Supracerebellar transtentorial approach to posterior temporomedial structures

Technical note

YASUHIRO YONEKAWA, M.D., HANS-GEORG IMHOF, M.D., ETHAN TAUB, M.D., MARIAN CURCIC, M.D., YASUHIKO KAKU, M.D., PETER ROTH, HEINZ GREGOR WIESER, M.D., AND PETER GROSCURTH, M.D.

Department of Neurosurgery, Anesthesiology, Neurology, and Anatomy, Zurich University Hospital, Switzerland

The supracerebellar transtentorial (SCTT) approach, a modification of the infratentorial supracerebellar approach, facilitates simple and minimally invasive access to posterior temporomedial structures without requiring retraction of the temporal or occipital lobe.

The SCTT approach was used in 16 patients over a 3-year period. Eleven patients harbored tumors confined to, or located mainly within, the posterior hippocampal formation, three patients harbored aneurysms (one ruptured posterior cerebral artery [PCA] aneurysm at the P2-P3 junction, one ruptured giant PCA [P3] aneurysm, and one giant basilar artery–superior cerebellar artery aneurysm), one patient had juvenile-type moyamoya disease, and one patient suffered from medically intractable epilepsy. In these patients, the SCTT approach enabled tumor removal, aneurysm clipping, and vascular bypass procedures.

The authors’ experience suggests that this approach can be used routinely in treating lesions in the posterior temporomedial region.

KEY WORDS • surgical approach • parahippocampal gyrus • posterior cerebral artery • aneurysm • revascularization

Access to posterior temporomedial structures around the tentorial notch may be gained by occipital interhemispheric, subtemporal, or temporal transventricular approaches. Each approach carries its own inherent risk of compromising visual fields and/or language function (when performed in the dominant hemisphere) because of the need for retraction or cortical incision. The SCTT approach was devised to avoid these risks and was originally reported, as far as we can determine from our review of the literature, by Voigt and Yasargil in 1976 for removal of a cavernous angioma in the left parahippocampal gyrus.

In this communication we describe our experience in using the SCTT approach to structures such as the posterior hippocampal formation and the PCA (P2 and P3 segments), which does not place these highly important functional areas at risk.

Abbreviations used in this paper: BA = basilar artery; OA = occipital artery; PCA = posterior cerebral artery; PTA = posterior temporal artery; P2 = P2 segment of PCA; P3 = P3 segment of PCA; SCA = superior cerebellar artery; SCTT = supracerebellar transtentorial; WHO = World Health Organization.

Clinical Material and Methods

Case Selection

The SCTT approach was used in 16 patients who underwent surgery at the Department of Neurosurgery of Zurich University Hospital between September 1997 and May 2000. The clinical data are listed in Table 1. There were seven female and nine male patients in this group, and their mean age was 47 years (range 3–66 years).

Indications for surgery included six tumors confined to the posterior hippocampus (two low-grade astrocytomas [WHO Grade II], two anaplastic astrocytomas [WHO Grade III], one neuroglial angiodysplasia, and one metastasis of a melanoma), five tumors occupying the whole temporomedia ral region (two astrocytomas [WHO Grade II] and three glioblastomas multiforme), three aneurysms (one ruptured aneurysm at the P2-P3 junction of the PCA treated by neck clipping, one giant aneurysm of the proximal P3 segment treated by ligation, and one BA–SCA giant aneurysm treated by OA–PCA bypass), one case of Moyamoya disease treated by indirect revascularization of the PCA territory, and one case of medically intractable epilepsy.
Operative Technique

The SCTT approach is performed in the following manner (Fig. 1). The patient is placed in the sitting position. Fixation of the head is the same as that used during the standard posterior fossa craniotomy, including the infratentorial supracerebellar approach. A paramedian incision and craniotomy are made, as described elsewhere.\(^5,11,24,26\)

The transverse sinus is visible obliquely in the upper one third of the craniotomy. It is not necessary to expose either the confluens sinuum or the junction of the transverse and sigmoid sinuses. The craniotomy need not extend all the way downward to the foramen magnum.

The dura is opened in a V configuration and the bottom of the V is reflected upward so that the transverse sinus is seen in the cranial corner of the reflected area. The lateral portion of the cerebellomedullary cistern is opened to allow drainage of cerebrospinal fluid, which slackens the cerebellum. Adhesions of arachnoid villi between the cerebellum and the transverse sinus are removed so that a space is obtained between the cerebellum and the tentorium. Proceeding forward along the undersurface of the tentorium over the cerebellar surface (quadrangular lobule), one can recognize the trochlear nerve and the SCA anterior to the anterior margin of the quadrangular lobule. In approximately one third of cases, the procedure is possible only by sacrificing a bridging vein between the cerebellum and the tentorium. Medial to the tentorial hiatus, one may see the medial portion of the posterior hippocampus and the parietooccipital artery bulging toward the lateral portion of the midbrain and the quadrigeminal plate.

