \text{(where } \mathbf{e}_i := (0, \dots, \underbrace{1}_i, \dots, 0)\text{)},$$

exist and, defining the gradient of f at \bar{x} by

$$abla f(ar{x}) := \left(rac{\partial f}{\partial x_1}(ar{x}), \dots, rac{\partial f}{\partial x_n}(ar{x})
ight) \in \mathbb{R}^n,$$

we have that

$$\lim_{h \to 0} \frac{f(\bar{x} + h) - f(\bar{x}) - \nabla f(\bar{x}) \cdot h}{\|h\|} = 0.$$

If f is differentiable at every x belonging to a set $A \subseteq \mathbb{R}^n$, we say that f is differentiable in A.

Remark 1. Notice that f is differentiable at \bar{x} iff there exists $\varepsilon_{\bar{x}} : \mathbb{R}^n \to \mathbb{R}$, with $\lim_{h\to 0} \varepsilon_{\bar{x}}(h) = 0$ and

$$f(\bar{x}+h) = f(\bar{x}) + \nabla f(\bar{x}) \cdot h + \|h\|\varepsilon_{\bar{x}}(h).$$
(2)

In particular, f is continuous at \bar{x} .

Lemma 2. Assume that f is differentiable at \bar{x} and let $h \in \mathbb{R}^n$. Then,

$$\lim_{\tau \to 0, \tau > 0} \frac{f(\bar{x} + \tau h) - f(\bar{x})}{\tau} = \nabla f(\bar{x}) \cdot h.$$

Proof. By (2), for every $\tau > 0$, we have

$$f(\bar{x} + \tau h) - f(\bar{x}) = \tau \nabla f(\bar{x}) \cdot h + \tau \|h\| \varepsilon_{\bar{x}}(\tau h).$$

Dividing by τ and letting $\tau \to 0$ gives the result.

Remark 2. (i) [Simple criterion to check differentiability] Suppose that $A \subseteq \mathbb{R}^n$ is an open set containing \bar{x} and that

$$A \ni x \mapsto \nabla f(x) \in \mathbb{R}^n,$$

is well-defined and continuous at \bar{x} . Then, f is differentiable at \bar{x} .

As a consequence, if ∇f is continuous in A, then f is differentiable in A. In this case, we say that f is \mathcal{C}^1 in A (i.e. differentiability and continuity of ∇f in A). When f is \mathcal{C}^1 in \mathbb{R}^n we simply say that f is \mathcal{C}^1 .

(ii) The notion of differentiability can be extended to a function $f : \mathbb{R}^n \to \mathbb{R}^m$. In this case, f is differentiable at \bar{x} if there exists $L \in \mathcal{M}_{m \times n}(\mathbb{R})$ such that

$$\lim_{\|h\| \to 0} \frac{\|f(\bar{x}+h) - f(\bar{x}) - Lh\|}{\|h\|} \to 0.$$

If f is differentiable at \bar{x} , then $L = Df(\bar{x})$, called the Jacobian matrix of f at \bar{x} ,

which is given by

$$Df(\bar{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\bar{x}) & \dots & \frac{\partial f_1}{\partial x_n}(\bar{x}) \\ \dots & \dots & \dots \\ \frac{\partial f_i}{\partial x_1}(\bar{x}) & \dots & \frac{\partial f_i}{\partial x_n}(\bar{x}) \\ \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1}(\bar{x}) & \dots & \frac{\partial f_m}{\partial x_n}(\bar{x}) \end{pmatrix}$$

Note that when m = 1 we have that $Df(\bar{x}) = \nabla f(\bar{x})^{\top}$.

The chain rule says that if $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \bar{x} and $g : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $f(\bar{x})$, then $g \circ f : \mathbb{R}^n \to \mathbb{R}^p$ is differentiable at \bar{x} and the following identity holds

$$D(g \circ f)(\bar{x}) = Dg(f(\bar{x}))Df(\bar{x}).$$

(iii) In the previous definitions the fact that the domain of definition of f is \mathbb{R}^n is

not important. The definition can be extended naturally for functions defined on open subsets of \mathbb{R}^n .

Basic examples:

(i) Let $c \in \mathbb{R}^n$ and consider the function $f_1 : \mathbb{R}^n \to \mathbb{R}$ defined by $f_1(x) = c \cdot x$. Then, for every $x \in \mathbb{R}^n$, we have $\nabla f_1(x) = c$ and, hence, f is differentiable.

(ii) Let $Q \in M_{n \times n}(\mathbb{R})$ and consider the function $f_2 : \mathbb{R}^n \to \mathbb{R}$ defined by

$$f_2(x) = \frac{1}{2} \langle Qx, x \rangle \quad \forall \ x \in \mathbb{R}^n.$$

Then, for all $x \in \mathbb{R}^n$ and $h \in \mathbb{R}^n$, we have

$$\begin{split} f_2(x+h) &= \frac{1}{2} \langle Q(x+h), x+h \rangle \\ &= \frac{1}{2} \langle Qx, x \rangle + \frac{1}{2} \left[\langle Qx, h \rangle + \langle Qh, x \rangle \right] + \frac{1}{2} \langle Qh, h \rangle \\ &= \frac{1}{2} \langle Qx, x \rangle + \langle \frac{1}{2} \left(Q + Q^\top \right) x, h \rangle + \frac{1}{2} \langle Qh, h \rangle \\ &= f_2(\bar{x}) + \langle \frac{1}{2} \left(Q + Q^\top \right) x, h \rangle + \|h\| \varepsilon_x(h), \end{split}$$

where $\lim_{h\to 0} \varepsilon_x(h) = 0$. Therefore, f_2 is differentiable and

$$abla f_2(x) = \frac{1}{2} \left(Q + Q^{\top} \right) x \quad \forall \ x \in \mathbb{R}^n.$$

In particular, if Q is symmetric, then $\nabla f_2(x) = Qx$.

(iii) Consider the function $f_3 : \mathbb{R}^n \to \mathbb{R}$ defined by $f_3(x) = ||x||$. Then, since $f_3(x) = \sqrt{||x||^2}$, if $x \neq 0$, the chain rule shows that

$$Df(x) = D(\sqrt{\cdot})(\|x\|^2)D(\|\cdot\|^2)(x) = \frac{1}{2}\frac{1}{\sqrt{\|x\|^2}}(2x)^{\top} = \frac{x^{\top}}{\|x\|},$$

which implies that $\nabla f_3(x) = \frac{x}{\|x\|}$, and, since this function is continuous at every $x \neq 0$, we have that f_3 is C^1 in the set $\mathbb{R}^n \setminus \{0\}$. Let us show that f_3 is not differentiable at x = 0. Indeed, if this is not the case, then all the partial derivatives $\frac{\partial f_3}{\partial x_i}(0)$ should exists for all $i = 1, \ldots, n$. Taking, for instance, i = 1, we have

$$\lim_{\tau \to 0} \frac{\|0 + \tau \mathbf{e_1}\| - \|0\|}{\tau} = \lim_{\tau \to 0} \frac{|\tau|}{\tau},$$

15

which does not exist, because

$$\lim_{\tau \to 0^{-}} \frac{|\tau|}{\tau} = \lim_{\tau \to 0^{-}} \frac{-\tau}{\tau} = -1 \neq 1 = \lim_{\tau \to 0^{+}} \frac{\tau}{\tau} = \lim_{\tau \to 0^{+}} \frac{|\tau|}{\tau}.$$

♦ [Second order derivative and Taylor expansion] Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is C^1 . In particular, the function $\mathbb{R}^n \ni x \mapsto \nabla f(x) \in \mathbb{R}^n$ is well defined. If this function is differentiable at \bar{x} , then we say that f is twice differentiable at \bar{x} . If f is twice differentiable at every x belonging to a set $A \subseteq \mathbb{R}^n$, then we say that f is twice differentiable in A.

