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Abstract. We introduce Ouroboros1, a new Key Exchange protocol based
on coding theory. The protocol gathers the best properties of the recent
MDPC-McEliece and HQC protocols for the Hamming metric: simplicity of
decoding and security reduction, based on a double cyclic structure. This
yields a simple, secure and efficient approach for key exchange. We obtain
the same type of parameters (and almost the same simple decoding) as for
MDPC-McEliece, but with a security reduction to decoding random quasi-
cyclic codes in the Random Oracle Model.
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1 Introduction

Code-based cryptography was introduced with the well-known McEliece cryptosys-
tem in 1978: it is in the spirit of the Merkle-Hellman cryptosystem, where the main
idea consists in masking an easy instance of a hard problem, hoping that the mask-
ing is hard to recover. The McEliece system based on its original family of codes –
namely the binary Goppa codes – is still considered unbroken today, but many vari-
ants based on alternative families of codes have been proposed over the years and
have turned out to be flawed, notably the variants based on the overly structured
Reed-Solomon codes. The McEliece system has two main drawbacks: a very large
key size and a security reduction to an ad-hoc problem, the difficulty of recovering
the hidden structure of a decodable code from the public matrix.

Over the years, researchers have tried to propose alternative schemes to over-
come these issues. The first line of improvements consists in adding structure to
the public matrix (like cyclicity for instance) in order to decrease the size of the
1 The Ouroboros symbol is an ancient symbol which represents the notion of cyclicity in
many civilizations.
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public key. Several approaches were proposed from 2005 [12], and resulted in the
McEliece variant based on the MDPC family of error-correcting codes [15], a very
efficient family with a very weak structure, compared to classical decodable fami-
lies. MDPC-McEliece is in the spirit of the NTRU cryptosystem but relies on the
Hamming distance rather than on the Euclidean distance. In practice the system
has a rather reasonable key-size, but a rather long message-size (comparable to the
key-length), it also benefits from a very simple decoding algorithm (the BitFlip al-
gorithm inherited from LDPC codes). Overall, its two main drawbacks are the lack
of a security reduction to a classical decoding problem and the fact that the decod-
ing algorithm is only probabilistic, making it hard to obtain precise probabilities of
decryption failure for very low probabilities.

A new approach to code-based public-key encryption that broke completely with
the McEliece paradigm was proposed by Alekhnovich in 2003 [2]. The focus of this
approach is to derive a system with a security reduction to the problem of decoding
random linear codes. This approach was very innovative but lead to large parame-
ters, exceeding those of McEliece. An Alekhnovich-inspired approach that features
cyclicity was recently proposed in [1]. The new scheme combines the advantages
of a security reduction with small public-key sizes resulting from cyclicity and are
based on the HQC and RQC (Hamming metric and rank metric quasi-cyclic) fami-
lies. In practice for the Hamming metric and HQC codes, the obtained parameters
are a little larger than for MDPC-McEliece, but the decryption failure is easier to
evaluate for very low decryption failure probabilities, and decoding is less simple
but still more efficient than for MDPC (decoding a small BCH code against using
the BitFlip algorithm for large lengths).

High level overview of our contribution. The previous discussion was mainly
focused on encryption algorithms. It is also possible to consider a Key Exchange
protocol derived from an encryption algorithm, simply by considering that the pub-
lic key is ephemeral and changed for each use of the protocol. (This is generally
achieved through a Key Encapsulation Mechanism (KEM for short), this point is
discussed in more details in Sec. 4.) In that case it is possible to accept low but fixed
decryption failures (say) 10−5 rather than require proven decryption failures of 2−λ
for a security parameter λ. In that context the very simple BitFlip algorithm for
MDPC decoding has renewed appeal since the difficulty of estimating the decoding
failure probability is not a serious issue anymore.

Our approach borrows from both MDPC-McEliece and the Alekhnovich ap-
proach. In the McEliece paradigm, errors are purposefully added to a codeword,
which the receiver can correct because he has a secret version of the code which
comes with a decoding algorithm. In contrast, the Alekhnovich strategy consists of
creating from a random public code a secret vector that is common to sender and
receiver, except that the sender and the receiver’s versions of this vector differ by
some noise. The natural follow-up is then to resort to an auxiliary code in order
to remove this noise. In the present work we use the Alekhnovich approach, except
that there is no auxiliary code: the public-key is a random quasi-cyclic code with
no extra structure (contrary to McEliece variants) but the noise that needs to be
removed is decoded through the secret key that happens to generate an MDPC
code.
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A structured error for HQC codes. The approach developed in [1] requires
recovering a codeword of the form mG, where G generates some public code of
length n, from a quantity of the form mG + xr2 − yr1 + ε where xr2 − yr1 + ε
is of weight O(n), xr2 and yr1 are the cyclic products of small weight vectors,
and ε is an independent small weight vector. The code generated by G is therefore
chosen to be highly decodable, and in the context of HQC is only required to decode
very large errors without taking into account the particular structure of the error.
In fact, the errors induced by the HQC approach are very special, indeed looking
closely at xr2 − yr1 + ε, and considering the fact that the decoder knows x and y,
it is easy to see that the error has essentially a cyclic structure induced by x and
y, where r1, r2 and ε are the unknowns. Seeing this and taking into account the
particular error structure, it is easy to reformulate the decoding problem for HQC
code into a decoding problem of a quasi-cyclic MDPC code generated by x and y
(known by the decoder). The only difference being the additional decoding of ε, but
our experiments show that the BitFlip algorithm can be slightly modified in order
to keep handling the case where the syndrome has a small additional error ε.