The tentorium is now cut from below, beginning around the midportion and extending as posteriorly as possible in the direction of the posterior margin of the tentorial hiatus. If large venous lakes or sinuses in the tentorium are encountered, they should be closed using titanium clips to prevent an air embolism. The free, cut edge of the tentorium is now retracted, together with the superior surface of the cerebellum, so that the tentorial flap protects the cerebellum as it is retracted downward. One can now inspect the posterior inferior surface of the temporal lobe (parahippocampal gyrus and lingual gyrus) along with two branches of the PCA, the parietooccipital artery and the PTA. If one lifts or partially resects the parahippocampal gyrus, one can discern the P\(_2\)-P\(_3\) junction of the PCA.

Once the operation (for example, aneurysm clipping, tumor removal, or posterior hippocampectomy) has been accomplished, the free edge of the tentorium is restored to its position and secured with sutures or fibrin glue (Tissucol). The craniotomy is then closed in a routine fashion.

Illustrative Cases

Case 1

This 57-year-old woman sustained a subarachnoid hemorrhage with a hematoma in the right temporal lobe in December 1998 (Fig. 2 upper).

Examination. Angiography revealed multiple aneurysms, including a ruptured aneurysm of the right PCA at the P\(_2\)-P\(_3\) junction (Fig. 2 center). The patient was admitted to the hospital on the day of rupture (Day 0) and assigned World Federation of Neurosurgical Societies' Grade IV and Fisher Grade 4; she underwent surgery on the same day.

Operation. With the patient in the sitting position, a right paramedian occipitobasal cortical osteoplastic craniotomy was performed. After temporary clipping of the P\(_2\) segment, which lasted 10 minutes, the ruptured aneurysm at the P\(_2\)-P\(_3\) junction was radically clipped via the SCTT approach. The intracerebral hematoma was partly removed through a cortical incision in the lateral occipitotemporal gyrus.
Fig. 1. Drawings depicting the operative steps used in the SCTT approach. A: Craniotomy. B: Incision of the tentorium. C: Exposure of the parahippocampal gyrus and the PCA after downward retraction of the tentorium and cerebellum.
Postoperative Course. The patient recovered well from the procedure. Postoperative vasospasm was treated successfully with hemodynamic therapy and selective endovascular application of papaverine. The unruptured aneurysms were treated during two subsequent craniotomies after the patient recovered from the first procedure. The final follow-up angiograms obtained in March 1999 confirmed complete clipping of all aneurysms (Fig. 2 lower). The patient's outcome was good, as determined using the Glasgow Outcome Scale,4 4 months later.

Comment. Other approaches that have been used for clipping aneurysms in this location include the conventional subtemporal,14 occipital interhemispheric,8,23 and transsylvian–transventricular approaches.27 This case shows that aneurysm clipping in the P$_2$-P$_3$ junction of the PCA is technically feasible via the SCTT approach, without retraction of the temporal lobe or occipital lobe. Despite an intraoperative premature rupture, the aneurysm was successfully clipped after temporary clipping of the P$_2$, which lasted no longer than 10 minutes.

Case 2

This 65-year-old man was admitted to the hospital in March 1999 because he was experiencing progressive right-sided ocular ptosis of 1 month's duration.

Examination. Magnetic resonance imaging revealed a giant aneurysm of the upper BA, which was subsequently localized using angiography to the right BA-SCA junction.

Operation. In preparation for an intended long temporary or permanent occlusion of the proximal BA, an OA–PCA bypass procedure was performed via the SCTT approach. A linear incision was made over the OA, which was dissected free. A right paramedian occipitocerebellar craniotomy was then performed, the tentorium was incised, and the PTA (diameter 1 mm) was dissected on the inferior surface of the parahippocampal gyrus. A microsurgical end-to-side bypass was performed between the OA and the PTA (Fig. 3).
This aneurysm was finally treated successfully by using an endovascular coiling procedure because neither direct clipping nor BA occlusion was possible. Patency of the OA–PCA bypass was not confirmed at the time of the aneurysm coiling procedure.

Postoperative Course. The patient was discharged in April 1999, with unchanged ophthalmoplegia.

Comment. This case also demonstrates the feasibility of using the SCTT approach for posterior fossa revascularization (OA–PCA bypass or OA–SCA bypass), although bypass patency could not be confirmed at the time of follow-up angiography. Vascularization performed using this approach does not compromise the performance of either the pterional or the subtemporal approach for aneurysms of this location.

Case 3

This 37-year-old woman was admitted to the hospital in May 1999 because she suffered from medically intractable partial epilepsy with complex partial seizures (manifested by episodes of flush over the entire body).