If this is the case, then, by definition,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\bar{x}) := \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (\bar{x}),$$

exists for all i, j = 1, ..., n. The following result, due to Clairaut and also known as Schwarz's theorem, says that, under appropriate conditions we can change the derivation order.

Theorem 1. Suppose that the function f is twice differentiable in an open set $A \subseteq \mathbb{R}^n$ containing \bar{x} and that for all i, j = 1, ..., n the function $A \ni x \mapsto \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \in \mathbb{R}$ is continuous at \bar{x} . Then,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\bar{x}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\bar{x}).$$

Under the assumptions of the previous theorem, the Jacobian of $abla f(ar{x})$ takes the form

$$D^{2}f(\bar{x}) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(\bar{x}) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(\bar{x}) \\ \vdots & \dots & \vdots \\ \frac{\partial^{2}f}{\partial x_{i}\partial x_{1}}(\bar{x}) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{i}}(\bar{x}) \\ \vdots & \dots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(\bar{x}) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(\bar{x}) \end{pmatrix}$$

This matrix, called the Hessian matrix of f at \bar{x} belongs to $\mathcal{M}_{n imes n}(\mathbb{R})$ and it is a

symmetric matrix by the previous result.

If $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable in an open set $A \subseteq \mathbb{R}^n$ and for all i, $j = 1, \ldots, n$ the function

$$A \ni x \mapsto \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \in \mathbb{R}$$

is continuous, we say that f is \mathcal{C}^2 in A.

◇ [Taylor's theorem] We admit the following important result:

Theorem 2. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is \mathcal{C}^2 in an open set $A \subseteq \mathbb{R}^n$. Then, for all $x \in A$ and h such that $x + h \in A$, we have the following expansion

$$f(x+h) = f(x) + \nabla f(x) \cdot h + \frac{1}{2} \langle D^2 f(x)h, h \rangle + \|h\|^2 R_x(h),$$

where $R_x(h) \to 0$ as $h \to 0$.

Example: Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = e^x \cos(y) - x - 1$.

Then,

$$\begin{split} \frac{\partial f}{\partial x}(0,0) &= e^x \cos(y) \big|_{(x,y)=(0,0)} - 1 = 0, \\ \frac{\partial f}{\partial y}(0,0) &= -e^x \sin(y) \big|_{(x,y)=(0,0)} = 0, \\ \frac{\partial^2 f}{\partial x^2}(0,0) &= e^x \cos(y) \big|_{(x,y)=(0,0)} = 1, \\ \frac{\partial^2 f}{\partial y^2}(0,0) &= -e^x \cos(y) \big|_{(x,y)=(0,0)} = -1, \\ \frac{\partial^2 f}{\partial x \partial y}(0,0) &= -e^x \sin(y) \big|_{(x,y)=(0,0)} = 0. \end{split}$$

Note that all the first and second order partial derivatives are continuous in \mathbb{R}^n . Therefore, we can apply the previous result and obtain that the Taylor's expansion of f at (0, 0) is given by

$$\begin{aligned} f((0,0)+h) &= f(0,0) + \nabla f(0,0) \cdot h + \frac{1}{2} \langle D^2 f(0,0)h,h \rangle + \|h\|^2 R_{\bar{x}}(h), \\ &= 0 + 0 + \frac{1}{2} h_1^2 - \frac{1}{2} h_2^2 + \|h\|^2 R_{(0,0)}(h), \\ &= \frac{1}{2} h_1^2 - \frac{1}{2} h_2^2 + \|h\|^2 R_{(0,0)}(h). \end{aligned}$$

This expansion shows that locally around (0, 0) the function f above is similar to the function in Example 3.

Some good reading for the previous part

- ◇ Chapters 2 and 3 in "Vector calculus", sixth edition, by J. E. Marsden and A. Tromba.
- ◇ Chapter 14 in "Calculus: Early transcendentals", eight edition, by J. Stewart.

Some basic existence results for problem (P)

♦ [Compactness] Recall that $A \subseteq \mathbb{R}^n$ is called compact if A is closed and bounded (i.e. A is closed and there exists R > 0 such that $||x|| \leq R$ for all $x \in A$).

Let us recall an important result concerning the compactness of a set A.

Theorem 3. [Bolzano-Weierstrass theorem] A set $A \subseteq \mathbb{R}^n$ is compact if and only if every sequence $(x_k)_{k\in\mathbb{N}}$ of elements of A has a convergence subsequence. This means that there exists $\bar{x} \in A$ and a subsequence $(x_{k_\ell})_{\ell\in\mathbb{N}}$ of $(x_k)_{k\in\mathbb{N}}$ such that

$$\bar{x} = \lim_{\ell \to \infty} x_{k_{\ell}}.$$

♦ [The basic existence results] Note that by definition, if $\inf_{x \in \mathcal{K}} f(x) = -\infty$, then f has no lower bounds in \mathcal{K} and, hence, there are no solutions to (P). On the other hand, if $\inf_{x \in \mathcal{L}} f(x)$ is finite, then the existence of a solution can also fail to hold as the following example shows.

Example: Consider the function $\mathbb{R} \ni x \mapsto f(x) := e^{-x}$ and take $\mathcal{K} := [0, +\infty[$. Then, $\inf_{x \in \mathcal{K}} f(x) = 0$ and there is no $x \in \mathcal{K}$ such that f(x) = 0.

Definition 1. We say that $(x_k)_{k \in \mathbb{N}} \subseteq \mathcal{K}$ is a minimizing sequence for (P) if

$$\inf_{x \in \mathcal{K}} f(x) = \lim_{k \to \infty} f(x_k).$$

By definition, a minimizing sequence always exists if \mathcal{K} is non-empty.

Theorem 4. [Weierstrass theorem, \mathcal{K} compact] Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is continuous and that \mathcal{K} is non-empty and compact. Then, problem (P) admits at least one global solution.

Proof. Let $(x_k)_{k\in\mathbb{N}} \in \mathcal{K}$ be a minimizing sequence. By compactness, there exists $\bar{x} \in \mathcal{K}$ and a subsequence $(x_{k_\ell})_{\ell\in\mathbb{N}}$ of $(x_k)_{k\in\mathbb{N}}$ such that $\bar{x} = \lim_{\ell\to\infty} x_{k_\ell}$. Then, by continuity

$$f(\bar{x}) = \lim_{\ell \to \infty} f(x_{k_{\ell}}) = \inf_{x \in \mathcal{K}} f(x).$$

22

Example: Suppose that $f : \mathbb{R}^3 \to \mathbb{R}$ is given by $f(x, y, z) = x^2 - y^3 + \sin z$ and $\mathcal{K} = \{(x, y, z) \mid x^4 + y^4 + z^4 \leq 1\}$. Then f is continuous and \mathcal{K} is compact. As a consequence, problem (P) admits at least one solution.

Theorem 5. [\mathcal{K} closed but not bounded] Suppose that \mathcal{K} is non-empty, closed, and that f is continuous and "coercive" or "infinity at the infinity" in \mathcal{K} , i.e.

$$\lim_{x \in \mathcal{K}, \ \|x\| \to \infty} f(x) = +\infty.$$
(3)

Then, problem (P) admits at least one global solution.