In practice this new approach based on the cyclic structure of the error, enables
one to keep the security reduction present in HQC-based encryption and to in-
clude the simplicity of the BitFlip decoding algorithm used for MDPC codes (mildly
tweaked). In some sense this new approach enables one to avoid the use of an exter-
nal code as in HQC encryption. (The decoding problem is formally stated in Def. 9.)
It comes with a price since it makes the evaluation of decryption failure probabili-
ties more difficult, but the algorithm is especially well suited to Key Exchange for
which failures are tolerated. In this paper we show that in practice our parameters
are almost the same as those of MDPC-McEliece but with a security reduction to
decoding quasi-cyclic random binary codes.

We prove that our protocol satisfies the passively secure requirement for KEMs
– namely INDistinguishability under Chosen Plaintext Attacks (IND-CPA) – in
the Random Oracle Model, with a reduction to a decisional form of the decoding
problem for random QC-codes.

Our contributions. To sum up: by considering the special structure of the error
vector in the HQC approach our contributions show the following:

• it is possible to obtain a scheme based on the simple BitFlip decoder, with the
IND-CPA property and with a security reduction to a decisional version of the
decoding problem for random quasi-cyclic codes, whereas MDPC-McEliece has
similar parameters but no such reduction,

• our approach improves on HQC-based encryption since in our new construction,
the weight of the error vector that needs to be decoded has weight O(

√
n)

whereas the error weight is structurally in O(n) for HQC,
• the BitFlip decoder is still usable and decodes efficiently when there is an addi-

tional small error on the given syndrome, and
• by considering the use of ephemeral keys, an efficient key exchange protocol is

obtained with a reasonable probability of failure.

Organization of the paper. Section 2 gives background, Section 3 describes
the new decoding problem, the modified BitFlip algorithm as well as the proposed
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Ouroboros protocol, Section 4 presents a security proof of this protocol with respect
to the standard model for KEM, and finally Section 5 gives examples of parameters.

2 Background

2.1 Coding theory and syndrome decoding problems

Notation. Throughout this paper, Z denotes the ring of integers and Fq (for a
prime q ∈ Z) a finite field, typically F2 for Hamming codes. Additionally, we denote
by ω(·) the Hamming weight of a vector i.e. the number of its non-zero coordinates,
and by Snw (F2) the set of words in Fn2 of weight w. Formally:

Snw (F2) = {x ∈ Fn2 , such that ω(x) = w} .

V denotes a vector space of dimension n over F2 for some positive n ∈ Z. Ele-
ments of V can be interchangeably considered as row vectors or polynomials in
R = F2[X]/(Xn − 1). Vectors/Polynomials (resp. matrices) will be represented by
lower-case (resp. upper-case) bold letters. A prime integer n is said to be primitive
if the polynomial (Xn − 1)/(X − 1) is irreducible in R.

For x,y ∈ V, we define their product similarly as in R, i.e. xy = c ∈ V with

ck =
∑

i+j≡k mod n

xiyj , for k ∈ {0, 1, . . . , n− 1}.

Our new protocol uses cyclic (or circulant) matrices. In the same fashion as
in [1], rot(h) for h ∈ V denotes the circulant matrix whose ith column is the vector
corresponding to hXi mod Xn − 1.

Background on coding theory. We now provide some reminders on coding
theory, the SD problem and its quasi-cyclic versions as defined in [1].

Definition 1 (Quasi-Cyclic Codes [15]). For positive integers s, n and k, a lin-
ear code [sn, k] code is said to be Quasi-Cyclic (QC) of order s if ∀c = (c1, . . . , cs) ∈ C
it holds that that (c1X, . . . , csX) ∈ C ( i.e. the code is stable by a block circular shift
of length n).

In our case, we will only consider rate 1/s systematic quasi-cyclic codes. The
parity-check matrix of such codes have the convenient shape below.