Examination. Magnetic resonance images revealed a mass in the posterior hippocampus on the dominant (left) side (Fig. 4 upper). The lesion was removed via a left-sided SCTT approach. The lesion was difficult to find because it was located subcortically; however, it was successfully localized with the aid of intraoperative electrocorticography, which revealed spiking around the periphery of the lesion. The final histopathological diagnosis was low-grade astrocytoma (WHO Grade II). There were no surgical complications and the patient was discharged 13 days after admission.

Postoperative Course. Follow-up MR images obtained 3 months later revealed complete removal of the posterior hippocampal formation without any sign of residual tumor (Fig. 4 lower). The patient has remained seizure free since then.

Comment. The alternative approach to removing this tumor—a conventional temporal approach—would have been difficult to perform without retraction or incision of the dominant temporal lobe, which would have increased the risk of a neurological complication.

Results

Characteristics of the patients and operative results are listed in Table 1. There were no postoperative complications related to the SCTT approach.
Discussion

Anatomical Structure of the Tentorium and the Posterior Temporomedial Territory of the Brain

Knowledge of the topographical anatomy around the tentorial incisura is necessary for the performance of this surgery. One must take care to minimize injury to the bridging veins between the cerebellum and the tentorium. In our experience, however, significantly large bridging veins must be coagulated and cut in approximately one third of cases to make this approach feasible. We have not experienced any complications after this vein sacrifice, although such complications have been reported by others.

The tentorium may contain large venous lakes or sinuses, which are reportedly most commonly located in its medial third portion. These should be carefully closed using metal clips when the tentorium is incised. The incision is best made from the lateral to the medial end because the free edge of the tentorium suddenly becomes steep toward its medial end, and is thus difficult to cut from the medial to the lateral end.

Upon a slightly downward retraction of the incised tentorium together with the cerebellum, one obtains an overview of the posterior temporomedia structures around the tentorial notch: the isthmus, parahippocampal gyrus, lingual gyrus, PCA with its branches (including the PTA and the parietooccipital artery) and other structures including the SCA, trochlear nerve, quadrigeminal plate, pineal body, and vein of Galen with its major tributaries (Fig. 1C).

Removal of the parahippocampal gyrus yields exposure of the following structures: the pulvinar, lateral and medial geniculate bodies, crus cerebri, vessels such as the vein of Rosenthal and its tributaries, the trunk of the PCA with its branches, and the temporal horn with its choroid plexus (Fig. 5).

Incision and replacement of the tentorium have caused no complications so far, except for temporary bradycardia or arrhythmia in some patients at the time of the incision. These may have been caused by trigeminal nerve irritation, and the anesthesiologist should be forewarned of this possibility.

Surgical Approaches

The infratentorial supracerebellar approach was first reported by Oppenheim and Krause in 1913 and was later refined by Zapletal and Stein. It was advocated by Yasargil in 1984 and, subsequently, by others as a useful approach to the dorsal portion of the midbrain and pons. The advantages and disadvantages of surgery performed while the patient is in the sitting position have been discussed elsewhere.

The SCTT approach described by Voigt and Yasargil in 1976 has two major advantages. 1) It provides ease of access to the posterior hippocampus, enabling posterior hippocampectomy, which could not be performed via Yasargil’s transsylvian–transventricular approach or other approaches without risking injury to normal structures and, thus potentially leading to a postoperative neurological deficit. 2) It provides ease of access to the P2-P3 junction of the PCA and, thus, aneurysms at this site may be managed with minimal risk. We consider the SCTT approach to be as good as, or better than, all other aforementioned approaches: subtemporal, occipital interhemispheric, and transsylvian–transventricular.

A microsurgical OA–PCA bypass procedure can be performed without retraction of the temporal lobe, which has been one of the causes of serious complications of revascularization procedures to the PCA or the SCA. A bypass procedure of this kind performed via the SCTT approach remains technically difficult, however, because the bypass site lies very deep within the surgical opening.

The technique described in this paper differs slightly from that of the original description by Voigt and Yasargil in that a paramedian rather than midline craniotomy is performed. We believe this variation offers easier access to more laterally localized lesions.

Conclusions

The SCTT approach performed with the patient in the sitting position is used to greatest benefit in surgery of the posterior temporomedial region: removal of tumors in this location, posterior hippocampectomy, clipping of aneurysms located at the P2-P3 junction, and OA–PCA bypass.

Acknowledgments

The authors are indebted to Mrs. Schurter and Ms. Frick for their secretarial assistance and to Mr. Stillhard for his photographic work.
Supracerebellar transtentorial approach to posterior temporomedial structures

References

Manuscript received December 20, 1999.
Accepted in final form October 4, 2000.
Address reprint requests to: Yasuhiro Yonekawa, M.D., Department of Neurosurgery, University Hospital, Frauenklinikstrasse 10, CH-8091 Zürich, Switzerland. email: yonekawa@nch.unizh.ch.