Proof. Let $(x_k)_{k\in\mathbb{N}} \in \mathcal{K}$ be a minimizing sequence. Since $\inf_{x\in\mathcal{K}} f(x) = -\infty$ or $\inf_{x\in\mathcal{K}} f(x) \in \mathbb{R}$ and $\lim_{k\to\infty} f(x_k) = \inf_{x\in\mathcal{K}} f(x)$, there exists R > 0 such that $(x_k)_{k\in\mathbb{N}} \subseteq \mathcal{K}_R := \{x' \in \mathcal{K} \mid f(x') \leq R\} \subseteq \mathcal{K}$. By continuity of f, this set is closed and bounded because f is coercive. Arguing as in the previous proof, the compactness of \mathcal{K}_R implies the existence of $\bar{x} \in \mathcal{K}_R$ such that a subsequence of $(x_k)_{k\in\mathbb{N}}$ converges to \bar{x} , which, by continuity of f, implies that \bar{x} solves (P). \Box

Example: Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is given by

$$f(x) = \langle Qx, x \rangle + c^{\top}x \quad \forall \ x \in \mathbb{R}^n,$$

where $Q \in \mathcal{M}_{n,n}(\mathbb{R})$ is symmetric and positive definite, and $c \in \mathbb{R}^n$. Since

$$\langle Qx, x \rangle \ge \lambda_{\min}(Q) \|x\|^2 \quad \forall \ x \in \mathbb{R}^n$$

(where $\lambda_{\min}(Q) > 0$ is the smallest eigenvalue of Q), we have that

$$f(x) \ge \lambda_{\min}(Q) \|x\|^2 - \|c\| \|x\| \quad \forall \ x \in \mathbb{R}^n.$$

This implies that $f(x) \to \infty$ as $||x|| \to \infty$. Therefore,

$$\lim_{x \in \mathcal{K}, \|x\| \to \infty} f(x) = \infty, \tag{4}$$

holds for every closed set \mathcal{K} . Since f is also continuous, problem (P) admits at least one global solution for any given non-empty closed set \mathcal{K} .

 $Example\colon$ Suppose that $f:\mathbb{R}^2\to\mathbb{R}$ is given by

$$f(x,y) = x^2 + y^3 \quad \forall \ (x,y) \in \mathbb{R}^2,$$

 $\quad \text{and} \quad$

$$\mathcal{K} = \{ (x, y) \in \mathbb{R}^2 \mid y \ge -1 \}.$$

Then,

$$\lim_{x \in \mathcal{K}, \|x\| \to \infty} f(x) = +\infty$$
(5)

holds (exercise) and, hence, (P) admits at least one global solution.

Optimality conditions for unconstrained problems

 \diamond Notice that, by the second existence theorem, if f is continuous and satisfies that

$$\lim_{\|x\|\to\infty} f(x) = +\infty,$$

then, if $\mathcal{K} = \mathbb{R}^n$, problem (P) admits at least one global solution.

♦ First order optimality conditions for unconstrained problems

We have the following result

Theorem 6. [Fermat's rule] Suppose that $\mathcal{K} = \mathbb{R}^n$ and that \bar{x} is a local solution to problem (P). If f is differentiable at \bar{x} , then $\nabla f(\bar{x}) = 0$.

Proof. For every $h \in \mathbb{R}^n$ and $\tau > 0$, the local optimality of \bar{x} yields

$$f(\bar{x}) \le f(\bar{x} + \tau h) = f(\bar{x}) + \tau \nabla f(\bar{x}) \cdot h + \tau \|h\| \varepsilon_{\bar{x}}(\tau h),$$

where $\lim_{z\to 0} \varepsilon_{\bar{x}}(z) = 0$. Therefore,

$$0 \le \tau \nabla f(\bar{x}) \cdot h + \tau \|h\| \varepsilon_{\bar{x}}(\tau h).$$

Dividing by τ and letting $\tau \to 0$, we get

 $\nabla f(\bar{x}) \cdot h \ge 0.$

Since h is arbitrary, we get that $\nabla f(\bar{x}) = 0$ (take for instance $h = -\nabla f(\bar{x})$ in the previous inequality).

♦ Second order optimality conditions for unconstrained problems

We have the following second order necessary condition for local optimality:

Theorem 7. Suppose that $\mathcal{K} = \mathbb{R}^n$ and that \bar{x} is a local solution to problem (P). If f is \mathcal{C}^2 in an open set A containing \bar{x} , then $D^2 f(\bar{x})$ is positive semidefinite. In other words,

 $\langle D^2 f(\bar{x})h,h\rangle \ge 0 \quad \forall \ h \in \mathbb{R}^n.$

Proof. Let us fix $h \in \mathbb{R}^n$. By Taylor's theorem, for all $\tau > 0$ small enough, we have

$$f(\bar{x} + \tau h) = f(\bar{x}) + \nabla f(\bar{x}) \cdot (\tau h) + \frac{1}{2} \langle D^2 f(\bar{x}) \tau h, \tau h \rangle + \|\tau h\|^2 R_{\bar{x}}(\tau h),$$

where $R_{\bar{x}}(\tau h) \to 0$ as $\tau \to 0$. Using the local optimality of \bar{x} , the previous result implies that $\nabla f(\bar{x}) = 0$ and, hence,

$$0 \le f(\bar{x} + \tau h) - f(\bar{x}) = \frac{\tau^2}{2} \langle D^2 f(\bar{x})h, h \rangle + \tau^2 ||h||^2 R_{\bar{x}}(\tau h).$$

Dividing by τ^2 and passing to the limit with $\tau \to 0$, we get the result.

We have the following second order sufficient condition for local optimality.

Theorem 8. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is \mathcal{C}^2 in an open set A containing \bar{x} and that

(i) $\nabla f(\bar{x}) = 0.$

(ii) The matrix $D^2 f(\bar{x})$ is positive definite. In other words,

$$\langle D^2 f(\bar{x})h,h\rangle > 0 \quad \forall h \in \mathbb{R}^n, h \neq 0.$$

Then, \bar{x} is a local solution to (P).

Proof. Let $\lambda > 0$ be the smallest eigenvalue of $D^2 f(\bar{x})$, then

$$\forall h \in \mathbb{R}^n, \quad \langle D^2 f(\bar{x})h, h \rangle \geq \lambda \|h\|^2.$$

Using this inequality, the hypothesis $abla f(ar{x})=0$, and the Taylor's expansion, for all

 $h \in \mathbb{R}^n$ such that $\bar{x} + h \in A$ we have that

$$f(\bar{x}+h) - f(\bar{x}) = \nabla f(\bar{x}) \cdot h + \frac{1}{2} \langle D^2 f(\bar{x})h, h \rangle + \|h\|^2 R_{\bar{x}}(h)$$

$$\geq \frac{\lambda}{2} \|h\|^2 + \|h\|^2 R_{\bar{x}}(h)$$

$$= \left(\frac{\lambda}{2} + R_{\bar{x}}(h)\right) \|h\|^2.$$

Since $R_{\bar{x}}(h) \to 0$ as $h \to 0$, we can choose $\delta > 0$ such that $||h|| \leq \delta$, $\bar{x} + h \in A$ and $|R_{\bar{x}}(h)| \leq \frac{\lambda}{4}$. As a consequence,

$$f(ar{x}+h)-f(ar{x})\geq rac{\lambda}{4}{{{\left\| h
ight\|}^{2}}}~~orall~h\in {\mathbb{R}}^{n}~~{
m with}~{{{\left\| h
ight\|}}\leq \delta},$$

which proves the local optimality of \bar{x} .

Example: Let us study problem (P) with $\mathcal{K} = \mathbb{R}^2$ and

$$\mathbb{R}^2 \ni (x, y) \mapsto f(x, y) = 2x^3 + 3y^2 + 3x^2y - 24y.$$

First, consider the sequence $(x_k, y_k) = (-k, 0)$ for $k \in \mathbb{N}$. Then,

$$f(x_k, y_k) = -2k^3 \rightarrow -\infty$$
 as $k \rightarrow \infty$.