Definition 2 (Systematic Quasi-Cyclic Codes of rate 1/s). A QC [sn, n] code
of order s is said to be systematic if it admits a parity-check matrix of the form

H =


In 0 · · · 0 A1

0 In A2

. . .
...

0 · · · In As−1


with A1, . . . ,As−1 circulant n× n matrices.
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Problems in coding theory. Most code-based primitives rely on the Syndrome
Decoding (SD) problem, which has been proved NP-hard [5]. Even if there is no
such complexity result for Quasi-Cyclic (QC) codes, the general belief is that the
SD remains hard for such matrices. We use the same notations and definitions as [1]
for this problem, namely Quasi-Cyclic Syndrome Decoding (QCSD). The following
problems are defined for binary codes in the Hamming metric, but easily extend to
codes over Fq and even to other metrics such as the rank metric.

Definition 3 (SD Distribution). Let n, k, w ∈ N∗, the SD(n, k, w) Distribution
chooses H

$← F(n−k)×n and x
$← Snw(F2), and outputs (H, σ(x) = Hx

>
).

The SD distribution having been defined, we can now define the fundamental prob-
lem for code-based cryptography.

Definition 4 (Search SD Problem). On input (H,y>) ∈ F(n−k)×n
2 × F(n−k)

2

from the SD distribution, the Syndrome Decoding Problem SD(n, k, w) asks to find
x ∈ Snw(F2) such that Hx> = y>.

The SD problem has a decisional form, which asks to decide whether the given
sample came from the SD distribution or the uniform distribution:

Definition 5 (Decisional SD Problem). Given (H,y>)
$← F(n−k)×n

2 × F(n−k)
2 ,

the Decisional SD Problem DSD(n, k, w) asks to decide with non-negligible advan-
tage whether (H,y>) came from the SD(n, k, w) distribution or the uniform distri-
bution over F(n−k)×n

2 × F(n−k)
2 .

In order to propose reasonable key sizes, we base our proposition on QC codes. We
adapt the previous problems to this configuration.

Definition 6 (s-QCSD Distribution). Let n, k, w, s ∈ N∗, the s-
QCSD(n, k, w, s) Distribution samples H

$← F(sn−k)×sn
2 , the parity-check matrix of

a QC-code of order s and x = (x1, . . . ,xs)
$← Fsn2 such that ω(xi) = w, and outputs

(H,Hx>).

Definition 7 ((Search) s-QCSD Problem). For positive integers n, k, w, s, a
random parity check matrix H of a systematic QC code C and y

$← Fsn−k2 , the Search
s-Quasi-Cyclic SD Problem s-QCSD(n, k, w) asks to find x = (x1, . . . ,xs) ∈ Fsn2
such that ω(xi) = w, i = 1..s, and y = xH>.

Assumption 1 The Search s-QCSD problem is hard on average.

Although there is no general complexity result for quasi-cyclic codes, decoding
these codes is considered hard by the community. There exist general attacks which
use the cyclic structure of the code [19, 13] but these attacks have only a very
limited impact on the practical complexity of the problem. The conclusion is that
in practice, the best attacks are the same as those for non-circulant codes up to a
small factor.

Remark. Since systematic quasi-cyclic codes make up a large proportion of the
whole ensemble of quasi-cyclic codes, restricting the s-QCSD Problem to systematic
codes is not a significant specialisation.
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Definition 8 (Decisional s-QCSD Problem). For positive integers n, k, w, s,
a random parity check matrix H of a systematic QC code C and y

$← Fsn2 , the
Decisional s-Quasi-Cyclic SD Problem s-DQCSD(n, k, w) asks to decide with non-
negligible advantage whether (H,y>) came from the s-QCSD(n, k, w) distribution
or the uniform distribution over F(sn−k)×sn

2 × Fsn−k2 .

As for the ring Learning Parity from Noise problem, there is no known reduction
from the search version of s-QCSD problem to its decisional version. The proof of [4]
cannot be directly adapted in the quasi-cyclic case, however the best known attacks
on the decisional version of the problem s-QCSD remain the direct attacks on the
search version of the problem s-QCSD.

2.2 HQC Scheme

We now recall the Hamming Quasi-Cyclic (HQC) Scheme from [1], which shares
some similarities with the proposed protocol. This scheme in turn is inspired by
Alekhnovich’s proposal based on random matrices [2], but is much more efficient due
to the use of the cyclic structure. The main differences between HQC, Alekhnovich’s
scheme, and our proposal Ouroboros will be discussed in Sec. 3.3.

