Machine Learning using STATA

Module outline

Dr. Giovanni Cerulli
21 – 22 December 2020
University of Roma Tre, Italy
Organizer
Prof. Ornella Ricci
Professor of Banking and Finance, University of Rome Tre, Italy

Lecturer
Dr. Giovanni Cerulli
Research Institute on Sustainable Economic Growth, National Research Council of Italy, Italy
giovanni.cerulli@ircres.cnr.it

Short bio
Giovanni Cerulli holds a degree in Statistics and Economics, and a PhD in Economics (both at the Sapienza University of Rome). His research interests are about statistic and econometric modeling, with a special focus on the econometrics of program evaluation and causal inference. Also, he does research on "machine learning" and computational econometrics. Giovanni developed some original models for quantitative program evaluation, such as models for continuous treatment, neighborhood interaction, as well as nonparametric extensions of existing models. In applications, my research activity has focused mainly on measuring the effects of technological policies on firm economic and technological performance. He also covered applications in banking and finance.

As of May 2019, the Research Papers in Economics (RePEc) archive ranks his profile among the top 5% authors. Furthermore, RePEc ranks his profile in the 26th position among the Italian economists for the scientific production of the last 10 years.

When
21, 22 December 2020

Where
Microsoft Teams

Overall aims and purpose
The overall aim is to provide an introduction to machine learning models and to show how these can be applied for empirical research to banking data using Stata.

Course description
Recent years have witnessed an unprecedented availability of information on social, economic, and health-related phenomena. Researchers, practitioners,
and policymakers have nowadays access to huge datasets (the so-called “Big Data”) on people, companies and institutions, web and mobile devices, satellites, etc., at increasing speed and detail.

Machine learning is a relatively new approach to data analytics, which places itself in the intersection between statistics, computer science, and artificial intelligence. Its primary objective is that of turning information into knowledge and value by “letting the data speak”. To this purpose, machine learning limits prior assumptions on data structure, and relies on a model-free philosophy supporting algorithm development, computational procedures, and graphical inspection more than tight assumptions, algebraic development, and analytical solutions. Computationally unfeasible few years ago, machine learning is a product of the computer’s era, of today machines’ computing power and ability to learn, of hardware development, and continuous software upgrading.

This course is a primer to machine learning techniques using Stata. Stata owns today various packages to perform machine learning which are however poorly known to many Stata users. This course fills this gap by making participants familiar with (and knowledgeable of) Stata potential to draw knowledge and value from row, large, and possibly noisy data. The teaching approach will be mainly based on the graphical language and intuition more than on algebra. The training will make use of instructional as well as real-world examples, and will balance evenly theory and practical sessions.

After the course, participants are expected to have an improved understanding of Stata potential to perform machine learning, thus becoming able to master research tasks including, among others: (i) factor-importance detection, (ii) signal-from-noise extraction, (iii) correct model specification, (iv) model-free classification, both from a data-mining and a causal perspective.

Teaching and learning strategy
The course will last for two full days (9.00-17.00)

Pre-requisites
A good knowledge of panel data.
A good knowledge of Stata.
Students need to have their own laptop with Stata (version 15 or 16).
DAY 1
(21 December 2020)

1. The basics of Machine Learning
 Machine Learning: definition, rational, usefulness
 - Supervised vs. unsupervised learning
 - Regression vs. classification problems
 - Inference vs. prediction
 - Sampling vs. specification error
 Coping with the fundamental non-identifiability of \(E(y|x) \)
 - Parametric vs. non-parametric models
 - The trade-off between prediction accuracy and model interpretability

 Goodness-of-fit measures
 - Measuring the quality of fit: in-sample vs. out-of-sample prediction power
 - The bias-variance trade-off and the Mean Square Error (MSE) minimization
 - Training vs. test mean square error
 - The information criteria approach

 Machine Learning and Artificial Intelligence
 The Stata/Python integration: an overview

2. Resampling and validation methods
 Estimating training and test error
 Validation
 - The validation set approach
 - Training and test mean square error
 Cross-Validation
 - K-fold cross-validation
 - Leave-one-out cross-validation
 Bootstrap
 - The bootstrap algorithm
 - Bootstrap vs. cross-validation for validation purposes

3. Model Selection and regularization
 Model selection as a correct specification procedure
 The information criteria approach
 Subset Selection
 - Best subset selection
 - Backward stepwise selection
 - Forward stepwise Selection
 Shrinkage Methods
 - Lasso and Ridge, and Elastic regression
 - Adaptive Lasso
 - Information criteria and cross validation for Lasso
 Stata implementation

4. Discriminant analysis and nearest-neighbor classification
 The classification setting
 - Bayes optimal classifier and decision boundary
Misclassification error rate

Discriminant analysis
 - Linear and quadratic discriminant analysis
 - Naive Bayes classifier
*The *K*-nearest neighbors classifier*
Stata implementation

DAY 2
(22 December 2020)

5. **Nonparametric regression**
 Beyond parametric models: an overview
 Local, semi-global, and global approaches
 Local methods
 - Kernel-based regression
 - Nearest-neighbor regression
 Semi-global methods
 - Constant step-function
 - Piecewise polynomials
 - Spline regression
 Global methods
 - Polynomial and series estimators
 - Partially linear models
 - Generalized additive models
Stata implementation

6. **Tree-based regression**
 Regression and classification trees
 - Growing a tree via recursive binary splitting
 - Optimal tree pruning via cross-validation
 Tree-based ensemble methods
 - Bagging, Random Forests, and Boosting
Stata implementation

7. **Neural networks**
 The neural network model
 - neurons, hidden layers, and multi-outcomes
 Training a neural networks
 - Back-propagation via gradient descent
 - Fitting with high dimensional data
 - Fitting remarks
 Cross-validating neural network hyperparameters
Stata implementation