Therefore, $\inf_{(x,y)\in\mathbb{R}^2} f(x,y) = -\infty$ and problem (P) does not admit global solutions. Let us look for local solutions. We know that if (x,y) is a local solution, then it should satisfy $\nabla f(x,y) = (0,0)$. This equation gives

$$6x^{2} + 6xy = 0,$$

$$6y + 3x^{2} = 24.$$

From the first equation, we get that x = 0 or x = -y. In the first case, the second equation yields y = 4, while in the second case we obtain that $x^2 - 2x - 8 = 0$ which yields the two solutions (4, -4) and (-2, 2). Therefore, we have the three candidates (0, 4), (4, -4) and (-2, 2). Let us check what can be obtained from the Hessian at

these three points. We have that

$$D^{2}f(x,y) = \left(\begin{array}{rrr} 12x + 6y & 6x \\ 6x & 6 \end{array}\right).$$

For the first candidate, we have

$$D^2 f(0,4) = \left(\begin{array}{cc} 24 & 0\\ 0 & 6 \end{array}\right).$$

which is positive definite. This implies that (0, 4) is a local solution of (P). For the second candidate, we have

$$D^{2}f(4,-4) = \begin{pmatrix} 24 & 24 \\ 24 & 6 \end{pmatrix} = 6 \begin{pmatrix} 4 & 4 \\ 4 & 1 \end{pmatrix},$$

whose determinant is given by 36(-12) < 0, which implies that $D^2f(4,-4)$ is

indefinite (the sign of the eigenvalues is not constant). Finally,

$$D^{2}f(-2,2) = \begin{pmatrix} -12 & -12 \\ -12 & 6 \end{pmatrix}$$

which is also indefinite because the sign of the diagonal terms are not constant. Therefore, (0, 4) is the unique local solution to (P).

 \diamond [Maximization problems] If instead of problem (P) we consider the problem

Find
$$\bar{x} \in \mathbb{R}^n$$
 such that $f(\bar{x}) = \max\{f(x) \mid x \in \mathcal{K}\},$ (P')

then \bar{x} is a local (resp. global) solution to (P') iff \bar{x} is a local (resp. global) solution to (P) with f replaced by -f. In particular, if \bar{x} is a local solution to (P') and f is regular enough, then we have the following first order necessary condition

$$\nabla f(\bar{x}) = 0,$$

as well as the following second order necessary condition

$$\langle D^2 f(\bar{x})h,h\rangle \le 0 \quad \forall \ h \in \mathbb{R}^n.$$

In other words, $D^2 f(ar x)$ is negative semidefinite.

Conversely, if $\bar{x} \in \mathbb{R}^n$ is such that $\nabla f(\bar{x}) = 0$ and

$$\langle D^2 f(\bar{x})h,h\rangle < 0 \quad \forall \ h \in \mathbb{R}^n, \ h \neq 0.$$

Then, \bar{x} is a local solution to (P').

Convexity

♦ [Convexity of a set] A non-empty set $C \subseteq \mathbb{R}^n$ is called convex if for any $\lambda \in [0, 1]$ and $x, y \in C$, we have that

$$\lambda x + (1 - \lambda)y \in C.$$

Let us fix a convex set $C \subseteq \mathbb{R}^n$.

♦ [Convexity of a function] A function $f : C \to \mathbb{R}$ is said to be convex if for any $\lambda \in [0, 1]$ and $x, y \in C$, we have that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

♦ [Relation between convex functions and convex sets] Given $f : \mathbb{R}^n \to \mathbb{R}$, let us define its epigraph epi(f) by

$$epi(f) := \{ (x, y) \in \mathbb{R}^{n+1} \mid y \ge f(x) \}.$$

Proposition 1. The function f is convex iff the set epi(f) is convex.

Proof. Indeed, suppose that f is convex and let (x_1, z_1) , $(x_2, z_2) \in epi(f)$. Then, given $\lambda \in [0, 1]$ set

$$P_{\lambda} := \lambda(x_1, z_1) + (1 - \lambda)(x_2, z_2) = (\lambda x_1 + (1 - \lambda)x_2, \lambda z_1 + (1 - \lambda)z_2)$$

Since, by convexity,

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2) \le \lambda z_1 + (1-\lambda)z_2,$$

we have that $P_{\lambda} \in epi(f)$. Conversely, assume that epi(f) is convex and let x_1 , $x_2 \in \mathbb{R}^n$ and $\lambda \in [0, 1]$. Since $(x_1, f(x_1))$, $(x_2, f(x_2)) \in epi(f)$, we deduce that

$$(\lambda x_1 + (1 - \lambda)x_2, \lambda f(x_1) + (1 - \lambda)f(x_2)) \in epi(f),$$

and, hence,

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2),$$

which proves the convexity of f.

36

♦ [Strict convexity of a function] A function $f : C \to \mathbb{R}$ is said to be strictly convex if for any $\lambda \in (0, 1)$ and $x, y \in C$, with $x \neq y$, we have that

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

♦ [Concavity and strict concavity of a function] A function $f : C \to \mathbb{R}$ is said to be concave if -f is convex. Similarly, the function f is strictly concave if -f is strictly convex.

Example: Let us show that the function $\mathbb{R}^n \ni x \mapsto ||x|| \in \mathbb{R}$ is convex but not strictly convex. Indeed, the convexity follows from the triangle inequality

$$\|\lambda x + (1 - \lambda)y\| \le \|\lambda x\| + \|(1 - \lambda)y\| = \lambda \|x\| + (1 - \lambda)\|y\|.$$

Now, if we have that for some $\lambda \in (0, 1)$

$$\|\lambda x + (1 - \lambda)y\| = \lambda \|x\| + (1 - \lambda)\|y\|$$

the equality case in the triangle inequality (||a + b|| = ||a|| + ||b||) iff a = 0 and b = 0or $a = \alpha b$ with $\alpha > 0$ shows that the previous inequality holds iff that x = y = 0 or $x = \gamma y$ for some $\gamma > 0$. By taking $x \neq 0$ and $y = \gamma x$ with $\gamma \in (0, \infty) \setminus \{1\}$ we conclude that $\|\cdot\|$ is not strictly convex.

Example: Let $\beta \in (1, +\infty)$. Let us show that the function $\mathbb{R}^n \ni x \mapsto ||x||^{\beta} \in \mathbb{R}$ is strictly convex. Indeed, the real function $[0, +\infty) \ni t \mapsto \alpha(t) := t^{\beta} \in \mathbb{R}$ is increasing and strictly convex because

$$\alpha'(t) = \beta t^{\beta - 1} > 0 \text{ and } \alpha''(t) = \beta(\beta - 1)t^{\beta - 2} > 0 \ \forall \ t \in (0, +\infty).$$

As a consequence, for any $\lambda \in [0, 1]$, using that

$$\|\lambda x + (1-\lambda)y\| \le \lambda \|x\| + (1-\lambda)\|y\|,$$

we get that

$$\begin{aligned} \|\lambda x + (1-\lambda)y\|^{\beta} &\leq (\lambda \|x\| + (1-\lambda)\|y\|)^{\beta} \\ &\leq \lambda \|x\|^{\beta} + (1-\lambda)\|y\|^{\beta}, \end{aligned} \tag{6}$$

which implies the convexity of $\|\cdot\|^{\beta}$. Now, in order to prove the strict convexity,

assume that for some $\lambda \in (0, 1)$ we have

$$\|\lambda x + (1-\lambda)y\|^{\beta} = \lambda \|x\|^{\beta} + (1-\lambda)\|y\|^{\beta},$$

and let us prove that x = y. Then, all the inequalities in (6) are equalities and, hence,

$$\begin{split} \|\lambda x + (1-\lambda)y\| &= \lambda \|x\| + (1-\lambda)\|y\|,\\ \text{and } (\lambda \|x\| + (1-\lambda)\|y\|)^{\beta} &= \lambda \|x\|^{\beta} + (1-\lambda)\|y\|^{\beta} \end{split}$$

The equality case in the triangle inequality and the first relation above imply that x = y = 0 or $x = \gamma y$ for some $\gamma > 0$. The strict convexity of α and the second inequality above imply that ||x|| = ||y||. Therefore, either x = y = 0 or both x and y are not zero and $x = \gamma y$ for some $\gamma > 0$ and ||x|| = ||y||. In the latter case, we get that $\alpha = 1$ and, hence, x = y from which the strict convexity follows.