HQC uses two types of codes, a decodable [n, k] code which can correct δ errors
and a random double-circulant [2n, n] code. Using the same notation as before,
consider a linear code C over F2 of dimension k and length n (generated by G ∈
Fk×n2 ), that can correct up to δ errors via an efficient algorithm C.Decode(·). The
scheme consists of the following four polynomial-time algorithms:

– Setup(1λ): generates the global parameters n = n(1λ), k = k(1λ), δ = δ(1λ),
and w = w(1λ). The plaintext space is Fk2 . Outputs param = (n, k, δ, w).

– KeyGen(param): generates qr
$← V, matrix Q = (In | rot(qr)), the generator

matrix G ∈ Fk×n2 of C, sk = (x,y)
$← V2 such that ω(x) = ω(y) = w, sets

pk =
(
G,Q, s = sk ·Q>

)
, and returns (pk, sk).

– Encrypt(pk = (G,Q, s),µ, θ): uses randomness θ to generate ε $← V, r =

(r1, r2)
$← V2 such that ω(ε), ω(r1), ω(r2) ≤ w, sets v> = Qr> and ρ =

µG+ s · r2 + ε. It finally returns c = (v,ρ), an encryption of µ under pk.
– Decrypt(sk = (x,y), c = (v,ρ)): returns C.Decode(ρ− v · y).

A key feature of HQC is that the generator matrix G of the code C is publicly
known. In this way, the security of the scheme and the ability to decrypt only rely
on the knowledge of the secret key to remove sufficiently many errors, so that the
code C being used can decode correctly.

3 The Ouroboros protocol

We begin this Section by restating formally the decoding problem obtained by
providing a noisy input to the classical BitFlip Algorithm. We then describe an
efficient modified BitFlip algorithm which actually solves the stated problem. Finally
we describe our new key exchange protocol: Ouroboros.
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3.1 Decoding cyclic errors

Our new key exchange protocol requires to decode cyclic errors. We therefore intro-
duce a new problem that we call the Cyclic Error Decoding (CED) problem. Essen-
tially, this problem asks to recover information hidden with some noise, where the
noise has a cyclic structure. The problem is defined as follows:

Definition 9 (Cyclic Error Decoding (CED) Problem). Let x,y, r1 and r2 be
random vectors of length n and weight w = O(

√
n), and let e be a random error

vector of weight we = cw for some non-negative constant c. Considering the cyclic
products of vectors modulo Xn− 1, the problem is defined as follows: given (x,y) ∈
(Snw(F2))

2 and ec ← xr2 − yr1 + e such that ω(r1) = ω(r2) = w, the Cyclic Error
Decoding problem asks to recover (r1, r2).

One can immediately notice that this problem essentially corresponds to an in-
stance of the SD problem on matrix H =

(
rot(x)>, rot(y>)

)
, with the particularity

that the syndrome itself is faulty. Alternatively, it can also be thought of as a correct
instance of the same problem, but on the longer matrixH =

(
rot(x)>, rot(y)>, In

)
.

A modified BitFlip algorithm. In the case when we = 0, the problem is exactly
the MDPC problem [15]: now when we 6= 0 but remains small, the BitFlip decoder
used for MDPC codes can be directly adapted to this case. The only difference is
that the STOP condition is not that the weight of the recurring syndrome obtained
at each step becomes 0 at some point but rather that its weight is lower than we
(for we 6= 0).

We present in Algo. 1 a slightly modified BitFlip algorithm following [15, 9]. Our
experiments showed that this Hamming-QC-Decoder algorithm can correctly perform
decoding even when the input of the traditional BitFlip algorithm is a moderately
noisy syndrome.

There exist different ways to tune the BitFlip algorithm, the reader is referred
to [9] to see more details. In our version we consider the simple case where a thresh-
old t is used at each step to make a decision on the bit to flip or not. We run many
experiments for different sizes of parameters, in practice the results obtained show
that for the parameters considered the we impacts decoding only marginally. The
main impact is a slightly lower decoding probability.

3.2 Description of the Ouroboros protocol

Our protocol requires a function f which constructs fixed weight vectors of given
weight w from an entry r. In general for code-based protocols one requires an
invertible function f (see [18]), but in our case since we only consider key exchange,
f is not required to be invertible and a simple repetition of a hash function from
the entry r, giving the positions of the ‘1’ is enough to obtain random vectors of
fixed weight. We denote such a function by fw.

Description of the protocol. Our protocol is described in a generic fashion
in Fig. 1. It uses a hash function Hash : {0, 1}∗ −→ Snw(F2). For h a random
vector, Alice constructs a random syndrome s from its secret x,y. Upon reception
of the syndrome s = x+ hy from Alice, Bob constructs its own random syndrome



8

Algorithm 1: Hamming-QC-Decoder(x,y, ec, t, w, we)
Input: x,y, and ec = xr2 − yr1 + e, threshold value t required to flip a bit, weight

w (resp. we) of r1 and r2 (resp. e).
Output: (r1, r2) if the algorithm succeeds, ⊥ otherwise.

1 (u,v)← (0,0) ∈ (Fn2 )2, H←
(
rot(−y)>, rot(x)>

)
∈ Fn×2n

2 , syndrome ← ec;
2 while [ω(u) 6= w or ω(v) 6= w] and ω(syndrome) > we do
3 sum ← syndrome×H; /* No modular reduction */
4 flipped_positions ← 0 ∈ F2n

2 ;
5 for i ∈ [[0, 2n− 1]] do
6 if sum[i] ≥ t then
7 flipped_positions[i] = flipped_positions[i]⊕ 1;

8 (u,v) = (u,v)⊕ flipped_positions;
9 syndrome = syndrome −H× flipped_positions>;

10 if ω
(
ec −H× (u,v)>

)
> we then

11 return ⊥;
12 else
13 return (u,v);

s = r1 + hr2 from random r1 and r2 of weight w, and also constructs a second
syndrome sε associated with r2 on one side and on the other side to a small weight
vector e composed of two error vectors: the vector ε which will be the shared secret
and the error er obtained from the secret r1, r2. Upon receiving sr and sε, Alice
computes ec = sε−ysr = xr2−yr1 + er + ε, which corresponds to the cyclic-error
decoding problem with e = er+ε. The value we is taken as ω(ε)+ω(e), in practice
it can be a little smaller, but it does not change the decoding.

Alice Bob

seedh
$← {0, 1}λ, h seedh← Fn2

x,y
$← Snw(F2), s← x+ hy

ec ← sε − ysr
(r1, r2)← CE-Decoder(x,y, ec, t, w, we)
ε← ec − xr2 + yr1 − fcw (Hash(r1, r2))

ε

h,s−−−−−−−→

sr,sε←−−−−−−−−

Shared
Secret

r1, r2
$← Snw(F2)

er ← fcw (Hash (r1, r2)), ε
$← Snwε

(F2)
sr ← r1 + hr2, sε ← sr2 + er + ε

ε

Fig. 1. Description of our new Key Exchange protocol. h and s constitute the public key.
h can be recovered by publishing only the λ bits of the seed (instead of the n coordinates
of h).

Having this double error is essential for the security proof. Upon reception of
the two syndromes sr and sε, Alice constructs an instance of the CED problem. The
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result of the CED decoder is then used to recover er+ε and the er part of the error
is removed through the knowledge of (r1, r2).

3.3 Comparison with HQC and Alekhnovich

The Ouroboros approach differs fundamentally from the HQC approach concerning
the decoding algorithm used. For HQC [1] (and Aleknovich’s approach) the decoding
code C does not depend on the error, the code is fixed and is only required to decode
an error of the form xr2 + yr1 + ε. Since x,y, r1 and r2 have weight in O(

√
n), the

code C has to decode O(n) errors. For Ouroboros we use the special cyclic structure
of the error vector so that the code that is being decoded is necessarily a MDPC
type code and the error that one needs to decode has weight O(

√
n) rather than

O(n). Having to decode a smaller weight error yields better parameters with the
Ouroboros approach than with the HQC approach. However there is a price to pay,
the BitFlip decoding algorithm leads to a probabilistic decoding where the decoding
probability is obtained by simulation and is hard to estimate theoretically, whereas
the HQC approach gives the freedom to choose an auxiliary code for decoding with
a decoding failure probability easier to estimate.

4 Security of the protocol

In this section we prove the security of our key exchange protocol. Following
Alekhnovich’s construction, HQC benefits from a security reduction against pas-
sive adversaries. This represents a strong advance compared to the MDPC-McEliece
scheme. We note that the security proof from [1] carries over to our key exchange
protocol.

Security Model. While encryption schemes and long-term key exchange proto-
cols require strong semantic security against active adversaries, protocols meant to
exchange purely ephemeral session keys (such as Key Encapsulation Mechanisms
aka KEMs) are considered secure whenever they provide security against merely
passive adversaries (aka INDistinguishability under Chosen Plaintext Attacks, or
IND-CPA for short). This approach has been followed by several lattice-based key
exchange protocols such as [10, 11, 17, 7], or more recently the so-called NewHope
protocol [3]. Exchanging ephemeral keys through passively secure KEMS exploits
the fact that a (say) 256 bits randomness string chosen by one party can be sent
encrypted using the other party’s (long term) public key so that both parties end
up with shared secret randomness from which they can derive a secret symmet-
ric key. Passively secure KEMs viewed as key exchanged protocols are covered by
the IND-CPA security model [14]. (It turns out that this security model has been
chosen with a minimal security requirement by Nist in its post-quantum call for
proposal [16].) Therefore, we prove our key exchange protocol (viewed as a KEM)
to be (passively) secure in this IND-CPA model.