♦ [Convexity and differentiability] We have the following result:

Theorem 9. Let $f : C \to \mathbb{R}$ be a differentiable function. Then, (i) f is convex in \mathbb{R}^n if and only if for every $x \in C$ we have

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x), \quad \forall \ y \in C.$$
(7)

(ii) f is strictly convex in \mathbb{R}^n if and only if for every $x \in C$ we have

$$f(y) > f(x) + \nabla f(x) \cdot (y - x), \quad \forall \ y \in C, \ y \neq x.$$
(8)

Proof. (i) By definition of convex function, for any $x, y \in C$ and $\lambda \in (0, 1)$, we have

$$f(\lambda y + (1 - \lambda)x) - f(x) \le \lambda \left(f(y) - f(x)\right)$$

Since, $\lambda y + (1 - \lambda)x = x + \lambda(y - x)$, we get

$$\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \le f(y)-f(x).$$

40

Letting $\lambda \rightarrow 0$, Lemma 2 yields

$$\nabla f(x) \cdot (y-x) \le f(y) - f(x).$$

Conversely, take x_1 and x_2 in C, $\lambda \in]0, 1[$ and define $x_{\lambda} := \lambda x_1 + (1 - \lambda)x_2$. By assumption,

$$\forall i \in \{1, 2\}, \quad f(x_i) \ge f(x_\lambda) + \nabla f(x_\lambda) \cdot (x_i - x_\lambda),$$

and we obtain, by taking the convex combination, that

$$\lambda f(x_1) + (1 - \lambda)f(x_2) \ge f(x_\lambda) + \nabla f(x_\lambda) \cdot (\lambda x_1 + (1 - \lambda)x_2 - x_\lambda) = f(x_\lambda),$$

which shows that f is convex.

 (ii) Since f is convex, by (i) we have that

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x), \quad \forall \ y \in C.$$
(9)

Suppose that there exists $y \in C$ such that $y \neq x$ and

$$f(y) = f(x) + \nabla f(x) \cdot (y - x).$$

Let $z = \frac{1}{2}x + \frac{1}{2}y$. Then, by (9), with y = z, and strict convexity, we get

$$f(x) + \nabla f(x) \cdot (\frac{1}{2}y - \frac{1}{2}x) \le f(z) < \frac{1}{2}f(x) + \frac{1}{2}f(y) = f(x) + \nabla f(x) \cdot (\frac{1}{2}y - \frac{1}{2}x),$$

which is impossible. The proof that (8) implies that f is strictly convex is completely analogous to the proof that (7) implies convexity. The result follows.

Theorem 10. Let $f : C \to \mathbb{R}$ be C^2 in C and suppose that C is open (besides being convex). Then

- (i) f is convex if and only if $D^2 f(x)$ is positive semidefinite for all $x \in C$.
- (ii) f is strictly convex if $D^2 f(x)$ is positive definite for all $x \in C$

Proof. (i) Suppose that f is convex. Then, by Taylor's theorem for every $x \in C$,

 $h \in \mathbb{R}^n$ and $\tau > 0$ small enough such that $x + \tau h \in C$ we have

$$f(x + \tau h) = f(x) + \tau \nabla f(x) \cdot h + \frac{\tau^2}{2} \langle D^2 f(x)h, h \rangle + \tau^2 ||h||^2 R_x(\tau h),$$

which implies, by the first order characterization of convexity, that

$$0 \le \frac{1}{2} \langle D^2 f(x)h, h \rangle + \|h\|^2 R_x(\tau h).$$

Using that $\lim_{ au \to 0} R_x(au h) = 0$, and the fact that h is arbitrary, we get that

$$\langle D^2 f(x)h,h\rangle \ge 0 \ \forall h \in \mathbb{R}^n.$$

Suppose that $D^2 f(x)$ is positive semidefinite for all $x \in C$ and assume, for the time being, that for every $x, y \in C$ there exists $c_{xy} \in \{\lambda x + (1 - \lambda)y \mid \lambda \in (0, 1)\}$ such that

$$f(y) = f(x) + \nabla f(x) \cdot (y - x) + \frac{1}{2} \langle D^2 f(c_{xy})(y - x), y - x \rangle.$$
(10)

Then, have that

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x) \quad \forall \ x, \ y \in C,$$

and, hence, f is convex. It remains to prove (10). Defining $g(\tau) := f(x + \tau(y - x))$ for all $\tau \in [0, 1]$, formula (10) follows from the equality

$$g(1) = g(0) + g'(0) + \frac{1}{2}g''(\hat{\tau})$$

for some $\hat{\tau} \in (0, 1)$.

(ii) The assertion follows directly from (10), with $y \neq y$, and Theorem 9(ii).

Remark 3. Note that the positive definiteness of $D^2 f(x)$, for all $x \in C$, is only a sufficient condition for strict convexity but not necessary. Indeed, the function $\mathbb{R} \ni x \mapsto f(x) = x^4 \in \mathbb{R}$ is strictly convex but f''(0) = 0.

Example: Let $Q \in \mathcal{M}_{n,n}(\mathbb{R})$ be symmetric and let $f : \mathbb{R}^n \to \mathbb{R}$ be defined by

$$f(x) = \frac{1}{2}x^{\top}Qx + c^{\top}x.$$

44

Then, $D^2 f(x) = Q$ and hence f is convex if Q is semidefinite positive and strictly convex if Q is definite positive.

In this case, the fact that Q is definite positive is also a necessary condition for strict convexity. Indeed, for simplicity suppose that c = 0 and write $Q = PDP^{\top}$, where the set of columns of P is an orthonormal basis of eigenvectors of Q (which exists because Q is symmetric), and D is the diagonal matrix containing the corresponding eigenvalues $\{\lambda_i\}_{i=1}^N$ in the diagonal. Set $y(x) = P^{\top}x$. Then,

$$f(x) = \sum \lambda_{i=1}^n y_i(x)^2.$$

If Q is not positive definite, then there exists $j \in \{1, \ldots, N\}$ such that $\lambda_j \leq 0$. Then, it is easy to see that f is not strictly convex on the set $\{x \in \mathbb{R}^n \mid y_i(x) = 0, \text{ for all } i \in \{1, \ldots, n\} \setminus \{j\}\}.$

Optimization with constraints

◇ [Optimality conditions for convex problems] Let us begin with a definition.

Definition 2. Problem (P) is called convex if f is convex and \mathcal{K} is a non-empty closed and convex set.

We have the following result.

Theorem 11. [Characterization of solutions for convex problems] Suppose that problem (P) is convex and that $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable in \mathcal{K} . Then, the following statements are equivalent:

- (i) \bar{x} is a local solution to (P).
- (ii) The following inequality holds:

$$\langle \nabla f(\bar{x}), x - \bar{x} \rangle \ge 0 \quad \forall \ x \in \mathcal{K}.$$
 (11)

(iii) \bar{x} is a global solution to (P).

Proof. Let us prove that (i) implies (ii). Indeed, by convexity of \mathcal{K} we have that given $y \in \mathcal{K}$ for any $\tau \in [0, 1]$ the point $\tau y + (1 - \tau)\bar{x} = \bar{x} + \tau(y - \bar{x}) \in \mathcal{K}$. Therefore, by the differentiability of f, if τ is small enough, we have

$$0 \le f(\bar{x} + \tau(y - \bar{x})) - f(\bar{x}) = \tau \nabla f(\bar{x}) \cdot (y - \bar{x}) + \tau \|y - \bar{x}\| \varepsilon_{\bar{x}}(\tau \|y - \bar{x}\|),$$

where $\lim_{h\to 0} \varepsilon_{\bar{x}}(h) = 0$. Dividing by τ and letting $\tau \to 0$, we get (ii).