IND-CPA. IND-CPA is generally proved through the following game: the adver-
sary A chooses two plaintexts µ0 and µ1 and sends them to the challenger who flips
a coin b ∈ {0, 1}, encrypts µb into ciphertext c and returns c to A. The encryption
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scheme is said to be IND-CPA secure if A has a negligible advantage in deciding
which plaintext c encrypts. This game is formally described on the right.

Expind−b
E,A (λ)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param)
3. (µ0,µ1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,µb, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Fig. 2. Experiment against the IND-CPA security

The global advantage for polynomial time adversaries (running in time less than t)
is:

Advind
E (λ, t) = max

A≤t
Advind

E,A(λ),

where Advind
E,A(λ) is the advantage the adversary A has in winning game

Expind−b
E,A (λ):

Advind
E,A(λ) =

∣∣∣Pr[Expind−1
E,A (λ) = 1]− Pr[Expind−0

E,A (λ) = 1]
∣∣∣ .

Hybrid argument. Alternatively (and equivalently by the hybrid argument), it is
possible to construct a sequence of games from a valid encryption of a first message
µ0 to a valid encryption of another message µ1 and show that these games are two-
by-two indistinguishable. We follow this latter approach and prove the security of
our protocol (viewed as a KEM) similarly to [1]. Our proof can be thought as similar
to [1], without their public code C, and with ε playing the role of the message being
encrypted.

Theorem 1. The protocol presented in Figure 1 is IND-CPA under the 2-DQCSD
and 3-DQCSD assumptions.

The proof is inspired from [1, Proof of Theorem 1], with some slight differences
and adjustments. As mentioned at the beginning of this Section, the standard se-
curity model for a key exchange protocol such as Ouroboros (or NewHope) is the
same as passively secure KEMs [14]. In a KEM spirit, our key exchange protocol
can be seen as an ephemeral key encryption protocol where the (long-term) public
key is the syndrome s sent by Alice, and the plaintext (or shared secret randomness
is the value ε encrypted in the ciphertext formed by sr and sε.

Proof. Instead of directly proving that an PPT adversary only has a negligible ad-
vantage of distinguishing between two encrypted plaintexts, we construct a sequence
of game transitioning from a valid encryption of a plaintext to a valid encryption
of another plaintext. By showing these games to be two-by-two indistinguishable,
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the Hybrid argument allows us to obtain the claimed result. The sequence of games
starts with a valid encryption of a message ε(0) and ends with a valid encryption of
message ε(1). The aim is to prove that an adversary distinguishing one game from
another can be exploited to break either the 2-DQCSD or the 3-DQCSD assumption
(respectively on [2n, n] or [3n, n] codes) in polynomial time. Let A be a probabilistic
polynomial time adversary against the IND-CPA of our scheme and consider the
following games (A gets the output ciphertext at the end of each game).

Game G1: This game corresponds to an honest run of the protocol. In particular,
the challenger encrypts ε(0) with x, y, r1 and r2 of small (i.e. correct) weight
w.

Game G2: This game is also an honest run of the protocol, still with the same
plaintext ε(0) but the challenger uses a random er

′ $← Sncw(F2) instead of
fcw (Hash(r1, r2)).

Game G3: This game differs fromG2 in the fact that the challenger uses a random
(i.e. fake) secret x and y random (resulting in a random s). He proceeds to the
rest of the protocol honestly to encrypt ε(0).

Game G4: Similar to G3. Additionally, the challenger samples er
′, r1 and r2 at

random (resulting in fake sr and sε) to encrypt ε(0).

Game G5: In this game, the challenger creates a fake encryption of another
plaintext ε(1) (presumably but not necessarily different from ε(0)). He chooses
r′1, r

′
2, er

∗ $← Fn2 uniformly at random and runs the protocol.

Game G6: Similar toG5, but the challenger encrypts ε(1) using valid, i.e. correctly
weighted, randomness: r′1 and r′2 are sampled with the correct weight w, and
er
∗ $← Sncw(F2) .

Game G7: In this game, the challenger uses a correctly weighted secret key x, y
to encrypt ε(1) .

Game G8: In this last game, the challenger uses the hash function to encrypt ε(1),
with er

∗ ← fcw (Hash (r1, r2)).

First, games G1 and G2 are indistinguishable under the Random Oracle as-
sumption.

Secondly, games G2 and G3 are indistinguishable under the 2-DQCSD assump-
tion. Indeed, assume we are given access to an oracle distinguishing these games.
Any 2-DQCSD instance ((In, rot(h)) , s) can be viewed as a public key. By provid-
ing this public key to the distinguishing oracle, we will be told whether it is valid,
which is the configuration of game G2, or not (game G3). But this very key comes
from the QCSD distribution in the former case and from the uniform distribution
in the latter, which yields a 2-DQCSD oracle.