The proof that (ii) implies (iii) follows directly from the inequalities

$$f(y) \ge f(\bar{x}) + \nabla f(\bar{x}) \cdot (y - \bar{x}) \ge f(\bar{x}) \quad \forall \ y \in \mathcal{K}.$$

Finally, (iii) implies (i) is trivial. The result follows.

Remark 4. In particular, if $f : \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable and $\mathcal{K} = \mathbb{R}^n$, the relation

$$\nabla f(\bar{x}) = 0,$$

is a necessary and sufficient condition for \bar{x} to be a global solution to (P).

Proposition 2. Suppose that \mathcal{K} is convex and that f is strictly convex in \mathcal{K} . Then, there exists at most one solution to problem (P).

Proof. Assume, by contradiction, that $x_1 \neq x_2$ are both solutions to (P). Then, $\frac{1}{2}x_1 + \frac{1}{2}x_2 \in \mathcal{K}$ and

$$f(\frac{1}{2}x_1 + \frac{1}{2}x_2) < \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2) = \min_{x \in \mathcal{K}} f(x).$$

♦ [Least squares] Let $A \in \mathcal{M}_{m,n}(\mathbb{R})$, $b \in \mathbb{R}^m$ and consider the system Ax = b. Suppose that m > n. This type of systems appear, for instance, in data fitting problem and it is often ill-posed, in the sense that there is no x satisfying the equation. In this case, one usually considers the optimization problem

$$\min_{x \in \mathcal{K} := \mathbb{R}^n} f(x) := \|Ax - b\|^2.$$
(12)

Note that

$$f(x) = \langle A^{\top}Ax, x \rangle - 2\langle A^{\top}b, x \rangle + \|b\|^{2}.$$

48

and, hence, $D^2 f(x) = 2A^{\top}A$, which is symmetric positive semidefinite, and, hence, f is convex. Let us assume that the columns of A are linearly independent. Then, for any $h \in \mathbb{R}^n$,

$$\langle A^{\top}Ah,h\rangle = 0 \Leftrightarrow Ah = 0 \Leftrightarrow h = 0,$$

i.e. for all $x \in \mathbb{R}^n$, the matrix $D^2 f(x)$ is symmetric positive definite and, hence, f is strictly convex. Moreover, denoting by $\lambda_{min} > 0$ the smallest eigenvalue of $2A^{\top}A$, we have

$$f(x) \ge \lambda_{min} ||x||^2 - 2\langle A^{\top}b, x \rangle + ||b||^2.$$

and, hence, f is infinity at the infinity. Therefore, problem (12) admits only one solution \bar{x} . By Remark 4, the solution \bar{x} is characterized by

$$A^{\top}A\bar{x} = A^{\top}b$$
, i.e. $\bar{x} = (A^{\top}A)^{-1}A^{\top}b$.

♦ [Projection on a closed and convex set] Suppose that \mathcal{K} is a nonempty closed and convex set and let $y \in \mathbb{R}^n$. Consider the problem the projection problem

$$\inf \{ \|x - y\| \mid x \in \mathcal{K} \}. \qquad (Proj_{\mathcal{K}})$$

Note that \mathcal{K} being closed and the cost functional being coercive, we have the existence of at least one solution \bar{x} . In order, to characterize \bar{x} notice that the set of solutions to $(Proj_{\mathcal{K}})$ is the same as the set of solutions to the problem

$$\inf\left\{\frac{1}{2}\|x-y\|^2 \mid x \in \mathcal{K}\right\}.$$

Then, since the cost functional of the problem above is strictly convex, Proposition 2 implies that \bar{x} is its unique solution and, hence, is also the unique solution to $(Proj_{\mathcal{K}})$. Moreover, by Theorem 11(ii), we have that \bar{x} is characterized by the inequality

$$(y - \bar{x}) \cdot (x - \bar{x}) \le 0 \quad \forall \ x \in \mathcal{K}.$$
(13)

Example: Let $b \in \mathbb{R}^m$ and $A \in \mathcal{M}_{m \times n}$ be such that

$$b \in \mathsf{Im}(A) := \{Ax \mid x \in \mathbb{R}^m\}.$$

Suppose that

$$\mathcal{K} = \{ x \in \mathbb{R}^n \mid Ax = b \}.$$
(14)

50

Then, \mathcal{K} is closed, convex and nonempty. Moreover, for any $h \in \text{Ker}(A)$ we have that $\bar{x} + h \in \mathcal{K}$. As a consequence, (13) implies that

$$(y - \bar{x}) \cdot h \le 0 \quad \forall h \in \operatorname{Ker}(A),$$

and, using that $h \in \text{Ker}(A)$ iff $-h \in \text{Ker}(A)$, we get that

$$(y - \bar{x}) \cdot h = 0 \quad \forall \ h \in \operatorname{Ker}(A).$$
 (15)

Conversely, since for every $x \in \mathcal{K}$ we have $x - \bar{x} \in \text{Ker}(A)$, relation (15) implies (13), and, hence, (15) characterizes \bar{x} . Note that (15) can be written as¹

$$y - \bar{x} \in \operatorname{Ker}(A)^{\perp} = \left\{ v \in \mathbb{R}^n \mid v^{\top} h = 0 \quad \forall h \in \operatorname{Ker}(A) \right\},$$

 $^1 {\sf Recall}$ that given a subspace V of ${\mathbb R}^n$, the orthogonal space V^\perp is defined by

$$V^{\perp} := \{ z \in \mathbb{R}^n \mid z^{\top} v = 0 \ \forall \ v \in V \}.$$

Two important properties of the orthogonal space are $V \oplus V^{\perp} = \mathbb{R}^n$, and $(V^{\perp})^{\perp} = V$.

or, equivalently,

$$y = \bar{x} + z$$
 for some $z \in \text{Ker}(A)^{\perp}$. (16)

♦ [Convex problems with equality constraints] Now, we consider the same set \mathcal{K} as in (14) but we consider a general differentiable convex objective function $f : \mathbb{R}^n \to \mathbb{R}$. We will need the following result from Linear Algebra.

Lemma 3. Let $A \in \mathcal{M}_{m,n}(\mathbb{R})$. Then, $\operatorname{Ker}(A)^{\perp} = \operatorname{Im}(A^{\top})$.

Proof. By the previous footnote, the desired relation is equivalent to $\operatorname{Im}(A^{\top})^{\perp} = \operatorname{Ker}(A)$. Now, $x \in \operatorname{Im}(A^{\top})^{\perp}$ iff $\langle x, A^{\top}y \rangle = 0$ for all $y \in \mathbb{R}^m$, and this holds iff $\langle Ax, y \rangle = 0$ for all $y \in \mathbb{R}^m$, i.e. $x \in \operatorname{Ker}(A)$.

Proposition 3. Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable and suppose that the set \mathcal{K} in (14) is nonempty. Then \bar{x} is a global solution to (P) iff $\bar{x} \in \mathcal{K}$ and there exists $\lambda \in \mathbb{R}^m$ such that

$$\nabla f(\bar{x}) + A^{\top} \lambda = 0. \tag{17}$$

Proof. We are going to show that (17) is equivalent to (11) from which the result

follows. Indeed, exactly as in the previous example, we have that (11) is equivalent to

$$\nabla f(\bar{x}) \cdot h = 0 \quad \forall \ h \in \operatorname{Ker}(A),$$

i.e.

$$\nabla f(\bar{x}) \in \operatorname{Ker}(A)^{\perp}.$$

Lemma 3 implies the existence of $\mu \in \mathbb{R}^m$ such that $\nabla f(\bar{x}) = A^\top \mu$. Setting $\lambda = -\mu$ we get (17).

Example: Let $Q \in \mathcal{M}_{n,n}(\mathbb{R})$ be symmetric and positive definite, and $c \in \mathbb{R}^n$. In the framework of the previous proposition, suppose that f is given by

$$f(x) = \frac{1}{2} \langle Qx, x \rangle + c^{\top} x \quad \forall \ x \in \mathbb{R}^n,$$

and that A has m linearly independent columns. A classical linear algebra result states that this is equivalent to the fact that the m lines of A are linearly independent. In this case, we say that A has full rank.