Then, games G3 and G4 both involve the encryption of the plaintext ε(0), which
is known to A, who can hence compute:(

sr
sε − ε(0)

)
=

(
In 0 rot(h)
0 In rot(s)

)
(r1, er

′, r2)
>
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The syndrome
(
sr, sε − ε(0)

)
follows the QCSD distribution in game G3 and the

uniform distribution over (Fn2 )
2 in G4. Assume an adversary is able to distinguish

games G3 and G4, then it suffices to provide him with the syndrome and matrix
described above to straightforwardly break the 3-DQCSD assumption.

Next, the outputs from games G4 and G5 follow the exact same distribution:
they are uniformly random (hence making these games indistinguishable from an in-
formation theoretic point of view). Now that the messages being (falsely) encrypted
have been permuted, the rest of the proof consists in proving the indistinguishability
with a game involving a valid encryption of this second message.

We can start reintroducing correct values in the ciphertext. Games G5 and G6

are indistinguishable using the same argument as betweenG3 andG4:
(
sr, sε − ε(1)

)
follows a uniform distribution for G5 versus a QCSD distribution in G6. Therefore
an adversary distinguishing these games breaks the 3-DQCSD assumption.

Then, by reintroducing a (x,y) with correct weight, the argument from the
second step also applies and an adversary distinguishing G6 and G7 can identify
valid keys from invalid ones, hence breaking the 2-DQCSD assumption.

Finally, games G7 and G8 are again indistinguishable in the Random Oracle
Model.

By the hybrid argument, an adversary against the IND-CPA experiment has an
advantage (in the Random Oracle Model) bounded by:

Advind
E,A(λ) ≤ 2

(
Adv2-DQCSD(λ) + Adv3-DQCSD(λ)

)
.

ut

5 Parameter Sets

In this Section, since our Key Exchange protocol is based on an ephemeral encryp-
tion algorithm, we keep the same terminology: the public key corresponds to the
data that Alice sends to Bob, and the message corresponds to the data sent by Bob
to Alice upon receiving Alice’s data. In the following we only give parameters for
classical attacks, quantum safe parameters are derived by taking the square root
of the complexity since the best attacks for our type of parameters w � n, it was
proven in [8] that all known attacks lead to the exact same asymptotical complex-
ity: the complexity of the classical Information Set Decoding (ISD), for which it is
possible to apply directly Grover algorithm [6], and hence to divide the bit security
level by 2.

5.1 Parameters

The threshold value t is the most sensitive parameter of both the original BitFlip
algorithm and the modified one depicted in Algo. 1. A little bit too big and the
algorithm misses correct positions, a little bit too low and it includes wrong posi-
tions. Chaulet and Sendrier recently conduct a study on the worst-case behaviour
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of QC-MDPC codes, and gave some hints on how to choose this threshold value to
maximize the error correcting capacity [9]. Based upon their results, we explored
several values for t for our context where there is an additional error to consider and
chose the lowest t (in order to optimize efficiency) giving a reasonable Decryption
Failure Rate (DFR).2

The parameters we obtain are given in Tab. 1. For our parameters we chose the
weight we in Tab. 1 of the additional error ε and the weight of er to be w, so that
we = 2w in order to fit with the security reduction.

The security of our system is reduced to either decoding a word of weight 2w
for a [2n, n] or decoding an error of weight 3w for a [3n, n] code. For a [2n, n] code
the attacker knows the weight of the error is (w,w) on each block of the matrix,
a precise analysis is done in [9] and leads to an asymptotic complexity in 22w. For
the case [3n, n] the asymptotic complexity is better since the attacker chooses 2n

3
columns among 2n columns, since the error distribution is (w,w,w) it leads to a
complexity in ( 32 )

3w = 23 log2(3/2)w ' 21.75w, hence a little better than the attack
on the [2n, n] code. Notice also that for the MDPC matrix, the weight w has to
be taken greater than what we consider in our case since in the case of the MDPC
matrix, the attacker can search for all the cyclic permutations of the small weight
vector and profit by a factor n for its attack, when in our case the factor is only√
n (see [19]). Finally, for our parameters, in order to avoid potential attacks based

on the polynomial decomposition of Xn − 1, we chose n a primitive prime for F2.
Overall Tab. 1 presents our results, the DFR is obtained by simulations on random
instances with given parameters. The results show that our parameters are very close
to parameters proposed by MDPC but profit by an IND-CPA security reduction to
decoding random quasi-cyclic matrices.