Under the previous assumptions on Q, we have seen that f is strictly convex. Moreover, the condition on the columns of A implies that $Im(A) = \mathbb{R}^m$ and, hence, $\mathcal{K} \neq \emptyset$. Now, by Proposition 3 the point \bar{x} solves (P) iff $\bar{x} \in \mathcal{K}$ and there exists $\lambda \in \mathbb{R}^m$ such that (17) holds. In other words, there exists $\lambda \in \mathbb{R}^m$ such that

$$A\bar{x} = b$$
, and $Q\bar{x} + c + A^{\top}\lambda = 0$.

The second equation above yields $\bar{x} = -Q^{-1}(c + A^{\top}\lambda)$ and, hence, by the first equation, we get

$$AQ^{-1}c + AQ^{-1}A^{\top}\lambda + b = 0.$$
 (18)

Let us show that $M := AQ^{-1}A^{\top}$ is invertible. Indeed, since $M \in \mathcal{M}_{m,m}(\mathbb{R})$ it suffices to show that My = 0 implies that y = 0. Now, let $y \in \mathbb{R}^m$ such that My = 0. Then, $\langle My, y \rangle = 0$ and, hence, $\langle Q^{-1}A^{\top}y, A^{\top}y \rangle = 0$, which implies, since Q^{-1} is also positive definite, that $A^{\top}y = 0$. Now, since the columns of A^{\top} are also linearly independent, we deduce that y = 0, i.e. M is invertible. Using this fact, we can solve for λ in (18), obtaining

$$\lambda = -M^{-1} \left(AQ^{-1}c + b \right).$$

We deduce that

$$\bar{x} = -Q^{-1} \left(c - A^{\top} M^{-1} \left(A Q^{-1} c + b \right) \right),$$
(19)

is the unique solution to this problem.

Example: Let us now consider the projection problem

min
$$\frac{1}{2} ||x - y||^2$$

s.t. $Ax = b$.

Noting that $\frac{1}{2}||x-y||^2 = \frac{1}{2}||x||^2 - y^\top x + \frac{1}{2}||y||^2$, the previous problem has the same solution than $\min \frac{1}{2}||x||^2 - y^\top x$

min
$$\frac{1}{2} ||x||^2 - y^\top$$

s.t. $Ax = b$,

which corresponds to $Q = I_{n \times n}$ (the $n \times n$ identity matrix) and c = -y. Then, (19) implies that the solution of this problem is given by

$$\bar{x} = (I - A^{\top} (AA^{\top})^{-1} A)y + A^{\top} (AA^{\top})^{-1} b.$$

55

Note that if $h \in \operatorname{Ker}(A)$

$$\begin{aligned} \langle y - \bar{x}, h \rangle &= \langle A^{\top} (AA^{\top})^{-1} A y - A^{\top} (AA^{\top})^{-1} b, h \rangle \\ &= \langle AA^{\top} \rangle^{-1} A y - (AA^{\top})^{-1} b, Ah \rangle \\ &= 0, \end{aligned}$$

confirming (16).

Optimality conditions for problems with equality and inequality constraints

- ♦ [An introductory example: linear programming] A firm produces two kind of products. Let x_1 , x_2 be, respectively, the quantity of product 1 and 2 (in tons) made in one month. Assume that there are some constraints on the quantity of x_1 and x_2 :
 - the factory cannot produce more than 3 units of x_1 .
 - fabrication process implies the following linear constraints on x_1 and x_2

$$-2x_1 + x_2 \le 2, \qquad -x_1 + x_2 \le 3.$$

The optimization problem is to chose the quantities x_1 and x_2 in order to maximize the benefits of the firm if the monthly revenue is $x_1 + 2x_2$.

The problem can be written as

$$\sup x_{1} + 2x_{2}$$

$$-2x_{1} + x_{2} \leq 2,$$

$$-x_{1} + x_{2} \leq 3$$

$$0 \leq x_{1} \leq 3, \quad 0 \leq x_{2}.$$

(LP)

This two dimensional example can be solved graphically. See the figure below.

- For $f(x_1, x_2) = x_1 + 2x_2$, we consider the level sets $\text{Lev}_f(c)$ with $c \in \mathbb{R}$.
- (\bar{x}_1, \bar{x}_2) solves the (LP) iff $\bar{c} := f(\bar{x}_1, \bar{x}_2)$ is the maximum $c \in \mathbb{R}$ such that $\operatorname{Lev}_f(c) \cap P \neq \emptyset$, where P is the polygon defined by

$$P := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid -2x_1 + x_2 \le 2, \ -x_1 + x_2 \le 3, \ 0 \le x_1 \le 3, \ 0 \le x_2 \right\}$$

• In order to find such \bar{c} , we start with any $c \in \mathbb{R}$ such that $\text{Lev}_f(c) \cap P \neq \emptyset$ and then we vary c by moving the line $x_1 + 2x_2 = c$ in the normal direction given by (1, 2)until we find \bar{c} . • In larger dimensions (n > 2), in practice this procedure cannot be applied. The most popular method to solve linear programming problems being the simplex method.

 \diamond [Nonlinear optimization problems with equality constraints] Consider problem (P) with

$$\mathcal{K} := \{ x \in \mathbb{R}^n \mid g_1(x) = 0, \dots, g_m(x) = 0 \},\$$

where, for all i = 1, ..., m, $g_i : \mathbb{R}^n \to \mathbb{R}$ is a given function. In this case, Problem (P) is usually written as

$$\begin{array}{c} \min \ f(x) \\ \text{s.t.} \ g_1(x) = 0, \\ \vdots \\ g_m(x) = 0. \end{array} \right\}$$
 (P)

In what follows we will assume that n > m. Indeed, if $n \le m$, then, unless some of the constraints are redundant, the set \mathcal{K} will eventually be empty or a singleton, and then (P) becomes trivial.

The main result in this section is the following first order necessary condition for optimality.

Theorem 12. [Lagrange] Let $\bar{x} \in \mathcal{K}$ be a local solution to (P). Assume that f and g_i (i = 1, ..., m) are \mathcal{C}^1 , and that

the set of vectors $\{\nabla g_1(\bar{x}), \ldots, \nabla g_m(x)\}$ are linearly independent. (CQ)

Then, there exists $(\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m$ such that

$$\nabla f(\bar{x}) + \sum_{i=1}^{m} \lambda_i \nabla g(\bar{x}) = 0.$$
(20)

[Sketch of the proof] The technical point is the use of Assumption (CQ). Indeed, let us set $g(x) = (g_1(x), \ldots, g_m(x))$ and let $h \in \mathbb{R}^n$ be such that $h \in \text{Ker}(Dg(\bar{x}))$. Under (CQ), the Implicit Function Theorem allows us to prove the existence of $\delta > 0$ and C^1 function $\phi : (-\delta, \delta) \to \mathbb{R}^m$ such that $\phi(0) = \bar{x}, \phi(t) \in \mathcal{K}$ for all $t \in (-\delta, \delta)$ and $\phi'(0) = h$. Then, by the optimality of \bar{x} , and diminishing δ , if necessary, we get

$$f(\bar{x}) \le f(\phi(t)) \ \forall t \in (-\delta, \delta),$$

which gives, after a Taylor expansion,

$$\nabla f(\bar{x})^{\top} h \ge 0.$$

Since $h \in \text{Ker}(Dg(\bar{x}))$ is arbitrary we get that $\nabla f(\bar{x})^{\top}h = 0$, for all $h \in \text{Ker}(Dg(\bar{x}))$, which implies that

$$\operatorname{Ker}(Dg(\bar{x})) \subseteq \operatorname{Ker}(\nabla f(\bar{x})^{\top}),$$

and, hence, from Lemma 3 we get

$$\operatorname{Im}(\nabla f(\bar{x})) = \operatorname{Ker}(\nabla f(\bar{x})^{\top})^{\perp} \subseteq \operatorname{Ker}(Dg(\bar{x}))^{\perp} = \operatorname{Im}(Dg(\bar{x})^{\top}).$$
(21)

Relation (20) follows directly from (21).

Remark 5. (i) If m = 1, then (20) means that $\nabla f(\bar{x})$ and $\nabla g_1(\bar{x})$ are collinear. (ii) The same optimality condition (20) holds if instead of considering minimization problem, we consider the maximization problem

$$\max f(x)$$

s.t. $g_1(x) = 0,$
 \vdots
 $g_m(x) = 0.$

(iii) Condition (CQ), called constraint qualification qualification condition, plays a important role. Indeed, let us consider the problem

$$\left.\begin{array}{l} \min x\\ \text{s.t.} \ x^3 - y^2 = 0, \end{array}\right\}$$

whose unique solution is $(\bar{x}, \bar{y}) = (0, 0)$. Relation (20) reads: there exists $\lambda \in \mathbb{R}$ such that

$$\left(egin{array}{c} 1 \\ 0 \end{array}
ight) + \lambda \left(egin{array}{c} 3x^2 \\ -2y \end{array}
ight) \bigg|_{(ar{x},ar{y})=(0,0)} = \left(egin{array}{c} 0 \\ 0 \end{array}
ight),$$

63

which clearly does not holds. The reason for this is that (CQ) does not holds. Indeed,

$$\left(egin{array}{c} 3x^2 \ -2y \end{array}
ight) \left|_{(ar{x},ar{y})=(0,0)} = \left(egin{array}{c} 0 \ 0 \end{array}
ight),$$

which is not linearly independent.

(iv) Under (CQ) if (\bar{x}, λ) and (\bar{x}, μ) satisfy (20), then $\lambda = \mu$. Indeed, we have

$$\sum_{i=1}^{m} (\lambda_i - \mu_i) \nabla g_i(\bar{x}) = 0,$$

and (CQ) implies that $\lambda_i = \mu_i$ for all $i = 1, \ldots, m$.

(v)[Affine constraints] We have seen that, in this case, (20) holds without having (CQ). However, in this case, the uniqueness of λ may not hold.

Definition 3. (i) Given $\lambda = (\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m$ satisfying (12) and $i \in \{1, \ldots, m\}$, we say that λ_i is a Lagrange multiplier associated to the constraint $g_i(x) = 0$. (ii) The function $L : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ defined by

$$L(x,\lambda) = f(x) + \langle \lambda, g(x) \rangle,$$

is called the Lagrangian of problem (P).

Theorem 12 says that if \bar{x} is a local solution to (P), then, there exists $\lambda \in \mathbb{R}^m$ such that

$$\nabla_x L(\bar{x}, \lambda) = 0.$$

Note that $\bar{x} \in \mathcal{K}$, which is equivalent to $g(x) = (g_1(\bar{x}), \ldots, g_m(\bar{x})) = 0$ for all $i = 1, \ldots, m$. Thus, $\nabla_{\lambda} L(\bar{x}, \lambda) = g(\bar{x}) = 0$, and, hence, (\bar{x}, λ) satisfies

$$\nabla_x L(\bar{x}, \lambda) = 0, \qquad \nabla_\lambda L(\bar{x}, \lambda) = 0, \tag{22}$$

which is a system of n + m equations for n + m unknowns.

Example: Let us consider the problem

min
$$xy$$

s.t. $x^2 + (y+1)^2 = 1$.

In this case $f : \mathbb{R}^2 \to \mathbb{R}$, is given by f(x, y) = xy, and $\mathcal{K} = \{(x, y) \in \mathbb{R}^2 \mid g(x, y) = 0\}$, with $g : \mathbb{R}^2 \to \mathbb{R}$ being given by $g(x, y) = x^2 + (y+1)^2 - 1$. Note that \mathcal{K} is given by the cercle centered at (0, -1) with radius 1. Hence, \mathcal{K} is a compact subset of \mathbb{R}^2 . The function f being continuous, the Weierstrass theorem implies that the optimization problem has at least one solution $(\bar{x}, \bar{y}) \in \mathcal{K}$. Let us check study (CQ). We have $\nabla g(x, y) = (2x, 2(y+1))$ and, hence, $\nabla g(x, y) = 0$ iff x = 0, y = -1. Thus, every $(x, y) \in \mathbb{R}^2 \setminus \{(0, -1)\}$ satisfies (CQ). Since $(0, -1) \notin \mathcal{K}$ we deduce that (CQ) holds for every $(x, y) \in \mathcal{K}$. The Lagrangian $L : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ of this problem is given by

$$L(x, y, \lambda) = xy + \lambda(x^{2} + (y + 1)^{2} - 1).$$

By Theorem 12, we have the existence of $\lambda \in \mathbb{R}$ such that (22) holds at $(\bar{x}, \bar{y}, \lambda)$.

Now,

$$\nabla_{(x,y)}L(\bar{x},\bar{y},\lambda) = 0 \quad \Leftrightarrow \qquad \begin{array}{l} \bar{y} + 2\lambda\bar{x} &= 0, \\ \bar{x} + 2\lambda(\bar{y} + 1) &= 0, \\ \Leftrightarrow \qquad \overline{y} &= -2\lambda\bar{x}, \\ (1 - 4\lambda^2)\bar{x} &= -2\lambda. \end{array}$$
(23)

Now, $1 - 4\lambda^2 = 0$ iff $\lambda = 1/2$ or $\lambda = -1/2$, and both cases contradict the last equality above. Therefore, $1 - 4\lambda^2 \neq 0$ and, hence,

$$\bar{x} = \frac{2\lambda}{4\lambda^2 - 1} \ \text{ and } \ \bar{y} = \frac{-4\lambda^2}{4\lambda^2 - 1}.$$

Since $abla_{\lambda}L(\bar{x},\bar{y},\lambda)=g(\bar{x},\bar{y})=0$, we get

$$\left(\frac{2\lambda}{4\lambda^2 - 1}\right)^2 + \left(1 - \frac{4\lambda^2}{4\lambda^2 - 1}\right)^2 = 1,$$

$$\Leftrightarrow 4\lambda^2 + 1 = (4\lambda^2 - 1)^2$$

$$\Leftrightarrow (4\lambda^2 - 1)^2 - (4\lambda^2 - 1) - 2 = 0,$$

67

which yields

$$\begin{split} &4\lambda^2-1=\tfrac{1+\sqrt{9}}{2} \ \text{or} \ \ 4\lambda^2-1=\tfrac{1-\sqrt{9}}{2}\\ &\text{i.e.} \ \lambda^2=3/4 \ \text{or} \ \ \lambda^2=0. \end{split}$$

If $\lambda = 0$, then (23) yields $\bar{x} = \bar{y} = 0$. If $\lambda = \sqrt{3}/2$ we get $\bar{x} = \sqrt{3}/2$ and $\bar{y} = -3/2$. If $\lambda = -\sqrt{3}/2$ we get $\bar{x} = -\sqrt{3}/2$ and $\bar{y} = -3/2$. Thus, the candidates to solve the problem are

$$(\bar{x}_1, \bar{y}_1) = (0, 0), \quad (\bar{x}_2, \bar{y}_2) = (\sqrt{3}/2, -3/2) \text{ and } (\bar{x}_3, \bar{y}_3) = (-\sqrt{3}/2, -3/2)$$

We have $f(\bar{x}_1, \bar{y}_1) = 0$, $f(\bar{x}_2, \bar{y}_2) = -3\sqrt{3}/4$ and $f(\bar{x}_3, \bar{y}_3) = 3\sqrt{3}/4$. Therefore, the global solution is (\bar{x}_2, \bar{y}_2) .