Ouroboros Parameters

Instance n w we threshold security DFR

Low-I 5, 851 47 94 30 80 0.92 · 10−5

Low-II 5, 923 47 94 30 80 2.3 · 10−6

Medium-I 13, 691 75 150 45 128 0.96 · 10−5

Medium-II 14, 243 75 150 45 128 1.09 · 10−6

Strong-I 40, 013 147 294 85 256 4.20 · 10−5

Strong-II 40, 973 147 294 85 256 < 10−6

Table 1. Parameter sets for Ouroboros

2 This terminology is borrowed from [15]. DFR is the fraction of decoding failures in a
given number of decoding tests.
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5.2 Optimized parameters

We saw in the previous subsection that the security reduction lead to attacking a
[3n, n] quasi-cyclic code, for a small weight error of weight 3w more precisely. We
also saw that in that case the decoding complexity was lower than for the [2n, n]
case. Modifying the weight of er does not really change drastically the decoding
capacity of the modified BitFlip algorithm, but it may permit to obtain a higher
complexity attack for the [3n, n] matrix of the security reduction. Hence it seems
a natural idea to increase the weight of er so that in that case we can still use
the modified BitFlip algorithm but the practical security is reduced to decoding a
random [2n, n] code for weight 2w. This is done on the parameters presented in
Tab 2.

Notice that without loss of generality for parameters such that w = O(
√
n) the

decoding of vector of length 3n with weights of the form (w,w,w), can be reduced
to decoding vectors of the form (w, aw,w) for a > 1, simply by adding a random
known vector of weight (a−1)w on the second n-length block to a (w,w,w) vector,
we omit the obvious details of this proof in this short version of the paper.

Suppose the weight of er is aw (with a > 1) rather than w, then according to
the security reduction, an attacker has to search for a word of the form (w, aw,w).
For this case (w = O(

√
n) � n) the best attacks corresponds to the classical ISD

approach. When the the weight is regular of the form (w,w,w) the attacker will
consider the same number of columns for each block, now for a weight (w, aw,w)
the attacker chooses 2n columns but will consider more columns where the weight
is aw. Let us denote by αn (0 ≤ α ≤ 1) the number of columns for the first and
third block and (2− 2α)n (with 2− 2α ≥ 0) the number of columns for the second
block. The asymptotic probability P that the attacker finds the error columns is
hence:

P = (α)w · (2− 2α)aw · (α)w.

Ouroboros Optimized Parameters

Instance n w we threshold security DFR

Low-I 4, 813 41 123 27 80 2.23 · 10−5

Low-II 5, 003 41 123 27 80 2.60 · 10−6

Medium-I 10, 301 67 201 42 128 1.01 · 10−4

Medium-II 10, 837 67 201 42 128 < 10−7

Strong-I 32, 771 131 393 77 256 < 10−4

Strong-II 33, 997 131 393 77 256 < 10−7

Table 2. Optimized parameter sets for Ouroboros in Hamming metric

For a = 1 with the conditions 0 ≤ α ≤ 1 and 2 − 2α ≥ 0, we obtain that P is
maximal for α = 2/3 and we recover the complexity in 21.75w, now when a increases
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this probability decreases and for a = 2 computations show that the maximum P
induces a complexity in 22w, hence considering the case a = 2.1w and w(ε) = 0.9w
permits to obtain we ' 3w for the BitFlip algorithm, and permits to obtain that
the best attacks of the system are obtained for decoding 2w errors for a [2n, n]
quasi-cyclic code. This permits to obtain better parameters (about 20% better in
terms of size of public key) and which are presented in Tab. 2. These parameters
are very similar to the parameters proposed for MDPC-McEliece.

6 Conclusion

In this paper we introduced Ouroboros: an efficient, secure and conceptually simple
key exchange protocol based on coding theory. This new protocol benefits from the
security proof of the HQC and RQC family based on the Alekhnovich approach,
and have an IND-CPA security reduction to decoding random quasi-cyclic codes,
moreover because of its inherent double circulant structure it also benefits from the
simple MDPC structure and the simple BitFlip decoding algorithm, for almost the
same type of parameters as MDPC codes but with better parameters than for the
HQC protocol (about 40% better for the same DFR).

While the approach is presented only for the Hamming metrics, it is possible to
implement a rank metric analog: Ouroboros-R. The resulting protocol also yields
better parameters (about 20% better) in comparison to the RQC approach and also
to benefits from the simple decoding algorithm of LRPC codes. The price to pay is
a probabilistic decoding, which makes this approach especially well suited for Key
Exchange. Ouroboros-R will be described into more details in an extended version
of this work.

The Ouroboros protocol leads to somewhat higher public key parameters than
the recent lattice-based key exchange NewHope protocol [3] but Ouroboros-R has
the potential to give better parameters than the NewHope protocol.
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